物理学在军事领域的应用
大学物理基础理论与军事技术的连通问题研究

大学物理基础理论与军事技术的连通问题研究
首先,大学物理基础理论可应用于军事技术中的武器系统。
例如,研究动力学方程可以帮助了解子弹轨迹等物理现象,并应用于设计武器的瞄准、飞行路径和伤害效果。
电磁学理论可以用于开展雷达技术和电子战。
此外,物理学在制造和处理材料方面也有很大的作用。
例如,材料的硬度、弹性、导电性、隔热性和耐腐蚀性都可以通过物理学理论进行研究和控制,以提高武器系统的性能和可靠性。
另外,物理学的计算模拟技术在军事领域也有着广泛应用。
研究纳米材料、超导体和量子计算等领域,可使用物理学模拟软件进行计算和仿真,以优化设计参数和预测物理现象。
国防部门也借助这些计算技术,开展研究并设计新型武器系统。
与此同时,军事技术也会促进物理学科的发展。
军事技术领域提供了许多特殊的测试条件,例如高温高压、低温和真空等环境,这些条件下的物理实验可以大大拓展物理学理论的应用范围。
军事技术的需求也促进了新型材料和技术的研究,例如纳米技术和量子计算。
总之,研究大学物理基础理论与军事技术的连通问题,不仅可以帮助军事领域更好地利用物理学知识,还可以促进物理学科的发展。
未来,应加强相关领域的交流与合作,继续深入研究物理学在军事领域的应用,进一步提高军事技术的水平。
物理学在军事领域中的应用

(2)半自动步枪
19世纪末,步枪 自动装填的研究 即已开始。第一 次世界大战后, 先后出现了苏联 的西蒙诺夫、法 国的1918式、德 国的伯格曼等半 自动步枪。
在我国据记载,金军在灭亡北宋的汴京之战中,一 夜之间架设抛石车5000余座,以汴京长达50里的外墙, 每里还要分得 100座。金军为了搜集足够的石弹,将汴 京附近的石制品洗劫一空。攻城时,先将护城河填平, 而后万炮齐发,再辅以大量强弩,一举击溃守城部队的 部 署 , 进 而 出 动 与 城 墙 等 高 、 可 容 纳 80 人 的 巨 型 攻 城 车—对楼展开登城战。量变到质变,大量抛石车的运用 促发了全新战术的诞生,其流星雨般猛烈的打击令戒备 森严的城防完全无法招架。
秦朝兵器
• 司• 司马马迁迁解在释《说,史秦记始》皇中的记配录剑了太一长次了著,名所的以谋不 能杀及事时件拔。出在来。秦青统铜一剑中一国般前都一是年短,剑强,悍它的无秦法 做军长正的准原备因消是青灭铜燕材国料时易,折一断个。叫春荆秋轲战的国使时者期, 最带负着盛燕名国的地越王图勾来践到剑秦,国全,长献不图过投5降5.是6厘假米,。 青刺铜杀剑秦普始遍皇宽而才短是,真6。0厘史米记似上乎这是样青描铜述剑:的刺极 限客。荆这轲种手长持度的匕配首剑,随绕手柱就奔可逃以的抽秦出始,皇秦企始图皇 怎拔么剑可还能击因,为三剑次太拔长剑而而拔剑不竟出然来不呢出?。对于这个 解释,历史学家一直很困惑。
• 尤为用值现得代称科道学的方是法,检这测些分青析铜,剑这的些韧青性铜异剑常表惊面人竟。涂有有 一一层口厚•剑约从,10二被微号一米坑具的出1氧5土0化公的膜斤青,重铜其的剑中陶,含俑长铬压826弯%厘。了米这,剑一弯身发曲现度立超即 震过动4了5度世上。界有当,8个陶因棱俑为面被这,移种极开铬为的盐对一氧称瞬化均间处衡,理。奇是它迹近们发代历生才经了掌,握青的铜先 进并程剑目工 申 下结反艺请才舌弹。专得2洁,,平据利以如00却直说,实新0年不,德 而 现。,知自国 且 。从为然在 只 秦地何还有 人19下。原在 的37出。一 铸年土这套 造,,精比水美却湛较平国无的复之在蚀铸杂高19无剑的,50锈技设真年,艺备是才光,和不先令工可后人艺思发膛流议明。
物理学与军事技术物理学在军事武器与装备中的应用

物理学与军事技术物理学在军事武器与装备中的应用随着科技的不断进步,物理学在军事领域的应用越来越广泛。
物理学与军事技术的结合使得军事武器与装备的研发更加先进、高效、精确。
本文将探讨物理学与军事技术在军事武器与装备中的应用。
一、雷达技术的应用雷达技术是军事武器与装备中的重要组成部分。
通过利用电磁波的特性,雷达技术能够实现远距离探测、目标识别与跟踪等功能。
例如,军事雷达可以用于侦测敌方飞机、舰船以及导弹发射等。
物理学理论与电磁波的研究为雷达技术的发展提供了坚实的基础,促进了雷达技术在军事领域的应用与推广。
二、激光武器的研发与应用激光技术是物理学在军事武器与装备中的重要应用之一。
激光武器具有高精度、高能量、高输出功率等特点。
例如,惯性约束聚变激光武器可以在极短的时间内产生极高的温度和压力,实现核聚变反应,具有极高的杀伤性和破坏力。
激光雷达可以用于目标探测与跟踪,提高战场情报的获取能力。
激光导弹也被广泛应用于航空航天领域,具有高精准度和高杀伤力。
三、红外成像技术的应用红外成像技术是利用目标辐射出的红外辐射能量进行成像与探测的技术。
军事装备中的红外成像技术主要包括红外热像仪和红外探测器。
红外热像仪能够实现远距离探测、目标识别与跟踪,对夜间作战以及隐蔽目标的探测具有重要意义。
红外探测器则广泛应用于导弹预警系统、航空飞行器目标探测等领域。
四、电磁弹射技术的应用电磁弹射技术是物理学在航空航天领域的重要应用之一。
传统的航空母舰使用蒸汽弹射器来发射飞机,而电磁弹射技术则采用电磁力来发射飞机。
相比于蒸汽弹射器,电磁弹射技术具有更高的发射速度、更大的加速度以及更好的调控能力。
这使得飞机能够更快地起飞并携带更多的武器与燃料,提高了作战技术与飞行性能。
五、精准制导技术的发展精准制导技术是军事武器与装备中的重要技术,在提高军事打击精准度以及减少误伤方面发挥着重要作用。
物理学的发展为精准制导技术的研发提供了基础。
例如,GPS导航系统通过利用地球的引力场来测定位置,能够精确导航并实现精准打击。
物理在军事的应用

一:水陆两用坦克水陆两用坦克是一种既能在陆地上行驶,又能在水中航行、作战的坦克。
特别是在两栖作战中,水陆两用坦克表现出特有的优越性。
这种坦克为什么可以在水中前进呢?任何水中行驶的物体,必须具有一定的浮力来克服自身的重量,才能不能下沉。
又必须有一定的动力推动自己前进,两个条件缺一不可。
为了提高坦克在水中的浮力,人们采用薄型钢板制作外壳,车体设计的又轻又长,前部呈般形。
所有的拼接部位都焊接起来,防止漏水,使坦克具有良好的密封性,以增加坦克的浮力。
坦克的动力则采用多种多样的方案。
有的坦克采用了特制提履带,犹如水车的水斗,通过履带的旋转不断把水排向后方,从而推动坦克前进。
有的则在坦克的尾部装上螺旋桨推进器,坦克就象船一样前进。
还有的装的是喷水式推进器,通过向后喷水,获得反作用力,推动坦克前进。
这两个基本条件具备后,坦克就可以既在陆地行走又在水中航行了。
二:隐形飞机如果最早采用隐形技术的B-18型战略轰炸机,人们对它的性能还不清的话,那么,随着F-117型飞机首次在巴拿马战场和海湾战争中的的大量使用,人们对隐形飞机已经不怎么陌生了,我们以B-2为例来研究一下隐形飞机。
B-2是美国诺斯罗·格鲁门公司研制的战略突防隐身轰炸机,主要任务是利用其优异的隐身性能,从高空或低空突破敌方防空系统,对战略目标实施核打击或常规轰炸。
该机采用了翼身融合的无尾飞翼构形,从机头至翼尖为成锐角,但上下是拱弧形的固定前缘,前缘为直线,机翼后缘成双W形,使飞机对所有有雷达的波形成镜面反射。
飞机结构大量采用先进的复合材料以及蜂窝状雷达吸波结构(RAS)、锯齿状雷达散射结构,机体表面还涂有雷达吸波材料(RAM),S形进气道和V形尾喷管位于机体的上部,使飞机周围的空气形成等离子屏障,成对地装在武器舱的外侧与机翼结构之间的装置可使氯氟硫酸被混在尾气中,以消除发动机的目视尾迹,这样达到“隐身”的效果。
三:火箭不知道大家有没有注意或留意在发射出的火箭顶端,有一个顶尖的针状物。
应用物理学在军事技术中的作用

应用物理学在军事技术中的作用引言:应用物理学作为一门应用科学,将物理学的原理和定律应用于解决实际问题。
在军事技术领域,应用物理学发挥着重要的作用。
本文将介绍应用物理学中的一些基本定律,并探讨它们在军事技术中的应用。
首先,我们将回顾一些重要的定律,然后介绍如何进行相应的实验准备和过程。
最后,将讨论这些应用在军事技术中的意义。
一、定律:热力学定律、电磁定律、光学定律等1. 热力学定律:热力学定律研究热量、能量和功的传递和转换。
在军事技术中,热力学定律可应用于火炮、导弹、飞机发动机等热能装置的设计和性能优化。
为了验证热力学定律,可以进行实验来测量热能转化效率、功率、温度等参数,并与理论计算进行比较。
2. 电磁定律:电磁定律研究电荷、电场、磁场和电流之间的相互作用。
在军事技术中,电磁定律可以应用于雷达、通信系统、导航设备等高频电子器件的设计和优化。
为了验证电磁定律,可以进行实验来测量电场强度、电磁波频率、磁感应强度等参数,并与理论值进行比较。
3. 光学定律:光学定律研究光线传播、折射、反射和干涉现象。
在军事技术中,光学定律被广泛应用于镜头设计、激光器技术、光纤通信等领域。
为了验证光学定律,可以进行实验来测量光线折射角、反射率、干涉条纹等参数,并与理论计算进行比较。
二、实验准备和过程:为了验证物理定律并应用于军事技术中,我们需要进行一系列的实验。
以下是实验准备和过程的简要描述:1. 实验准备:根据具体的物理定律,选择合适的实验装置和测量仪器。
准备合适的样品、试剂和控制变量的条件。
确保实验环境稳定,且实验数据的可靠性和准确性。
2. 实验过程:根据具体的物理定律,制定实验步骤。
依次进行实验操作,记录实验数据。
根据实验过程中出现的问题进行调整和优化。
确保实验过程的安全和规范。
三、应用在军事技术中的意义:应用物理学在军事技术中的应用非常广泛,以下是一些例子:1. 光学定律在军事光学设备中的应用:通过应用光学定律,可以设计和制造高分辨率的望远镜和激光器。
力学原理在军事上的应用

力学原理在军事上的应用1. 简介力学原理是物理学中的重要分支,研究物体的运动规律和力的作用关系。
在军事领域,力学原理被广泛应用于武器装备的设计、战术决策和训练等方面。
本文将介绍力学原理在军事上的应用。
2. 火炮原理2.1 运动学分析•火炮的发射过程可以用运动学来描述,包括炮弹的发射速度、射程和弹道等。
•利用运动学分析,可以推导出火炮的最大射程和射程与发射角度的关系。
•了解火炮的运动学特性,可以优化火炮的设计,提高射程和攻击效果。
2.2 力学分析•火炮的发射过程中,有很大的力作用在炮弹上,如发射药的燃烧产生的推力、弹壳对炮弹的推力和空气阻力等。
•利用力学分析,可以计算出火炮的发射药量和药室容积的合理选择,以提供足够的推力。
•同时,力学分析还可以预测炮弹的飞行轨迹和命中精度,为战术决策提供依据。
3. 战车原理3.1 车辆力学•战车的机械力学性能对作战具有重要影响,包括加速度、速度和操控性等。
•车辆的设计、底盘的布置和悬挂系统的选择都需要基于力学原理进行分析和优化。
•通过力学分析,可以提高战车的机动能力,增强其在战场上的作战能力。
3.2 抗击优化•战车在遭受攻击时,需要抵抗来自敌方火力的冲击。
•利用力学分析,可以优化装甲的布置和厚度,提高战车的抗击能力。
•同时,力学分析还可以预测战车受到冲击时的应力分布情况,为装甲设计提供依据。
4. 飞机原理4.1 飞行原理•飞机的飞行过程可用力学原理进行分析,涉及升力、阻力、推力和重力等力的作用关系。
•利用力学分析,可以优化飞机的机翼形状、机身布局和发动机推力,提高飞行性能和燃油效率。
4.2 载荷计算•在军事航空中,飞机需要携带弹药、燃料和其他设备。
•通过力学分析,可以计算出飞机的最大载荷和燃油消耗量,为任务计划和战术决策提供参考。
5. 结论力学原理在军事上的应用包括火炮原理、战车原理和飞机原理等。
通过运用力学原理进行运动学分析和力学分析,可以优化武器装备的设计和作战策略,提高军事作战的效率和效果,增强国家的军事实力。
杠杆原理在军事中的应用

杠杆原理在军事中的应用1. 引言杠杆原理是物理学中一种重要的原理,广泛应用于各个领域,包括军事。
在军事战争中,杠杆原理的应用能够帮助军队在战场上实现更大的效果。
本文将介绍杠杆原理在军事中的具体应用。
2. 杠杆原理的概述杠杆原理是指利用杠杆的原理来放大力量的效果。
杠杆是由一个支点和两个力臂组成的简单机械装置,通过加大距离来放大力矩。
根据杠杆原理,当一个物体受到一个力的作用时,可以通过改变力臂的长度或改变支点的位置来改变力的效果。
3. 杠杆原理在军事中的应用3.1 作战战术杠杆原理在军事作战战术中有着广泛的应用。
通过合理运用兵力、资源和技术优势,可以将有限的力量最大化地发挥出来。
以下是在军事作战中常见的几种杠杆原理的应用方式:•战略杠杆原理:在战略层面上,通过选择战场、确定战略目标和部署兵力等方式,以确保战争的胜利。
例如,选择进攻敌军的弱点,集中兵力攻击,从而在战场上取得优势地位。
•战术杠杆原理:在战术层面上,通过有效运用军事战术,以获取比对手更大的战斗力。
例如,运用合理的火力部署、阵地构筑和伪装等手段,增强我军的战斗力,使敌军在战场上处于劣势。
•装备杠杆原理:在装备层面上,通过运用先进的武器装备和军事技术,提高作战效率和杀伤力。
例如,使用精确制导的导弹系统来攻击敌军要害,从而在战场上发挥巨大的杀伤力。
3.2 战争资源管理杠杆原理在战争资源管理中也有着重要的应用。
战争中资源是有限的,通过合理的资源管理,可以最大限度地利用战争资源。
以下是一些战争资源管理中杠杆原理的应用方式:•兵力杠杆原理:通过灵活运用兵力,使有限的兵力发挥最大的作用。
例如,在一个战役中,将主力兵力投放到敌人的要害部位,从而迅速取得胜利。
•物资杠杆原理:通过有效管理物资,确保供给线的顺畅,并优先投放有限的物资和装备给最重要的部队。
例如,在战场上优先保障前线部队的物资供给,以确保战斗力的持续增长。
•情报杠杆原理:通过有效搜集和利用情报,为作战指挥提供准确的信息支持。
应用物理学在军事技术中的实践与影响

应用物理学在军事技术中的实践与影响标题:应用物理学在军事技术中的实践与影响导言物理学是一门研究物质与能量之间相互作用的科学,而应用物理学则是将物理学原理和定律应用于实践中的科学领域。
在军事技术中,应用物理学无疑扮演着重要的角色。
本文旨在探讨物理定律在军事实验中的应用,并评估其对军事技术发展的积极影响。
第一部分:物理定律与实验准备【列举物理定律】物理学的发展积累了大量的物理定律,如牛顿的运动定律,能量守恒定律,电磁感应定律等,这些定律构成了我们理解物理世界的基础。
【选择一个物理定律】以能量守恒定律为例,它阐述了能量在一个封闭系统内不能被创建或销毁,只能转化成其他形式的能量。
这个定律在实验中有广泛的应用。
【实验准备】在使用能量守恒定律进行实验之前,首先需要确定实验目标和测量参数。
比如,我们希望研究某种军事设备的能源利用率,衡量其在实际战场条件下的可行性。
接下来,我们需要准备实验设备,如传感器、测量仪器和原材料等。
在实验中,我们需要通过合适的方法将输入的能量与输出的能量进行测量和记录。
同时,为了保证实验的准确性和可重复性,我们还需进行实验室控制,例如调整环境温度、湿度和气压等因素,以消除外部干扰对实验结果的影响。
第二部分:实验过程【实验步骤】1. 确定实验装置:建立一个封闭系统,其中包括能量输入和输出的部分。
2. 测量输入能量:使用合适的传感器和测量仪器测量输入能量的大小和类型。
3. 记录实验数据:记录输入能量的数值和其他相关参数,例如时间和环境条件。
4. 测量输出能量:同样使用传感器和测量仪器,测量输出能量的大小和类型。
5. 记录实验数据:记录输出能量的数值和其他相关参数。
6. 分析和比较数据:利用收集到的数据,计算能量转化的效率和能量守恒是否成立。
7. 结论和总结:根据实验结果,总结能量转化过程、透露潜在问题,并提出可能的优化方案。
【实验示例】在军事技术领域,例如火箭发动机研发过程中,能量守恒定律的应用尤为重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理学在军事领域的应用
叶茂文
解放军军械工程学院一系二队十班
摘要
物理学是一门基础学科,在现代社会中,由物理学孕育出的新技术已渗透到生活的各个角落。
进入20世纪以来,物理学与其他学科的交叉表现得日益明显和复杂,以至人们往往忽视了其中的科学根源——物理学原理。
物理学是其他学科的基础,因而物理学中的新发现常常会推进相关学科的发展;反之,其他学科中的进步亦会激励物理学家作更深入的研究。
由此,物理学进入军事领域,是理所当然的。
一直以来,物理学在军事科学中的应用均占有不小的比例,而军事武器的不断发展在一定程度上也促进了物理学的进步。
几百年来,一度在科幻作品中出现的那些神秘武器,如光学武器,声波武器,电磁波武器,核武器等,如今已纷纷面世。
现代军事科学的知识密度高,综合性强。
许多高精尖现代化军事武器,比如,红外制导、红外夜视、激光雷达、声纳及核武器等都与物理学的最新成就密切相关。
尽管目前这类武器的性能和状况还不够完善,人们对制造与使用这些武器,也存有较多疑虑和争议,但通过本文,物理学与军事武器的紧密相关键性仍可略见一斑。
关键词:物理学军事声波武器激光武器电磁武器
一、激光武器
激光武器是一种利用沿一定方向发射的激光束攻击目标的定向能武器,具有快速、灵活、精确和抗电磁干扰等优异性能,在光电对抗、防空和战略防御中可发挥独特作用。
它分为战术激光武器和战略激光武器两种。
它将是一种常规威慑力量。
战术激光武器的突出优点是反应时间短,可拦击突然发现的低空目标。
用激光拦击多目标时,能迅速变换射击对象,灵活地对付多个目标。
其优点主要是:
(l)速度快,射束直,射击精确度高。
激光束以每秒三十万公里的速度传播,不需提前量,瞬发即中。
(2)摧坚能力强。
激光能量高度集中,可摧毁任何坚固材料制成的目标。
(3)灵活、无惯性,不产生后座力。
因光子的静质量为零,故激光武器不会产生普通枪炮发射时所产生的后座力。
激光武器易于迅速变换射击方向,能在短时间内射击多个目标。
(4)抗电磁干扰能力强。
激光武器有多种分类法。
按激光能量的不同,可分为低能激光武器(又称激光轻武器或激光致盲武器)和高能激光武器(又称激光炮);按激光器种类的不同,可分为固体、气体、化学、难分子、自由电子和 X 射线激光武器等;按激光位置或运载工具的不同,分为陆基、车载、舰载、机载、星载激光武器;按用途可分为战术激光武器和战略激光武器;按激光输出方式的不同可分为连续式激光武器和脉冲式激光武器。
激光武器是高新技术兵器中的佼佼者之一,它的研究时间最长,技术也最成熟。
激光武器的发展对各国的军事战略都将产生深远影响,同时它也是最有希望把人类从当前的核恐怖中解放出来的武器之一。
在目前的实际应用中,激光武器通常要和其他武器配合使用,还不能完全取代常规武器。
激光怎样击毁目标呢?科学家们认为有两个方面:一是穿孔,二是层裂。
所谓穿孔,就是高功率密度的激光束使靶材表面急剧熔化,进而汽化蒸发,汽化物质向外喷射,反冲力形成冲击波,在靶材上穿一个孔。
所谓层裂,就是靶材表面吸收激光能量后,原子被电离,形成等离体“云”。
“云”
向外膨胀喷射形成应力波向深处传播。
应力波的反射造成靶材被拉断,形成“层裂”破坏。
除此以外,等离子体“云”还能辐射紫外线或X光,破坏目标结构和电子元件。
激光武器作用的面积很小,但破坏在目标的关键部位上,可造成目标的毁灭性破坏。
这和惊天动地的核武器相比,完全是两种风格。
二、声波武器
我们知道,声波是机械纵波,它可以在固体、液体和气体中传播。
人们日常可以听到的声音便是 20-20000Hz频率范围内的声波。
目前军事领域中应用的主要是次声波部分(即频率低于20Hz的声波)。
和可闻声波相比,次声波在介质中传播时,能量衰减缓慢,隐蔽性好,不易为敌人察觉,所以军事上常用次声波接收装置来侦察敌情。
另一方面,次声波武器还可直接消灭敌人的有生力量。
那么,它的杀伤原理是什么呢?这里要涉及到物理学的一个重要概念——共振。
原来,次声武器是利用和人体器官固有频率相近的次声波与人体器官发生共振,导致器官变形、移位、甚至破裂,以达到杀伤目的的。
声波武器分类:
次声波武器
次声波武器可分为两类。
一类是神经型次声波武器,其振荡频率同人类大脑的节律极为近似,产生共振时,会强烈刺激人的大脑,使人神经错乱,癫狂不止。
另一类是内脏器官型次声波武器,其振荡频率与人体内脏器官的固有振荡频率相近,当产生共振时,会使人的五脏六腑剧痛无比,甚至导致人体异常,直至死亡。
强声波武器
强声波武器能发出足以威慑来犯者或使来犯者失去行动能力的强声波,而不会对人体造成长期的危害。
它主要用于保护军事基地等重要设施。
当有人靠近时,这种声学武器首先发出声音警告来人。
如果来人继续靠近,声音就会变得令人胆战心惊。
假如来人置之不理还继续逼近,这种声学武器就会使他们丧失行动能力。
超声波武器
超声波武器能利用高能超声波发生器产生高频声波,造成强大的空气压力,使人产生视觉模糊、恶心等生理反应,从而使人员战斗力减弱或完全丧失作战能力。
这种武器甚至能使门窗玻璃破碎。
噪声波武器
噪声波武器也可以分为两种。
一种是专门用来对准敌方指挥部的定向噪声波武器,它利用小型爆炸产生的噪声波来麻痹敌指挥人员的听觉和中枢神经,必要时可使人员在两分钟内昏迷。
另一种是噪声波炸弹,它同样可以麻痹人的听觉和中枢神经,使人昏迷,主要用于对付劫机等恐怖分子活动,据称效果很好。
三、电磁武器
电磁波是指迅速变化的电磁场在空间的传播。
人类从形成之日起便生活在电磁波的汪洋大海之中。
电磁波在军事上的应用异常丰富。
所谓电子对
(又称电子战)便是指敌我双方利用专门的设备、器材产生和接收处于无线电波段内的电磁波,以电磁波为武器,阻碍对方的电磁波信号的发射和接收,保证自己的发射和接收。
电磁波对人体是有害的。
据说,美国有人提出设计电磁枪,该电磁枪将会“诱发癫痫病那样的症状”。
另有一种所谓的“热枪”,采用的是电磁波段中的微波。
热枪能够产生使人体温升高至40.6—41.7摄氏度的作战效果,让敌人不舒服、发烧甚至死亡。
1980 -1983年,一个叫埃尔登·伯德的美国人,从事了海军陆战队非杀伤性电磁武器的研究。
他说:“我们正在研究大脑里生物电的活动和如何影响这种活动。
”他发现,通过使用频率非常低的电磁辐射,可使动物处于昏迷状态。
此外,他还设计了磁场的反应实验,指出:“这些磁场是非常微弱的,但结果是非杀伤性的可逆转的。
我们可以使一个人暂时伤残。
”
据中国电磁辐射测试中心经过两年的跟踪检测证实,超量的电磁辐射会造成人体神经衰弱、食欲下降、心悸胸闷、头昏目眩、甚至脑部肿瘤。
迄今为止,电磁武器的研制离实战要求仍有较大距离,其中最大的困难是电磁波的功率问题。
由于电磁场能量随距离的增大而迅速减弱,如此能量的波束难以瞄准相应的目标。
这些原因导致电磁武器的研究远远落后于声波武器和激光武器。
参考文献:《物理学与军事高新技术》龚艳春等编著2006年11月1日。