第六章 时间数列分析法

合集下载

时间数列的水平指标与速度指标

时间数列的水平指标与速度指标

二、重点和难点:开展水平、平均开展水平、 增减量、平均增减量指标的概念和计算,开
展速度、增长速度、平均开展速度、平均增 长速度指标的概念和计算。
三、教学方法:课堂讲授。
四、课时安排:8课时
五、教学内容:
返回到第六章 2
第一节 时间数列的概念和种类
一、时间数列的概念
将某一个指标在不同时间上的不同数值,按时间
例:某办事处2第一季度工业贷2 款资料如下表所示。
答:第一季度平均每月贷款周转次数2.504次。
月末
1
2
3
(a)贷款累计发放额(万元) 220 300 419 (b)贷款月初余额(万元) 95 105 135
(c)贷款周转次数(次) 2.2 2.5 2.7
4 500 175 ——
26
n
10
26( 0 人)
答:该单位某月上旬每日平均职工人数为260人。
18
2.根据时点数列计算序时平均数例如
(1)根据连续时点数列求序时平均数〔以日为间隔,
间隔不等〕
例2:某企业4月1日至4月10日工人数均为1500人 ,4月11日至4月底增加到1600人,要求计算该企业4 月份平均工人数。
解:
a
举例
7
中央和地方财政收入及比重
年份
绝对数(亿元)
全国
中央
地方
比重(%) 中央 地方
1991 3149.48 938.25 2211.23 29.8 70.2 1992 3483.37 979.51 2503.86 28.1 71.9 1993 4348.95 957.51 3391.44 22.0 78.0 1994 5218.10 2906.50 2311.60 55.7 44.3 1995 6242.20 3256.62 2985.58 52.2 47.8 1996 7407.99 3661.07 3746.92 49.4 50.6 1997 8651.14 4226.92 4424.22 48.9 51.1

时间序列分析法

时间序列分析法

于是可得t=21时的直线趋势预测模型为:
预测1999年该商场的年销售额为:
二次移动平均预测法的特点: 1、对有明显趋势变动的市场现象,二次移动平均 预测法是很适应。 2、二次移动平均预测模型其截距at和斜率bt的确 定,是以一次和二次移动平均值为依据的,且 各期的截距和斜率是变化的,这样就保留了市 场现象客观存在的波动。 3、最后一个at和bt值是固定的,不但可以用于短 期预测,也可用于远期预测,因此比一次移动 平均法的适用面更广。
一次移动平均预测法
是对时间序列按一定跨越期,移动计算观察值的 算术平均数,其平均数随着观察值的移动而向后 移动,并作为下一期的预测值。
预测模型:
X t X t 1 X t 2 X t n 1 i t n 1 Ft 1 n n
一次移动平均预测法适用于: 基本呈水平型变动,又有些波动的时间序列。
t n 1
n
t t
F a bT
t T
二次移动平均法参数Fra biblioteka 2 M t Mt
(1)
( 2)
(1) (2) 2 (M M ) b t n 1 t
一次与二次移动平均预测值及其误差比较
(1) (2) (3) 期数 实际值 M(1)
n=3
(4) (5) (6) (7) (8) 误差 M(2) 误差 总预测 误差 值 (2)-(3) n=3 (3)-(5) (2)-(7) (3)+(6)
算术平均法




算术平均法是求出一定观察期内预测目标的时间数列的算术平均数作 为下期预测值的一种最简单的时序预测法。 常用的有简单算术平均法和加权算术平均法。 算术平均法是简易平均法中的一种。 设:X1,X2,X3,... ,Xn为观察期的n个资料,求得n个资料的 算术平均数的公式为: X=(X1+X2+X3+...Xn)÷n 或简写为: X(平均数)=∑x÷n 式中:n为资料期数(数据个数) 运用算术平均法求平均数,进行市场预测有两种形式: (一)以最后一年的每月平均值或数年的每月平均值,作为次年 的每月预测值。 (二)以观察期的每月平均值作为预测期对应月份的预测值。

统计分析与方法时间数列分析

统计分析与方法时间数列分析

统计分析与方法时间数列分析统计分析是指采用统计方法对数据进行整理、汇总、分析和解释的过程,通过对数据的处理和分析,可以揭示数据背后的规律和特征,从而为决策提供依据。

而时间数列分析则是对一组以时间为顺序排列的数据进行分析,以研究其变动规律和趋势。

统计分析的步骤通常包括数据收集、数据整理、数据描述性统计、数据分析和数据解释等环节。

首先,需要收集到足够的数据,可以通过问卷调查、实地观察、实验设计等方式获取。

然后,对收集到的数据进行整理,将其按照一定的分类标准进行归类和编码,以便于后续的分析。

接下来,通过描述性统计方法,可以对数据进行总体特征的汇总统计,例如计算平均值、中位数、方差等。

然后,可以使用多种统计方法对数据进行分析,如假设检验、回归分析、方差分析等,以揭示数据之间的关系和差异。

最后,需要对数据的分析结果进行解释和推断,形成最终的结论。

与统计分析相比,时间数列分析更加注重对时间序列数据的特性和变化规律的研究。

时间数列是指按照时间先后顺序排列的一组数据,其变化不仅受到时间的影响,还可能受到季节性、趋势性、循环性等因素的影响。

时间数列分析的目标是通过对时间序列数据的建模和分析,来预测未来的发展趋势和变化规律。

时间数列分析的方法包括简单移动平均法、指数平滑法、趋势分析、周期分析等。

简单移动平均法是一种基本的平滑方法,通过计算过去一段时间内的观测值的平均值,来预测未来的趋势。

指数平滑法则是利用指数函数对过去的观测值进行平滑处理,以适应不同时间点对预测值的权重要求不同的情况。

趋势分析则是通过拟合趋势线来预测未来的变化趋势,常用的方法有线性趋势分析、非线性趋势分析等。

周期分析则是通过寻找时间序列中的周期性波动,来预测未来的周期变化。

总之,统计分析和时间数列分析是两种不同的方法,但它们都可以对数据的规律和特征进行分析和解释,为决策提供依据。

综合运用这两种方法,可以更全面地了解和把握数据的动态变化,为预测和决策提供科学依据。

第六章 时间序列分析

第六章  时间序列分析

第六章时间序列分析重点:1、增长量分析、发展水平及增长量2、增长率分析、发展速度及增长速度3、时间数列影响因素、长期趋势分析方法难点:1、增长量与增长速度2、长期趋势与季节变动分析第一节时间序列的分析指标知识点一:时间序列的含义时间序列是指经济现象按时间顺序排列形成的序列。

这种数据称为时间序列数据。

时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。

时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。

表现了现象在时间上的动态变化,故又称为动态数列。

一个完整的时间数列包含两个基本要素:一是被研究现象或指标所属的时间;另一个是该现象或指标在此时间坐标下的指标值。

同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。

研究时间数列的意义:了解与预测。

[例题·单选题]下列数列中哪一个属于时间数列().a.学生按学习成绩分组形成的数列b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列c.工业企业按产值高低形成的数列d.降水量按时间先后顺序排列形成的数列答案:d解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。

知识点二:增长量分析(水平分析)一.发展水平发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用yt(t=1,2,3,…,n) 。

在绝对数时间数列中,发展水平就是绝对数;在相对数时间数列中,发展水平就是相对数或平均数。

几个概念:期初水平y0,期末水平yt,期间水平(y1,y2,….yn-1);报告期水平(研究时期水平),基期水平(作为对比基础的水平)。

二.增长量增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为:增长量=报告期水平-基期水平根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。

时间数列分析

时间数列分析

14
a 1 ,a 2 , ,a N 1 ,a N ( N 项数据)
最初水平 中间水平 最末水平
或:a 0 ,a 1 , ,a n 1 ,a n ( n+1 项数据)
09.05.2020
15
例:我国1995-1999年我国进出口总额
年份
1995
进出口总额 (人民币亿元) 23500
1996 24134
a =(766 + 664 + 843 + 578 + 639)/ 5 =
698(万元)
例2: 某股票连续 5 个交易日价格资料如下:
09.05.2020
22
解 aa N
16.216.717.518.217.817.28(元) 5
09.05.2020
23
间隔登记时,采用加权算术平均法
m
aa1f1 a2 f2 amfm f1 f2 fm
❖ 时点数列的序时平均数
时 点 数 列
09.05.2020
连续时点 数列
按日登记
间断时点 数列
按年或月登记
逐日登记 间隔登记 间隔相等 间隔不等
20
2、时点数列计算平均发展水平
(1)连续的时点数列
逐日登记时,采用简单算术平均 法
aa1a2Lan a
n
n
09.05.2020
21
例 1 : 某 商 业 银 行 某 年 1 月 13 日 —17 日 的 存 款 余 额 (万元)分别为:766、664、843、578、639, 则这5天的平均余额为:
1997 26967
1998 26858
1999 29896
在本例中,如果以1995年作为基期水平,记为a0,则 1996年、1997年、1998年、1999年进出口总额分别

应用统计学时间数列分析

应用统计学时间数列分析

应用统计学时间数列分析时间数列分析是统计学中的一项重要内容,通过对时间序列数据进行分析,可以揭示数据之间的内在关联和规律。

本文将探讨时间数列分析在实际应用中的重要性和方法。

什么是时间数列分析时间数列(Time Series)指的是按时间顺序排列的一系列数据观测值。

时间数列分析是指根据时间数列数据进行的统计分析方法,旨在发现数据中存在的趋势、季节性、周期性等规律,以便进行预测和决策。

时间数列分析的重要性时间数列分析在许多领域都有广泛的应用,包括经济学、金融、医学、气象等。

通过时间数列分析,我们可以:•发现数据中的趋势和规律•预测未来数据走势•制定决策和策略•检验模型的有效性•揭示不同变量之间的关联时间数列分析方法1. 平稳性检验平稳性是时间数列分析的前提条件之一,可以通过单位根检验、ADF检验等方法来判断时间数列是否平稳。

如果时间数列不平稳,需要进行差分处理或其他转换方法使其平稳化。

2. 自相关性分析自相关性分析是检验数据是否存在自相关性(即相邻数据之间的相关性)的方法,可以通过自相关图和偏自相关图来判断数据中的自相关性程度。

3. 移动平均法移动平均法是一种基本的时间数列预测方法,通过计算一定窗口内的数据均值来平滑数据曲线,以便更好地观察数据走势和预测未来走向。

4. 季节性调整在时间数列分析中,常常需要对数据进行季节性调整,以消除季节性影响,使预测结果更为准确。

应用实例1. 股票价格预测时间数列分析在金融领域有着广泛的应用。

通过分析股票价格的时间数列数据,可以预测股价的未来走势,指导投资决策。

2. 气象预测气象数据也是时间数列数据的一种,通过对气象数据进行时间数列分析,可以预测未来的气候变化和天气情况,为灾害预警和农业生产提供依据。

3. 经济指标分析经济数据的时间数列分析可以揭示经济增长趋势、波动周期等信息,帮助政府和企业做出相应决策。

结语时间数列分析是统计学中一个重要的分析方法,通过对时间序列数据进行分析,可以揭示数据之间的规律、趋势和关联。

第六章 时间数列分析

第六章    时间数列分析

例如,某企业资料如表6-9,求平均职工人数及平均固定资产 额。
表6-9 某企业上半年统计资料
月 份 1月 2月 3月 4月 5月 6月 7月 月初职工数 (人) 124 126 124 122 126 128 124 月初固定资产额(万元) 60 60 61 64 64 70 70 其计算公式为:平均数=(期初数+期末数)/2 在这里,可将本月期初数当作上月期末数,因为本月初与上 月末这两个时点一般是同一数值。同理,可将本月期末数当作上 月期初数。因此,各月平均数如下: 1月平均人数 = (124+126)/2 = 125(人) 2月平均人数 = (126+124)/2 = 125(人) 3月平均人数 = (124+122)/2 = 123(人) 4月平均人数 = (122+126)/2 = 124(人) 5月平均人数 = (126+128)/2 = 127(人) 6月平均人数 = (128+124)/2 = 126(人)
表6-8 某企业六月份职工平均人数计算表
日期
日数f
人数a
af
1~8 9~15 16~25 26~30 合 计
8 7 10 5 30
500 510 520 516 —
4000 3570 5200 2580 15350
af 15350 511.7 512人 a 30 f (2)间断时点数列序时平均数的计算 ①间隔相等间断时点数列序时平均数的计算 首先将期初值加期末值除以2得出本期平均值,然后将各时 段平均值相加除以间隔期数则得该时点数列的序时平均数。
表6-5 某商场销售资料(单位:万元)
时 间 平均销售额
一季度 800
二季度 850

第六章时间序列分析

第六章时间序列分析

第六章时间序列分析重点:1、增长量分析、发展水平及增长量2、增长率分析、发展速度及增长速度3、时间数列影响因素、长期趋势分析方法难点:1、增长量与增长速度2、长期趋势与季节变动分析第一节时间序列的分析指标知识点一:时间序列的含义时间序列是指经济现象按时间顺序排列形成的序列。

这种数据称为时间序列数据。

时间序列分析就是根据这样的数列分析经济现象的发展规律,进而预测其未来水平。

时间数列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列。

表现了现象在时间上的动态变化,故又称为动态数列。

一个完整的时间数列包含两个基本要素:一是被研究现象或指标所属的时间;另一个是该现象或指标在此时间坐标下的指标值。

同一时间数列中,通常要求各指标值的时间单位和时间间隔相等,如无法保证相等,在计算某些指标时就涉及到“权”的概念。

研究时间数列的意义:了解与预测。

[例题·单选题]下列数列中哪一个属于时间数列().a.学生按学习成绩分组形成的数列b.一个月内每天某一固定时点记录的气温按度数高低排列形成的序列c.工业企业按产值高低形成的数列d.降水量按时间先后顺序排列形成的数列答案:d解析:时间序列是一种统计数列,它是将反映某一现象的统计指标在不同时间上的数值按时间先后顺序排列所形成的数列,表现了现象在时间上的动态变化。

知识点二:增长量分析(水平分析)一.发展水平发展水平是指客观现象在一定时期内(或时点上)发展所达到的规模、水平,一般用yt(t=1,2,3,…,n) 。

在绝对数时间数列中,发展水平就是绝对数;在相对数时间数列中,发展水平就是相对数或平均数。

几个概念:期初水平y0,期末水平yt,期间水平(y1,y2,….yn-1);报告期水平(研究时期水平),基期水平(作为对比基础的水平)。

二.增长量增长量是报告期发展水平与基期发展水平之差,增长量的指标数值可正可负,它反映的是报告期相对基期增加或减少的绝对数量,用公式表示为:增长量=报告期水平-基期水平根据基期的不同确定方法,增长量可分为逐期增长量和累计增长量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.由平均数数列计算(*)
(1)都是时期数列 例:某企业第一季度计划完成情况如下:
实际产量(吨) 计划产量(吨) 计划完成(%)
1月份
420 400 105
2月份
560 500 112
3月份
714 700 102
(2)都是时点数列(*) 根据不同的情况,选择不同的计算方法。 例:某企业三季度职工人数如下:
二、增减速度 发展速度-1(100%)
相邻两个累计增减量之差等于相应的逐期增减量 四、平均增减量
逐期增减量之和/逐期增减量个数 =累计增减量/(时间数列项数-1) 年距增减水平 =本期发展水平-去年同期发展水平
第三节 时间数列的速度分析指标
一、发展速度 报告期水平/基期水平(表明报告期水平已发展到基期水
平的若干倍或百分之几) 1.定基发展速度:an/a0 2.环比发展速度:an/an-1 关系: A.定基发展速度等于相应时期各个环比发展速度之乘积。 B.相邻的两个定基发展速度之商等于对应的环比发展速度 年距发展速度=本年同期水平/去年同期发展水平
(三)平均数:由一系列平均指标数值按时间顺序排列 形成的数列,说明经济现象的一般水平的发展变化过 程或趋势。
例:城镇居民家庭人均消费支出(元)
年份
人均消 费支出
1998 1999 4331 4615
2000 4998
2001 5309
2002 6029
2003 6510
2004 7182
2005 7942


生产工人数
全部职工人数
工人数占全部职 工数比重(% )
6月末 435 580 75
7月末 464 580 80
8月末 462 600 77
9月末 576 720 80
三、增减量:表示现象在一定时期内增减的绝对数量。 公式:报告期水平 – 基期水平
1.逐期增减量:Δ a=an—an-1 2.累计增减量 Δ a=an—a0 3.关系:各个逐期增减量之和等于相应的累计增减量
1.19
1.21
414Biblioteka 430424416
则该月日平均营业员为=∑af/∑f =(410×7+414×4+430×7+424×2+416×11)/31 =418(人)
B 由间断时点数列计算
①间隔相等:
a1 a2 a3 an 1 an
a 2
2
n 1
②间隔不等
a1 a2 f 1 a2 a3 f 2 a3 a4 f 3
a a1 a2 a3 an a
n
n
②间隔不等的连续数列
a a1 f 1 a2 f 2 a3 f 3 anfn af
f 1 f 2 f 3 fn
f
例:某商场1月营业员人数资料如下:
日期
1.1
人数
410
1.8
1.12
工业增加值 21565 25395 28329 32995 41990 54805 66425 (亿元)
2.时点数列:各个指标数值反映经济现象在某一时点上 的状态及水平。 特点: A各个指标数值不能相加 B各个指标的大小与时间间隔没有直接联系
年份
2000 2001 2002 2003 2004 2005
三、编制时间数列的原则 基本要求:保证数列中各项指标数值的可比性 基本原则: 1.时间长短应相等 2.总体范围应一致 3.各项指标的计算方法统一 4.经济内容应统一
第二节 时间数列的水平分析指标
发展水平指标主要用来分析现象在某一时期或时点上发 展变化的水平,包括发展水平、增减水平、平均增减水平和 平均发展水平等 一、发展水平 最初水平、最末水平、基期水平 、报告期水平 基期水平:作为对比基础时期的发展水平。
和趋势,研究其变化规律; 第二,对某些现象进行预测 第三,可以在不同地区或国家之间进行对比分析
二、种类 (一)绝对数
1.时期数列 :每个数值都反映现象在一定时期内发展过程 的总量。 特点: A 每个指标数值都可以相加 B 每个指标数值的大小与时期的长短有直接的关系
年份
1999 2000 2001 2002 2003 2004 2005
a 2
2
2
f1 f 2 f 3
例:某商场上半年营业员人数资料如下:
期初资料 1月 人 数 410
2月 3月 4月 7月 414 430 424 416
求第一季度的月平均人数,上半年的月平均人数
2.相对数时间数列计算 (1)都是时期数列 (2)都是时点数列 (3)一个时期数列,一个时点数列
报告期水平:与基期水平进行对比的那个时期的发展水平
二、平均发展水平
1.概念:从动态上说明社会经济现象在某一段时间内发展的 一般水平。
2.作用:反映现象变动的规律性;解决某些可比性问题,如 不同历史阶段、不同单位等的比较。
3.与一般平均数的关系 共性:将现象的数量差异加以抽象平均,来反映其一般水平 区别:
第一,前者:不同时期或时点上的数量差异; 后者:同一时间 上的数量差异
第二,前者:动态;后者:静态 第三,前者的依据:时间数列;后者的依据:变量数列
1.由绝对数时间数列计算
(1)时期数列 a a1 a2 a3 an
a
(2)时点数列:
n
n
A 由连续时点数列计算
①间隔相等的连续时点数列
全国人口数 126743 127627 128453 129227 129988 130756 (万人)
(二)相对数 由一系列相对指标数值按时间顺序排列形成的数列,
说明现象之间的数量对比关系或相互联系的发展变化过 程。
年份
1999 2000 2001 2002 2003 2004 2005
城镇人口比 34.78 36.22 37.66 39.09 40.53 41.76 42.99 重(%)
第六章 时间数列分析法
第一节 时间数列概述 第二节 时间数列的水平分析指标 第三节 时间数列的速度分析指标 第四节 时间数列的构成分析方法
第一节 时间数列概述
一、时间数列的概念 1.概念:将某一个统计指标在不同时间上的各个数值,按 时间的先后顺序排列而形成的时间数列,也叫动态数列 2.构成要素:所属时间,各时间上的统计指标数值 3.意义: 第一,从量变的过程中,反映其发展变化的方向、程度
相关文档
最新文档