高分子材料成型加工原理 期末复习重点(升华提升版)

合集下载

高分子加工工程复习题(含部分答案)

高分子加工工程复习题(含部分答案)

《高分子加工工程》主要习题第一章绪论1. 何谓成型加工高分子材料成型加工的基本任务是什么将聚合物(有时加入各种添加剂、助剂或改性材料)转变为制品或实用材料的一种工程技术。

1.研究各种成型加工方法和技术;2.研究产品质量与各种因素之间的关系;3.研究提高产量和降低消耗的途径。

2. 简述聚合物成型加工时的关键步骤。

A.如何使聚合物产生流动与变形方法: a.加热熔体; b.加溶剂溶液; c.加增塑剂或其它悬浮液。

B.如何硬化定型方法:热固性:交联反应固化定型。

热塑性:a.熔体冷却b.溶液加热挥发成溶剂c.悬浮体先加热使颗粒熔合,再冷却硬化定型3. 简述聚合物转变时所发生的主要变化。

a.形状:满足使用要求而进行,通过流动与变形而实现。

b.结构:组成:非纯聚合物组成方式:层压材料,增强材料,复合材料宏观结构:如多孔泡沫,蜂窝状,复合结构微观结构:结晶度,结晶形态,分子取向等c.性质:有意识进行:生橡胶的两辊塑炼降解,硫化反应,热固性树脂的交联固化方法条件不当而进行:温度过高、时间过长而引起的降解4. 聚合物成型加工方法是如何分类的简要分为那几类1.根据形变原理分6类:a.熔体加工:b.类橡胶状聚合物的加工:c.聚合物溶液加工:d.低分子聚合物和预聚体的加工:e. 聚合物悬浮体加工:f.机械加工:2.根据加工过程中有无物理或化学变化分为三类:a.主要发生物理变化:b.主要发生化学变化:c.既有物理变化又有化学变化:5. 简述成型加工的基本工序1.预处理:准备工作:原料筛选,干燥,配制,混合2.成型:赋予聚合物一定型样3.机械加工:车,削,刨,铣等。

4.修饰:美化制品。

5.装配:粘合,焊接,机械连接等。

6. 简述塑料的优缺点。

优点:a.原料价格低廉;b.加工成本低;c.重量轻;d.耐腐蚀;e.造型容易;f.保温性能优良;g.电绝缘性好。

缺点:a.精度差;b.耐热性差;c.易燃烧;d.强度差;e.耐溶剂性差;f.易老化。

高分子材料复习重点

高分子材料复习重点

高分子材料复习重点绪论:1、标志性的事件:塑料的(1)19世纪中叶第一种工业化的塑料----赛璐珞”(Celluloid)的塑料(1869)(最早被应用的塑料)(2)雷奥.比克兰德合成酚醛树脂(PF)也是第一个工业化生产的合成树脂(第一种人工合成树脂)(3)1920年,Staudinger首先提出了高分子的概念(4)Zieglar-Natta催化剂合成出了低压高密度聚乙烯(HDPE, 1953~1955)和聚丙烯(PP)(HDPE和PP的合成方法是谁发明的)橡胶的(1)1823年,苏格兰化学家马金托什,像印第安人一样把白色浓稠的橡胶液体涂抹在布上,制成防雨布,并缝制了“马金托什”防水斗蓬,这是世界上最早的雨衣,也是橡胶工业的起点(2)1826年,英国人汉考克发明了双辊开炼机,用此设备可以将各种助剂混入橡胶中,1839年,美国化学家固特异尔偶然中发明了橡胶的硫化,解决了橡胶遇热变软发粘的缺点,制造出了世界第一双橡胶防水鞋,这两项发明使橡胶的应用得到了突破性的进展,奠定了现代橡胶加工业的基础(是什么发现导致了近现代意义橡胶工业的诞生?)橡胶是继石油、铁矿和有色金属之后的第四大战略资源2、概念:通用塑料:产量大、用途广、价格低、性能一般,主要用于非结构材料,如:聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)。

工程塑料:具有较高的力学性能,能够经受较宽的温度变化范围和较苛刻的环境条件,并在此条件下长时间使用,可作为结构材料。

树脂:树脂通常是指受热后有软化或熔融范围,软化时在外力作用下有流动倾向,常温下是固态、半固态,有时也可以是液态的有机聚合物。

广义地讲,可以作为塑料制品加工原料的任何聚合物都称为树脂。

弹性体:弹性体是一种性能独特的人造热可塑性弹性体,具有非常广泛的用途热塑性塑料:受热熔融、可进行各种成型加工,冷却时硬化。

再受热又可熔融、加工。

具有多次重复加工性。

热固性塑料:受热熔化,成型的同时发生固化发应,形成高分子立体网状结构,再受热不熔融,也不在溶剂中溶解。

东华大学《高分子材料加工原理》复习材料

东华大学《高分子材料加工原理》复习材料

高分子材料加工原理复习材料第二章 聚合物流体的制备一、聚合物的熔融方法1、无熔体移走的传导熔融。

熔融全部热量由接触或暴露表面提供,熔融速率仅由传导决定。

如滚塑过程。

2、有强制熔体移走(由拖曳或压力引起)的传导熔融。

熔融的一部分热量由接触表面的传导提供;一部分热量通过熔膜中的黏性耗散将机械能转变为热来提供。

所谓耗散,就是力学的能量损耗,即机械能转化为热能的现象。

在外力作用下,大分子链的各运动单元可能沿力的方向做从优取向的运动,就要克服内部摩擦,所以要消耗能量,这些能量转化为热能。

熔融速率由热传导以及熔体迁移和黏性耗散速率决定。

如螺杆挤压机的熔融挤出过程3、耗散混合熔融。

熔融热量是由在整个体积内将机械能转变为热能来提供的,是机械能转化为热能的现象。

耗散混合熔融速率由整个外壁面上和混合物固体—熔体界面上辅以热传导决定,如双辊开炼。

4、利用电、化学或其他能源的耗散熔融方法。

5、压缩熔融。

6、振动诱导挤出熔融 二、溶剂的选择原则1、聚合物和溶剂的极性相近规律。

极性大的溶质溶于极性大的溶剂;极性小的溶质溶于极性小的溶剂;溶质与溶剂的极性越相近,二者越易互溶。

2、溶度参教理论。

溶度参数理论是一个以热力学为基础的溶剂选择的最常用理论。

⑴未修正的溶度参数理论 适用:非极性混合体系⑵修正的溶剂参数理论(三维溶度参数理论) 适用:①非极性混合体系②极性混合体系③易成氢键体系3、高分子-溶剂相互作用参数(哈金斯参数)χ1: χ1>0.5不良溶剂;χ1<0.5良溶剂 三、聚合物-溶剂体系的相平衡图2-6(a )表示上临界混溶温度在溶剂的凝固点以下,因而在凝固点以上聚合物和溶剂可以很好地混溶。

图2-6(c )的相图则说明在沸点T b 以上才会出现互不相溶的区域,在溶剂沸点以下,可以与聚合物以任何比例互溶。

图2-6(b)的相图表示在溶剂的沸点和凝固点之间存在上临界混溶温度;图2-6(e )表示在溶剂的T b ~T f 温度范围内有下临界混溶温度。

高分子材料科学基础期末复习资料总结

高分子材料科学基础期末复习资料总结

第一章:绪论高分子材料:指由许许多多原子或原子团,主要以共价键结合而成的相对分子质4量很高(10~107)的化合物.均聚物:由一种单体聚合而成的聚合物称为均聚物。

共聚物:由两种或两种以上单体共聚而成的聚合物称为共聚物。

高分子材料分类:按用途分类---塑料、橡胶、纤维、粘合剂、涂料按主链的元素组成分类---碳链、杂链、元素有机和无机高分子按聚合物受热时的不同行为分类---热塑性和热固性聚合物英文缩写PE 聚乙烯 PP 聚丙烯PS 聚苯乙烯 PTFE 聚四氟乙烯PVC 聚氯乙烯 ABS 丙烯腈—丁二烯—苯乙烯共聚物 PA 聚酰胺 POM 聚甲醛PAN 聚丙烯腈 PC 聚碳酸酯PMMA 聚甲基丙烯酸甲酯 CPE 氯化聚乙烯PF 酚醛树脂 EP 环氧树脂BR 聚丁二烯橡胶 PU 聚氨酯SBR 丁苯橡胶 NBR 丁腈橡胶CR 氯丁橡胶 NR 天然橡胶PET 聚对苯二甲酸乙二醇酯 PBT 聚对苯二甲酸丁二醇酯第二章高分子材料的结构与性能聚合物分子量有两个基本特点:(1)分子量大:一般而言,聚合物的力学性能随分子量的增大而提高。

①如玻璃化温度,拉伸强度,密度,比热容等,刚开始时,随分子量增大而上升,最后达到一极限值。

②如粘度,弯度强度等,随分子量增大而不断提高,不存在极限值。

(2)分子量具有多分散性:①塑料:分子量分布窄时对加工和性能有利;②橡胶:分子量分布宽一些好,可以改善流动性而有利于加工;③薄膜及纤维:分子量分布窄时对加工和性能有利。

聚集态结构:是指在分子间力的作用下,大分子相互聚集在一起所形成的组织结构。

晶态结构:结构规则、简单的以及分子间作用力强的大分子易于形成晶态结构。

非晶态(无定形)结构:结构比较复杂、不规则的大分子则往往形成无定形即非晶态结构。

结晶对聚合物性能的影响:结晶使高分子链规整排列,堆砌紧密,因而增强了分子链间的作用力,使聚合物的密度、强度、硬度、耐热性、耐溶剂性、耐化学腐蚀性等性能得以提高,从而改善塑料的使用性能。

高分子材料成型加工课后答案

高分子材料成型加工课后答案

高分子成型加工总复习(本文档版权归高材1201所有)1、0.1 高分子材料的定义和分类高分子材料是以高分子化合物为主要组分的材料。

通常所说的高分子材料是从应用的角度对高分子进行归类,分为塑料、橡胶、纤维、涂料、粘合剂、功能高分子、聚合物基复合材料等。

2、交联能影响高分子材料的哪些性能?哪些材料或产品是经过交联的?力学性能、耐热性能、化学稳定性能、使用性能。

PF可用于电器产品;EP可用于高强度的增强塑料、优良的电绝缘材料、具有优秀黏结强度的黏结剂;UP可用于性能优良的玻璃纤维增强塑料;还有UF MF PE PVC PU等。

3、1.6 聚合物成型过程中为什么会发生取向?成型时的取向产生的原因及形式有哪几种?取向对高分子材料制品的性能有何影响?在成型加工时,受到剪切和拉伸力的影响,高分子化合物的分子链会发生取向。

原因:①由于在管道或型腔中沿垂直于流动方向上的各不同部位的流动速度不相同,由于存在速度差,卷曲的分子力受到剪切力的作用,将沿流动方向舒展伸直和取向。

②高分子化合物的分子链、链段或微晶等受拉伸力的作用沿受力方向排列。

主要包括单轴拉伸取向和双轴拉伸取向。

形式:非晶态高分子取向包括链段的取向和大分子链的取向;结晶性高分子的拉伸取向包括晶区的取向和非晶区的取向高分子材料经取向后,拉伸强度、弹性模量、冲击强度、透气性增加4、2.1 高分子材料中添加剂的目的是什么?添加剂是实现高分子材料成型加工工艺过程并最大限度的发挥高分子材料制品的性能或赋予其某些特殊功能性必不可少的辅助成分。

5、2.3 试述增塑剂的作用机理?增塑剂的作用机理是增塑剂分子插入到聚合物分子链间,削弱了聚合物分子间的应力。

结果增加聚合物分子链的稳定性,降低了聚合物的结晶度,削弱了分子间的极性,从而使聚合物的塑性增加。

6、3.3 高分子材料配方设计的一般原则和依据是什么?规则:①制品的性能要求②成型加工性能的要求③选用的原材料来源容易,产地较近,质量稳定可靠,价格合理④配方成本应在满足上述三条的前提下,尽量选用质量稳定可靠、价格低的原材料;必要时采取不同品种和价格的原材料复配;适当加入填充剂,降低成本。

高分子材料成型加工原理考点

高分子材料成型加工原理考点

高分子材料成型加工原理1.层流:是流体的一种流动状态,它作层状的流动。

流体在管内低速流动时呈现为层流,其质点沿着与管轴平行的方向作平滑直线运动。

流体的流速在管中心处最大,其近壁处最小。

管内流体的平均流速与最大流速之比等于0.5。

2.湍流:当流速增加到很大时,流线不再清楚可辨,流场中有许多小漩涡,层流被破坏,相邻流层间不但有滑动,还有混合,形成湍流3.稳态流动:稳态流动是指岩石蠕变中当应力保持不变,而应变速率保持恒定的状态,即岩石变形进入稳态蠕变的状态。

4.非稳态流动:非稳态流动,是指流体的流动状况随时间的变化而变化的流动。

5.剪切流动:剪切流动是指在剪切力作用下流体的流动,分为稳态剪切流动和非稳态剪切流动。

6.牛顿流体:任一点上的剪应力都同剪切变形速率呈线性函数关系的流体称为牛顿流体。

7.非牛顿流体:非牛顿流体,是指不满足牛顿黏性实验定律的流体,即其剪应力与剪切应变率之间不是线性关系的流体。

8.粘度:粘度是物质的一种物理化学性质,定义为一对平行板,面积为A,相距dr,板间充以某液体;今对上板施加一推力F,使其产生一速度变化度所需的力。

9.表观粘度:表观黏度是一个物理概念,是指在一定速度梯度下,用相应的剪切应力除以剪切速率所得的商,所以表观黏度一般小于真正黏度。

10.宾汉流体:当切应力超过某值才开始发生剪切变形,且切应力随剪切变形速率呈线性变化的液体,又译为宾厄姆流体。

11.入口效应:又称巴勒斯效应,指熔融聚合物通过管道变化的截面发生取向且弹性储能的现象。

12.膨胀性流体:在一定温度下,随剪切速率增大,黏度增加的非牛顿流体,其n>1(切力增稠流体)13.剪切速率:流体的流动速度相对圆流道半径的变化速率14.表观剪切黏度:非牛顿流动中给定剪切速率下剪切应力与剪切速率之比值。

15.端末效应:适当增加长径比聚醋熔体在进入喷丝孔喇叭口时,由于空间变小,熔体流速增大所损失的能量以弹性能贮存于体系之中,这种特征称为“入口效应”也称"端末效应"。

高分子材料制备与加工复习资料

高分子材料制备与加工复习资料第一章高分子材料简介1.1聚合物的基本概念1。

聚合物:也称为聚合物或大分子。

主链是共价键合的,具有高分子量。

它的结构必须由多个重复单元组成,这些重复单元实际上或概念上来自相应的小分子(单体)。

一般来说,大分子是由许多相同的重复单元通过化学键连接而成的大分子。

2.单体:可以聚合并转化为聚合物基本结构单元的小分子。

3.重复单元:聚合物中化学成分相同的最小单元,也称为链。

4.结构单元:基于大分子链中单体结构的原子团5。

聚合度:每个聚合物分子中包含的结构单元的数量。

1.2高分子的命名:习惯命名法+商品名或俗称命名法(课件)1.3高分子分类:按来源可分为天然高分子、半天然高分子和合成高分子按主链分为:碳链高分子、杂链高分子、元素有机高分子、无机高分子根据性能和应用:1)塑料:在常温下具有固定的形状和强度,在高温下具有可塑性的高分子化合物。

在外力的作用下,可以产生形变,加工成任何所需的形状。

如pe、pvc、abs、pc、ptfe。

2)橡胶:橡胶是一种有机聚合物弹性化合物。

它在较宽的温度范围(-50~150℃)内具有良好的弹性,因此也被称为高弹性体。

例如NR、Br、SBR、IIR。

3)纤维:纤维是指长度比其直径大很多倍(大于1000/1),并具有一定柔韧性的纤细物质。

如锦纶、腈纶、涤纶、维纶。

4)粘合剂:将各种材料紧密结合在一起的物质。

5)涂料:涂布在物体表面而形成具有保护和装饰作用膜层的材料。

6)功能聚合物:具有特定功能的聚合物化合物,可用作功能材料。

如导电聚合物、液晶、生物可降解聚合物等。

第二章聚合反应和聚合方法2.1聚合反应的分类:按反应过程中是否析出低分子分类:加聚反应和缩聚反应?按聚合反应机理分类:连锁聚合和逐步聚合分别说明自由基聚合反应和缩聚反应的特点。

1)自由基聚合的特点:可明显区分出引发、增长、终止、转移等基元反应。

慢引发、快增长、速终止。

大分子是瞬间形成的,聚合物的聚合度变化不大。

材料成型加工复习资料

第一章绪论1.“高分子材料”的定义。

高分子材料是以高分子化合物为主要组分的材料,是从应用的角度对高分子进行形的归类如,塑料、橡胶、纤维、涂料、黏合剂等。

2.高分子材料成型加工的定义。

高分子材料(由高分子化合物和添加剂组成)是通过成型加工工艺得到具有实用性的材料或制品过程的工程技术。

从高分子材料成型加工的工艺过程方面考虑,高分子材料的成型加工进一步定义为,要求通过共混、反应及分子组装等聚合物加工方法获得新的性能及功能,要求利用外场、温度、时间等组合控制材料非平衡态结构以获得特殊性能及功能。

3.高分子材料工程特征的含义。

一方面,高分子材料结构上的特殊性,使得其性能是可变的,因此高分子材料成型加工方法具有多样性。

即同样的高分子材料,通过不同的成型加工过程(包括加工工艺条件),制得高分子材料制品的性能是不一样的。

另一方面,高分子材料的制品的性能决定于材料本身及成型过程中产生的附加性质,这些附加性质有些要加以利用,有些要进行限制。

因此,高分子材料的成型加工方法具有多样性。

第二章高分子材料学1.分别区分“通用塑料”和“工程塑料”,“热塑性塑料”和“热固性塑料”,并请各举2~3例。

通用塑料:一般指产量大、用途广、成型性好、价廉的塑料。

通用塑料有:PE,PP,PVC,PS等;工程塑料:是指拉伸强度大于50MPa,冲击强度大于6kJ/m2 ,长期耐热温度超过100℃的,刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等,可代替金属用作结构件的塑料。

工程塑料有:PA,PET,PBT,POM等;工程塑料是指被用做工业零件或外壳材料的工业用塑料,是强度、耐冲击性、耐热性、硬度及抗老化性均优的塑料。

日本业界将它定义为“可以做为构造用及机械零件用的高性能塑料,耐热性在100℃以上,主要运用在工业上”。

热塑性塑料:加热时变软以至流动,冷却变硬,这种过程是可逆的,可以反复进行。

聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚砜、聚苯醚,氯化聚醚等都是热塑性塑料。

高分子材料成型加工(塑料成型工艺学)考试复习题

1.以硬质PVC为例说明管材挤出成型加工工艺及其特点以及影响因素(10分)答:挤出工艺:物料经挤出机塑化、机头口模成型后,经定型装置冷却定型、冷却水槽冷却、牵引、切割,得到管材制品。

(3分)特点:①口模横截面积不能大于挤出机料筒横截面积的40%。

②挤出机头有直通式和偏移式两类,后者只用于内径尺寸要求精确的产品,很少采用。

③定径套内径略大于管材外径;机头上调节螺钉可调节管材同心度;牵引速度可调节管材尺寸;(4分)④PVC,粘度大,流动性差,热稳定性差;生成热多,结合缝不易愈合,管材易定型。

(3分)。

影响因素:温度、螺杆转速及冷却、牵引速度、压缩空气2.简述挤出成型原理并讨论提高加料段固体输送速率的措施。

原理:粉(粒)料,加入挤出机经①加热、塑化成熔体,再经机头口模②流动成型成连续体,最后经冷却装置③冷却定型成制品。

(4分)。

措施:提高螺杆转速,提高料筒内表面摩擦系数fb,降低螺杆外表面摩擦系数fs(4分)。

3.简述管材挤出的工艺过程及管材挤出的定径方法。

答:管材挤出的基本工艺是:物料经挤出机塑化、机头口模成型后,经定型装置冷却定型、冷却水槽冷却、牵引、切割,得到管材制品。

(3分)(4分)管材的内外径应分别等于管芯的外径和口模的内径。

管材挤出的定径方法分为定内径和定外径两种。

(2分)外径定型是使挤出的管子的外壁与定径套的内壁相接触而起定型作用的,为此,可用向管内通入压缩空气的内压法或在管子外壁抽真空法来实现外径定型。

(2分)内径定型法是将定径套装于挤出的塑料管内,即使挤出管子的内壁与定径套的外壁相接触,在定径套内通以冷水对管子冷却定径。

(2分)4.挤出时,渐变螺杆和突变螺杆具有不同的加工特点。

已知:PVC软化点75~165℃;尼龙的熔融温度范围则较窄,约10℃,它们应分别选用何种螺杆进行加工?简要说明理由。

(12分)答:PVC应选用渐变螺杆而尼龙应选择突变螺杆进行加工。

(4分)因为PVC是无定形塑料,无固定的熔点,软化温度范围较宽,其熔融过程是逐渐进行的,所以选择熔融段较长的渐变螺杆;PA是结晶性塑料,有固定的熔点,熔融温度范围较窄,温度达到熔点后,熔融较快,应选择熔化区较短的突变螺杆。

12高分子成型加工复习要点

复习要点本课程重点在工艺过程及其控制题型:判断题10分、填充题20分、选择题20分、简述题30分、计算题10分、回答题(与读书报告有关)10分。

基本概念,如:常见塑料、橡胶和纤维的全名、俗名和英文缩写高分子材料成型加工的定义和实质;影响高分子材料性能的化学因素:聚合物分子构成、端基(PVC、POM)、交联;影响高分子材料性能的物理因素:分子量及其分布(门尼黏度、MFR)、取向、结晶假塑性流体、离模膨胀开炼工艺、混炼工艺过程阶段;混合设备的分类;塑炼的分类及常见设备;热固性塑料的成型收缩率正硫化、SMC、BMC、GMT挤出机、挤出系统的组成;挤出机螺杆的结构参数;螺杆的作用;挤出机的固体输送率;熔体输送理论;挤出机最佳工作点和特性曲线;长径比、压缩比的定义及其意义;挤出吹塑中的冷凝线及双向取向的含义;双螺杆挤出机的分类;注塑机的注射系统、注塑机的合模系统的组成及分类;注射模具的浇注系统;注射成型时需克服的阻力;注射充模流动的各阶段、注射成型的工艺条件的控制及其对制品的影响;流涎及凝封现象的定义压延成型工艺条件的控制;压延成型挠度的产生原因及解决方法平挤逐次双向拉伸薄膜的工艺流程;中空吹塑流程;中空吹塑的分类四大一次成型方法、二次成型方法的适用对象、制品特点、能简述工艺流程(模压成型、挤出成型、注射成型)、注射、挤出成型设备的标称简述题:如主要与课后习题及作业有关。

如高分子材料成型加工的定义和实质晶态与非晶态聚合物的熔融加工温度范围,讨论两者的耐热性聚合物的结晶温度范围结晶对物性(如拉伸强度、透明性等影响)橡胶的塑炼、混炼和塑料的混合、塑化基本概念、特点及四者间的对比;橡胶的混炼的定义,用开炼机和密炼机进行混炼时各应控制的工艺条件橡胶的硫化历程各阶段的实质、意义;热固性塑料模压成型中温度、压力之间的关系挤出螺杆的分段及其作用;螺杆主要的结构参数及对挤出压力的影响;非结晶型塑料和结晶型塑料挤出螺杆设计特点,即如何设计螺杆各参数;塑料挤出机的螺杆与移动螺杆式注射机的螺杆的比较;注射成型中重要工艺条件如(温度、注射压力和速度)如何控制注射成型时温度控制及其对性能的影响保压在注射成型过程中的作用;凝封的定义压延成型时工艺条件的控制;压延挠度产生的原因、补偿方法,并作比较;压延效应产生的原因及减小的方法;压延成型中分离力的定义及其影响因素用平挤逐次双向拉伸法成型结晶性聚合物薄膜时,挤出的厚片急冷目的、冷却后的厚片在拉伸前又要预热的目的热成型的原理及方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1聚合物主要有哪几种聚集态形式? 玻璃态(结晶态)、高弹态和粘流态

2线性无定形聚合物当加工温度T处于Tb < T 适合进行何种形式的加工?聚合物加工的最低温度? T < Tg 玻璃态——适应机械加工;聚合物使用的最低 (下限) 温度为脆化温度Tb Tg 行真空、压力、压延和弯曲成型等;高弹形变有时间依赖性,加工中有可逆形变,加工的关键的是将制品温度迅速冷却到Tg以下;结晶或部分结晶聚合物在Tg~Tm, 施加外力 > 材料的屈服强度,可进行薄膜或纤维拉伸;聚合物加工的最低温度: 玻璃化温度 Tg T > Tf (Tm) 粘流态(熔体,液态)比Tf略高的温度,为类橡胶流动行为,可进行压延、挤出和吹塑成型。可进行熔融纺丝、注射、挤出、吹塑和贴合等加工 3熔融指数?说明熔融指数与聚合物粘度、分子量和加工流动性的关系, 挤出和注塑成型对材料的熔融指数要求有何不同? 熔融指数(Melt Flow Index) 一定温度(T >Tf 或 Tm)和压力(通常为2.160kg )下,10分钟内从出料孔 (Ø = 2.095mm ) 挤出的聚合物重量( g∕10 min)。 a评价热塑性聚合物的挤压性; b评价熔体的流动度 (流度 φ= 1/η), 间接反映聚合物的分子量大小; c购买原料的重要参数。 分子量高的聚合物,易缠结,分子间作用力大,分子体积大, 流动阻力较大,熔体粘度大,流动度小,熔融指数低;加工性能较差。 分子量高的聚合物的力学强度和硬度等较高。 分子量较低的聚合物,流动度小,熔体粘度低,熔融指数大,加工流动性好。 分子量较低的聚合物的力学强度和硬度等较低

4解释:应变软化;应力硬化;塑性形变及其实质。Tb是塑料使用的下限温度; 应变软化:材料在拉伸时发热,温度升高,以致形变明显加速,并出现形变的细颈现象。 应力硬化:随着取向度的提高,分子间作用力增大,引起聚合物粘度升高,表现出“硬化”倾向,形变也趋于稳定而不再发展。 塑性变形:材料在外力作用下产生不可逆的变形。实质:大分子链的解缠和滑移 随温度升高,屈服强度和断裂强度均下降,两曲线在Tb 相交。T度低于屈服强度,曲服前材料已断裂;材料因脆性而失去使用价值; 温度在Tb ~Tg ,较大外力作用下,非晶高聚物产生强迫高弹形变,强迫高弹性是塑料具有韧性的原因 5根据线性聚合物塑性拉伸的应力-应变曲线,可获得哪些性能参数? 弹性模量,屈服强度(应力),定伸强度, 抗张强度(应力),断裂伸长率,断裂能 6分析讨论聚集态与成型加工的关系; T< Tg ,玻璃态,链段冻结,自由体积小,内聚力较强,力学强度较大,为坚硬固体;外力作用下,大分子链的键角或键长发生变形,形变小,为可逆普弹形变,弹性模量高;适于机械加工,如车削,锉削,制孔,切螺纹等; Tg 较大变形的成型, 如压延,中空吹塑,热成型,薄膜或纤维拉伸等。但此形变是可恢复的;加工的关键的是将制品温度迅速冷却到Tg以下; T > Tf 粘流态 ,整个大分子运动, 滑移和解缠,外力作用下,主要为不可逆的粘性形变,产生宏观流动,可进行变形大,形状复杂的成型。如熔融纺丝、注射、挤出等。冷却后形变永久保存 7写出线型聚合物的总形变γ公式,画出聚合物在外力作用下的形变-时间曲线, 分析各部分的性质特点; 8画出线性聚合物塑性拉伸的应力-应变曲线,并说明各阶段的应力-应变行为特点

1.直线o—a线段 普弹形变,模量高,由键角和键长拉伸引起,形变很小, ab弯曲,形变加速,由普弹形变向高弹形变转变; 2.屈服点b点,水平曲线,屈服应力σy下,链段逐渐形变和位移,应变增大。 由高弹形变发展为塑性形变 (大分子链解缠和滑移) ; “应变软化”: 拉伸时 材料发热(外力功 → 分子热运动能),温度升高变软,形变加速。 “细颈”现象: 拉应力下,材料形变加速,截面突然变细。 屈服应力下,聚合物中结构单元(链段、大分子和微晶)拉伸取向。

9聚合物加工技术分类及其过程 按材料分类 (1)化学纤维成型加工 熔体纺丝, 溶液纺丝。 (2)塑料成型加工 注塑、挤塑、吹塑、模压、层压、传递模塑、浇铸、旋转成型、涂覆等 。 (3橡胶成型加工 工艺过程包括:塑炼、混炼、压出 (压延) 、成型、硫化等过程 根据加工过程中的物理或化学变化 (1)主要是物理变化 热塑性聚合物:加热软化或熔融 - 施压流动 - 冷却固化; 纤维或薄膜: 拉伸取向以及结晶; (2)主要是化学变化 引发剂或热作用下,单体或低聚物的交联固化反应; (3)兼有物理和化学变化 加热 —流动 , 交联—固化。 热固性塑料的模压、注射和传递模塑成型、橡胶成型、反应挤出等。

10说明粘度对剪切速率和温度的敏感性在成型加工中的应用。 1) 在炼胶、压延、压出和注射成型中,提高剪切速率和温度,聚合物粘度降低,可改善加工流动性。 2)外力解除或流动停止时(材料或半成品停放过程中),降低温度,粘度增大,使半成品有良好的挺性,不易变形。 3) 可根据原材料特性,正确选择加工工艺(剪切速率和温度) PS、PE、PP和PVC等的粘度对剪切速率敏感,通过提高剪切速率可降粘,改善加工流动性。 PS、PC、 PMMA 、CA 、 PET 、PA等的粘度对温度敏感,通过提高加工温度可降粘,改善加工流动性。 POM、PC、PET和PA 的粘度对剪切速率不敏感 4) 加工制品时,合理的加工剪切速率范围应选择在粘度对剪切速率不敏感区域(400秒-1 ~ 600秒-1以上) 11说明压力对熔体粘度的影响机理,压力-温度等效性原理。 增大压力,自由体积减小,大分子间距离缩小,链段活动范围减小,分子间作用力增加,熔体粘度增大。但单纯通过增大压力提高熔体流量不恰当, 过大压力造成功率消耗过大,设备磨损更大。不同聚合物的压缩率不同,粘度对压力的敏感性不同压力从138公斤/厘米2升至173公斤/厘米2 , HDPE和PP的粘度增加4~7倍,PS的粘度增加100倍 压力—温度等效性 加工温度范围, 增加压力或降低温度,可使熔体获得同样的粘度变化。压力增加到1000大气压,等效于降温30~50℃。根据压力-温度等效性原理, 加工中为维持粘度恒定,增加熔体压力的同时,应提高温度

12宾汉流体、牛顿流体、膨胀性流体、假塑性流体、触变性液体,震凝性液体 触变性液体:在恒温和恒定的切变速率下,粘度随时间递减的流体。 震凝性流体:在恒温和恒定的切变速率下,粘度随时间递增的流体。 宾汉流体:与牛顿型流体的流动曲线均为直线,但它不通过原点,只有当剪切应力超过一定屈服应力值之后才开始塑性流动 13比较热塑性聚合物和热固性聚合物在加工过程中的流变行为特点; 分析讨论温度对热固性聚合物流动性的影响 热固性与热塑性聚合物粘度变化的差别 (1) 热塑性聚合物加工主要为物理过程 多次塑化引起材料一定变化 (部分降解或局部交联等),但未改变材料整体的可塑性。 (2)加热, 材料熔融,压力作用下流动,获得所需形状;一定温度下, 活性基团交联硬化,粘度变大,失去再次加热软化和流动能力。 温度对热固性聚合物粘度的影响 硬化时间H(流动度降低到某一定值时所需的时间)

温度升高,固化时间缩短,固化速度加快,粘度增高

热塑性聚合物 热固性聚合物 加工温度对聚合物粘度的影响

14讨论热塑性聚合物分子量及其分布、剪切速率、熔体粘度的关系 分子量分布宽,剪切速率增大,熔体粘度迅速下降,表现更多假塑性; 分子量分布窄,在宽剪切速率范围内,熔体表现更多牛顿性。 分子量相同时,从加工性能(熔体粘度)考虑,聚合物分子量分布可适当宽些

15拖曳流动,收敛流动,管外拉伸流动的特点 收敛流动:在流道截面尺寸逐渐变小的锥管或其它形状管道中的流动。特点:流动液体受剪切和拉伸两种作用。 拖曳流动:管道或口模的一部分运动,使聚合物随管道或口模的运动部分产生拖曳流动。特点:剪切流动,液体压力降及流速分布受运动部分的影响。 管外拉伸流动:非抑制性收敛流动(拉伸流动),壁面速度不为 0;收敛角很小;拉伸方向存在速度梯度dvz / dz;拉伸流动区,聚合物细流在径向不存在速度梯度,细流截面上各点的速度相同。

16评价聚合物流变性的常用仪器和方法有哪些 ? 毛细管粘度计、 旋转粘度计、落球粘度计、 熔融指数仪、 螺旋流动试验和转矩流变仪等。 1)挤出式毛细管粘度计: 剪切速率,10-1~6 秒-1 ,熔体和溶液,102 ~ 8 泊 能观察熔体弹性行为和熔体破裂等现象。 2)旋转粘度计: 剪切速率, 10-3~ 105 秒-1 转筒式适合浓溶液,锥板和平板式适合熔体。 能观测聚合物体系的弹性行为和松弛特性。 3) 落球粘度计:剪切速率。10 -2 秒-1以下,溶液。 4)熔融指数仪、螺旋流动试验和转矩流变仪等。

17分析管道中流动液体,管中心区域温度低 ,管壁附近区域温度高的原因。 (1)摩擦热 管中心,剪应力(剪切速率)低,摩擦热小; 随半径增大,剪应力和剪切速率增加,管壁区域的摩擦热最大。 (2)膨胀冷却效应 流体沿流动方向,存在压力降,体积逐渐膨胀,表观密度减小。 膨胀作用消耗液体中部分能量,产生冷却效应。管壁: 限制和摩擦力较大,膨胀率小,冷却效应较小;管中心:膨胀率大,冷却效应更大。

18“拉伸变硬”及其在加工中的应用。 吹塑薄膜或挤压中空容器型型坯时,采用 “拉伸变硬” 的物料, 制品很少出现应力集中或局部强度变弱而破裂,可获得形变均匀的制品,有利于挤压中空容器型坯、纺丝、吹塑薄膜以及片材的热成型。“拉伸变稀”会导致材料破坏。

19入口效应(入口端产生更大压力降)的原因 (1)大管小管(液体收敛流动),流速和剪切速率增大,要消耗更多的能量才能相应提高剪应力和压力梯度; (2)流速增大,液体动能增加,使能量消耗增多; (3)液体剪切速率的增大,使大分子伸展取向更大,高弹形变增加,要克服分子内和分子间的作用作力,也要消耗能量。导致液体进入小管时,能量消耗增多,

相关文档
最新文档