污水厌氧处理与好氧处理特点比较

合集下载

举例阐述有机污物好氧处理与厌氧处理的区别联系

举例阐述有机污物好氧处理与厌氧处理的区别联系

举例阐述有机污物好氧处理与厌氧处理的区别联系摘要:介绍有机污染物的生物处理工艺的应用现状和发展趋势。

比较了厌氧(水解)法和好氧法废水生物处理技术的优缺点, 阐述了有机污物好氧处理与厌氧处理的区别联系并分析了厌氧(水解) —好氧组合工艺的主要优势。

关键词:有机污染物好氧处理厌氧处理Abstract: The biological treatment process of organic pollutants in the application of the status quo and development trends. Comparison of anaerobic (hydrolysis) Act and aerobic biological wastewater treatment technology, advantages and disadvantages, describes the aerobic treatment of organic dirt and anaerobic treatment of the distinction between links and analysis of anaerobic (hydrolysis) - aerobic combined process of the main advantage.Key words: organic pollutants, aerobic treatment, anaerobic treatment随着城市化进程的加快,污染负荷的不断增大,城市景观水体的整治与改善问题日益受到人们的关注。

众所周知,造成水体污染的主要成份绝大部分是有机物。

含有有机污染物的废水易造成水质富营养化,危害比较大[1]。

有机污染物也是生物质能,大部分是能够被人类可利用。

污水的处理就是最大程度从中获取碳与能源,从而在回收利用生物质能的同时达到清洁环境的目的。

5种生物处理污水方法

5种生物处理污水方法

5种生物处理污水方法污水处理是一项重要的环境保护工作,通过利用生物处理方法可以有效地减少污水对自然环境的影响。

下面将介绍五种生物处理污水的方法,分别是好氧生物处理、厌氧生物处理、人工湿地、植物处理和浮游生物处理。

一、好氧生物处理好氧生物处理是一种常见的生物处理污水的方法,通过供氧给微生物,使其能够将有机物质转化为无机物质。

好氧生物处理通常采用曝气池或者活性污泥法,污水中的有机物被微生物分解为二氧化碳和水。

这种方法效率高且成本较低,广泛应用于城市污水处理厂和工业园区。

二、厌氧生物处理厌氧生物处理是一种在无氧环境下进行的生物处理方法。

与好氧生物处理相比,厌氧生物处理能够更有效地去除硝酸盐等氧化物。

厌氧生物处理常见的方法有厌氧消化池和厌氧滤池。

此方法还可以产生沼气,具有能量回收的优势。

三、人工湿地人工湿地是一种模拟自然湿地的生物处理方法。

通过植物和微生物的作用,将污水中的有机物质、氮和磷等污染物去除或转化为无害物质。

人工湿地具有价格低廉、维护简单等优点,同时还可以提供美丽的景观和生态系统。

四、植物处理植物处理是利用植物的吸附、吸收和转化作用来处理污水的方法。

常见的植物处理方法有人工湿地、浮床和植物滤池等。

植物能够吸收水中的营养物质,减少水中的污染物浓度,同时还能提供氧气并促进微生物的生长。

五、浮游生物处理浮游生物处理是利用浮游生物对污水中有机物质和氨氮进行吸附、吸收和降解的方法。

通过合理布置浮游生物滤料,促使浮游生物生长繁殖,有效地降低水中的有机物质浓度。

此方法适用于适宜水温和水质的地区,对水质要求不高。

综上所述,生物处理是一种有效的污水处理方法,在环境保护中起着重要作用。

好氧生物处理、厌氧生物处理、人工湿地、植物处理和浮游生物处理是常见的生物处理污水的方法。

每种方法都有其特点和适用范围,可以根据具体情况选择合适的方法进行污水处理,以达到减少水污染并保护环境的目的。

好氧、厌氧、兼氧污水处理技术

好氧、厌氧、兼氧污水处理技术

帮你区分理解:什么是好氧、厌氧、兼氧污水处理技术?好氧处理技术出水水质较好,主要应用于处理中低浓度废水或者作为厌氧处理的后续处理,但能耗高。

厌氧处理技术适用于处理高浓度有机废水,逐步成为环境保护、资源利用的核心方法,但是,反应速度较慢,反应器容积较大。

兼氧处理技术可发挥厌氧去除有机物绝对量高、好氧对有机物去除率高的各自优点,提高总体有机物处理效率。

兼氧处理技术的发展趋势大致有:兼氧微生物降解有机物的机理、兼氧微生物的分离与培养、提高兼氧微生物处理污染物效能研究、兼氧微生物与其他微生物的相互关系。

在利用兼氧方面,水解酸化工艺居于重要地位,是一个典型工艺,多年来得到广泛应用,为我国的污水处理事业做出了重要贡献。

近年来,兼氧处理技术因能克服好氧处理连续曝气能耗高、厌氧处理条件苛刻等缺点而越来越受到人们的重视。

例如,釆用兼氧+好氧生物技术处理屠宰废水效果良好,同时具有污泥量少、投资省、运转费用低、适用范围广的特点。

兼氧微生物可将废水中的大分子有机物分解为易生化的小分子有机物,改善废水的可生化性, 为后续好氧处理创造条件, 提高了生化处理的整体效果。

目前,对好氧微生物、专性厌氧微生物的研究已比较深入,但对兼氧微生物的研究较薄弱。

本文比较此三种技术的原理,梳理技术开发的思路,以期为未来的污水处理技术研发提供借鉴,进一步加强兼氧生物处理技术的研究,提高污水处理效能。

1 好氧处理技术污水的好氧处理过程见图1。

有机物被微生物摄食之后,通过代谢活动,有机物一方面被分解、稳定,并提供微生物生命活动所需的能量;另一方面被转化、合成为新的原生质(或称细胞质)的组成部分,即微生物自身繁殖生长,这就是污水生物处理中的活性污泥或生物膜的增长部分。

图1 污水好氧生物处理过程示意图好氧处理系统中的微生物主要是细菌(以好氧性异养菌为主)和原生动物,此外尚有酵母菌、丝状霉菌、单胞藻类、轮虫、线虫等。

细菌占微生物总数的90%,数量约为108~109个/mL,它们是去除水中有机污染物的主力军。

污水厌氧处理之优缺点

污水厌氧处理之优缺点

污水厌氧处理之优缺点优点:1.适用范围广:厌氧处理可以有效处理各种类型的废水,包括城市生活污水、工业废水、农业废水等。

不同种类的废水都可以通过调整反应器的操作条件来达到最佳处理效果,具有较大的适应性。

2.处理效果好:厌氧处理可以将有机废水中的有机物质降解为甲烷和二氧化碳等无害气体,从而减少了废水中有机物质的浓度,达到了有效处理的目的。

厌氧处理的氧化还原潜能较高,可以将废水中的硫酸盐、硝酸盐等也同时还原,使得处理效果更好。

3.能源回收:厌氧处理产生的甲烷气体可以被利用为燃料,从而实现能源的回收。

这不仅可以减少废水处理过程中的能源消耗,还可以为其他用途提供可再生能源。

4.降低运营成本:厌氧处理相对于传统的好氧处理来说,不需要额外供氧设备,降低了能源和维护成本。

此外,对于一些难以降解的有机物质,厌氧处理相比好氧处理更加高效,可以有效降低废水处理的运营成本。

5.减少残渣产生:由于厌氧菌对有机物质的降解效率较高,厌氧处理生成的污泥产量相对较少。

这样可以降低后续处理过程中的污泥处理的成本和困难。

缺点:1.处理过程较为复杂:厌氧处理过程涉及到菌群的群落结构和稳定性,反应器的操作条件等多个因素的影响,因此处理过程相对较为复杂。

相对于传统的好氧处理,厌氧处理对操作人员的技术要求较高。

2.处理时间较长:相比起好氧处理,厌氧处理所需要的时间更长。

这是因为厌氧菌的生长速率较慢,需要较长的时间来完成废水中有机物质的降解,因此处理效率较低。

3.规模化困难:厌氧处理反应器的运行对温度、pH等操作条件的控制要求较高,特别是在大规模废水处理过程中,可能出现操作控制难题。

由于操作控制的困难,规模化运行的厌氧处理系统相对较少。

4.产生污泥的污染:虽然厌氧处理相对好氧处理产生的污泥产量较少,但该污泥中可能含有部分有毒有害物质,需要进行专门的处理和处置。

总结起来,污水厌氧处理具有适用范围广、处理效果好、能源回收等优点,但是处理过程较为复杂、处理时间较长、规模化困难、产生污泥的污染等缺点。

污水处理知识:为您解析缺氧、厌氧、好氧(第三期)

污水处理知识:为您解析缺氧、厌氧、好氧(第三期)

污水处理知识:为您解析缺氧、厌氧、好氧(第三期)厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。

高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。

(1)水解阶段水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。

(2)发酵(或酸化)阶段发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。

(3)产乙酸阶段在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。

(4)甲烷阶段这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。

酸化池中的反应是厌氧反应中的一段。

厌氧池是指没有溶解氧,也没有硝酸盐的反应池。

缺氧池是指没有溶解氧但有硝酸盐的反应池。

酸化池---水解、酸化、产乙酸,限制甲烷化,有pH值降低现象。

工艺简单,易控制操作,可去除部分COD。

目的提高可生化性;厌氧池---水解、酸化、产乙酸、甲烷化同步进行。

需要调节pH,不易操作控制,去除大部分COD。

目的是去除COD。

缺氧池---有水解反应,在脱氮工艺中,其pH值升高。

在脱氮工艺中,主要起反硝化去除硝态氮的作用,同时去除部分BOD。

也有水解反应提高可生化性的作用。

水解酸化池内部可以不设曝气装置,控制停留时间再水解、酸化阶段,不出现厌氧产气阶段,前两个阶段的COD去除率不是很高,因为他的目的只是将大分子的变成小分子有机物,一般去除率在20%左右,产气阶段的COD去除率一般在40%左右,但这是产生的硫化氢气体要进行除臭处理,且达到产气阶段的停留时间要较前两阶段长,也就是要出现厌氧状态。

缺缺氧池内要设置曝气装置,控制溶解氧在0.3-0.8mg/l,利用兼氧微生物及生物膜来降解废水中的有机物,接触氧化池内的曝气器要慎重选择,既要保证供氧量,又要确保有利于生物膜的脱落、更新。

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件.

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件.

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件好氧生物处理好氧生物处理是在有游离氧(分子氧)存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法。

微生物利用废水中存在的有机污染物(以溶解状与胶体状的为主),作为营养源进行好氧代谢。

过程:有机物被微生物摄取后,通过代谢活动,约有三分之一被分解、稳定,并提供其生理活动所需的能量;约有三分之二被转化,合成为新的原生质(细胞质),即进行微生物自身生长繁殖。

后者就是废水生物处理中的活性污泥或生物膜的增长部分,通常称其剩余活性污泥或生物膜,又称生物污泥。

在废水生物处理过程中,生物污泥经固—液分离后,需进行进一步处理和处置。

优点:好氧生物处理的反应速度较快,所需的反应时间较短,故处理构筑物容积较小。

且处理过程中散发的臭气较少。

所以,目前对中、低浓度的有机废水,或者说BOD浓度小于500mg/L的有机废水,基本上采用好氧生物处理法。

在废水处理工程中,好氧生物处理法有活性污泥法和生物膜法两大类。

厌氧生物处理是在没有游离氧存在的条件下,兼性细菌与厌氧细菌降解和稳定有机物的生物处理方法。

在厌氧生物处理过程中,复杂的有机化合物被降解、转化为简单的化合物,同时释放能量。

在这个过程中,有机物的转化分为三部分进行:部分转化为CH4,这是一种可燃气体,可回收利用;还有部分被分解为CO2、H20、NH3、H2S等无机物,并为细胞合成提供能量;少量有机物被转化、合成为新的原生质的组成部分。

由于仅少量有机物用于合成,故相对于好氧生物处理法,其污泥增长率小得多。

废水厌氧生物处理废水厌氧生物处理过程不需另加氧源,故运行费用低。

此外,它还具有剩余污泥量少,可回收能量(CH4)等优点。

其主要缺点是反应速度较慢,反应时间较长,处理构筑物容积大等。

但通过对新型构筑物的研究开发,其容积可缩小。

此外,为维持较高的反应速度,需维持较高的反应温度,就要消耗能源。

对于有机污泥和高浓度有机废水(一般BOD5≥2 000mg/L)可采用厌氧生物处理法。

厌氧生物处理法的特点与好氧比较1应用范围广

厌氧生物处理法的特点与好氧比较1应用范围广
1、工艺结构 ❖ 滤池呈圆柱形,池内装放
填料,池底和池顶密封。 ❖ 厌氧微生物附着于填料的
表面生长,废水中的有机 物被降解,并产生沼气, 沼气从池顶部排出。 ❖ 按水流方向:升流、降流
2、工艺特点 ❖ 污泥浓度:10-20g.vss/L;体积负荷大:10-
15kgCOD/m3.d;污泥泥龄:100d;水力停留时 间短。 3、优缺点 ❖ 主要优点:处理能力高,操作简单。 ❖ 主要缺点:滤料费用高,易堵塞。
2、厌氧过程对环境条件的要求
Ⅰ、氧化还原电位(φE)与温度
氧的溶入和氧化态、氧化剂的存在会使体系中电位升高,对厌氧消 化不利。
产酸菌对氧化还原电位要求不甚严格+100~-100mv 产甲烷菌对氧化还原电位要求严格<-350mv
Ⅱ、pH及碱度
pH主要取决于三个生化阶段的平衡状态
Ⅲ、毒物
凡对厌氧处理过程起抑制和毒害作用的物质都可称为毒物
第二段:保持严格的厌氧条件和pH,以利于甲 烷菌的生长;降解、稳定有机物,产生含甲烷较多 的消化气,并截留悬浮固体,以改善出水水质。
酸发酵池
甲烷发酵池
优点:运行稳定可靠,能承受一定的pH值和毒物 等冲击,有机负荷高,消化气中的甲烷含量高。
缺点:设备较多、流程复杂。
四、几种厌氧生物处理工艺的比较
第三节 厌氧生物处理法的设计
第二节 污水的厌氧生物处理方法
按微生物生长状态分为 厌氧活性污泥法、厌氧生物膜法;
按投料、出料及运行方式分为 分批式、连续式、半连续式;
根据厌氧消化中物质转化反应的总过程是否在同一 反应器中并在同一工艺条件下完成,又可分为
一步厌氧消化与两步厌氧消化等。
一、厌氧活性污泥法 (普通消化池、厌氧接触工艺、上流式厌氧污泥床反应器等)

好氧和厌氧处理系统的特点与比较

好氧和厌氧处理系统的特点与比较

好氧和厌氧处理系统的特点与比较随着工业和城市规模的不断扩大,污水排放问题在人类生活中变得越来越重要。

处理污水的方法也越来越成熟,其中好氧处理系统和厌氧处理系统是目前最常见的两种方法,但是它们的工作原理和特点略微有所不同。

好氧处理系统好氧处理系统是利用氧气和微生物的作用将有机物降解成二氧化碳和水的过程。

其主要特点是需要提供足够量的氧气以维持微生物的正常代谢。

因此,好氧处理系统通常在污水中注入大量的氧气,同时使用微生物体系中的繁殖和生长加速污水的处理。

同时,好氧处理系统还需要更高的能源消耗来提供氧气,例如空气供应机和氧气发生器等。

好氧处理系统有许多优点。

首先,它的处理稳定性比较强,即使处理的水质波动较大,也能够保持相对的稳定,不容易出现处理失效的情况。

其次,在处理有机废水时,由于好氧处理系统可以将污水中大量的有机物质分解为无机物质,因此处理效果非常好。

此外,在处理过程中,可同时降解后续的氮和磷污染物质,能够减少环境对生物体系的破坏和对鱼类等水生生物的影响,因此广泛应用于城市污水的处理。

厌氧处理系统厌氧处理系统是在完全缺氧状态下将微生物引入有机物体系,并通过微生物内部产生的沼气来维持它们的一系列代谢活动的过程。

厌氧处理系统通过生化反应的方式降解有机物质,产生沼气并形成有机肥料等代谢产物。

厌氧消化池通常由厌氧消化池和厌氧氧化池等等构成。

和好氧处理系统不同,厌氧处理系统一般用于对含有较高浓度有机物的工业废水和城市污水进行处理。

厌氧处理系统的特点在于对氧气的需求非常小甚至不需要。

同时,厌氧消化系统中的微生物种类较多,不容易受到氧气的影响和细菌土耗的影响,从而可大幅度减少能源的消耗,这也是厌氧消化系统优于好氧处理系统的地方。

但是,厌氧消化系统处理效果相对于好氧处理系统略逊一筹。

所以,厌氧处理系统通常用于高浓度有机物的处理和沼气的生产,而不是像好氧处理系统一样广泛应用于城市污水的处理。

综合比较虽然好氧处理系统和厌氧处理系统具有不同的优势,但在实际应用中需要综合考虑各种因素,例如所处的环境、排放的污染物类型、量和浓度等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

污水厌氧处理与好氧处理特点比较
污水处理是一项重要的环保工作,而污水处理过程中常用的方法包括厌氧处理
和好氧处理。

这两种处理方法在处理效果、工艺流程、能耗以及适用场景等方面存在一些不同之处。

下面将对污水厌氧处理和好氧处理的特点进行比较。

1. 处理效果:
污水厌氧处理和好氧处理都能有效去除污水中的有机物和氮、磷等营养物质,
达到排放标准。

但是,好氧处理对有机物的去除效果更好,能够将有机物降解为二氧化碳和水,使污水的COD(化学需氧量)和BOD(生化需氧量)浓度大幅降低。

2. 工艺流程:
污水厌氧处理主要包括预处理、厌氧池、沉淀池等环节。

在厌氧池中,微生物
在缺氧的条件下进行有机物的分解,产生甲烷等气体。

而好氧处理则包括进流调节、好氧池、二沉池等环节。

在好氧池中,通过供氧和搅拌等措施,使微生物能够充分利用有机物进行降解。

3. 能耗:
污水厌氧处理相对于好氧处理来说,能耗较低。

厌氧处理不需要额外供氧,且
产生的甲烷等气体可以作为能源利用,降低了处理过程中的能耗。

而好氧处理需要提供氧气供给微生物进行降解,增加了能耗。

4. 适用场景:
污水厌氧处理适用于有机物含量较高的污水处理,如食品加工废水、餐饮废水等。

厌氧处理能够有效降解有机物,减少处理过程中的能耗。

而好氧处理适用于对有机物去除要求较高的场景,如生活污水、医院污水等。

综上所述,污水厌氧处理和好氧处理在处理效果、工艺流程、能耗以及适用场景等方面存在一定的差异。

选择适合的处理方法需要根据实际情况来确定,以达到最佳的处理效果和经济效益。

相关文档
最新文档