新教材人教A版高一数学必修一知识点总结经典例题 第二章 一元二次函数、方程和不等式
全国通用2023高中数学必修一第二章一元二次函数方程和不等式知识点总结(超全)

全国通用2023高中数学必修一第二章一元二次函数方程和不等式知识点总结(超全)单选题1、已知关于x的不等式ax2+bx+c<0的解集为{x|x<−1或x>4},则下列说法正确的是()A.a>0B.不等式ax2+cx+b>0的解集为{x|2−√7<x<2+√7}C.a+b+c<0D.不等式ax+b>0的解集为{x|x>3}答案:B分析:根据解集形式确定选项A错误;化不等式为x2−4x−3<0,即可判断选项B正确;设f(x)=ax2+bx+ c,则f(1)>0,判断选项C错误;解不等式可判断选项D错误.解:因为关于x的不等式ax2+bx+c<0的解集为{x|x<−1或x>4},所以a<0,所以选项A错误;由题得{a<0−1+4=−ba−1×4=ca,∴b=−3a,c=−4a,所以ax2+cx+b>0为x2−4x−3<0,∴2−√7<x<2+√7.所以选项B正确;设f(x)=ax2+bx+c,则f(1)=a+b+c>0,所以选项C错误;不等式ax+b>0为ax−3a>0,∴x<3,所以选项D错误.故选:B2、已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=A.{x|−4<x<3}B.{x|−4<x<−2}C.{x|−2<x<2}D.{x|2<x<3}答案:C分析:本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.由题意得,M={x|−4<x<2},N={x|−2<x<3},则M∩N={x|−2<x<2}.故选C.小提示:不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.3、已知1a <1b<0,则下列结论正确的是()A.a<b B.a+b<abC.|a|>|b|D.ab>b2答案:B分析:结合不等式的性质、差比较法对选项进行分析,从而确定正确选项.因为1a <1b<0,所以b<a<0,故A错误;因为b<a<0,所以a+b<0,ab>0,所以a+b<ab,故B正确;因为b<a<0,所以|a|>|b|不成立,故C错误;ab−b2=b(a−b),因为b<a<0,所以a−b>0,即ab−b2=b(a−b)<0,所以ab<b2成立,故D错误. 故选:B4、若a>0,b>0,则“a+b≤4”是“ab≤4”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取a,b的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.当a>0,b>0时,a+b≥2√ab,则当a+b≤4时,有2√ab≤a+b≤4,解得ab≤4,充分性成立;当a=1,b=4时,满足ab≤4,但此时a+b=5>4,必要性不成立,综上所述,“a+b≤4”是“ab≤4”的充分不必要条件.小提示:易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取a,b的值,从假设情况下推出合理结果或矛盾结果.5、下列命题正确的是()A.若ac>bc,则a>bB.若ac=bc,则a=bC.若a>b,则1a <1bD.若ac2>bc2,则a>b答案:D分析:由不等式性质依次判断各个选项即可.对于A,若c<0,由ac>bc可得:a<b,A错误;对于B ,若c =0,则ac =bc =0,此时a =b 未必成立,B 错误;对于C ,当a >0>b 时,1a >0>1b ,C 错误; 对于D ,当ac 2>bc 2时,由不等式性质知:a >b ,D 正确.故选:D.6、已知实数a,b,c 满足a >b >0>c ,则下列不等式中成立的是( )A .a +1b <b +1aB .2a+b a+2b <a bC .b a−c >a b−cD .√c a 3<√c b 3 答案:B分析:对于A ,利用不等式的性质判断;对于CD ,举例判断;对于B ,作差法判断解:对于A ,因为a >b >0,所以1a <1b ,所以a +1b >b +1a ,所以A 错误,对于B ,因为a >b >0,所以2a+b a+2b −a b =(2a+b)b−a(a+2b)(a+2b)b =b 2−a 2(a+2b)b <0, 所以2a+b a+2b <a b ,所以B 正确,对于C ,当a =2,b =1,c =−1时,b a−c=13<a b−c =1,所以C 错误, 对于D ,当a =8,b =1,c =−1时,√c a 3=−12>√c b3=−1,所以D 错误, 故选:B7、已知a,b ∈R 且满足{1≤a +b ≤3−1≤a −b ≤1,则4a +2b 的取值范围是( ) A .[0,12]B .[4,10]C .[2,10]D .[2,8]答案:C分析:设4a +2b =A (a +b )+B (a −b ),求出A ,B 结合条件可得结果.设4a +2b =A (a +b )+B (a −b ),可得{A +B =4A −B =2, 解得{A =3B =1,4a +2b =3(a +b )+a −b , 因为{1≤a +b ≤3−1≤a −b ≤1 可得{3≤3(a +b )≤9−1≤a −b ≤1, 所以2≤4a +2b ≤10.故选:C.8、关于x的方程x2+2(m−1)x+m2−m=0有两个实数根α,β,且α2+β2=12,那么m的值为()A.−1B.−4C.−4或1D.−1或4答案:A分析:α2+β2=(α+β)2−2α⋅β,利用韦达定理可得答案.∵关于x的方程x2+2(m−1)x+m2−m=0有两个实数根,∴Δ=[2(m−1)]2−4×1×(m2−m)=−4m+4⩾0,解得:m⩽1,∵关于x的方程x2+2(m−1)x+m2−m=0有两个实数根α,β,∴α+β=−2(m−1),α⋅β=m2−m,∴α2+β2=(α+β)2−2α⋅β=[−2(m−1)]2−2(m2−m)=12,即m2−3m−4=0,解得:m=−1或m=4(舍去).故选:A.9、下列说法正确的为()A.x+1x≥2B.函数y=2√x2+3的最小值为4C.若x>0,则x(2−x)最大值为1D.已知a>3时,a+4a−3≥2√a⋅4a−3,当且仅当a=4a−3即a=4时,a+4a−3取得最小值8答案:C分析:利用基本不等式及其对勾函数的性质分别判断即可.对于选项A,只有当x>0时,才满足基本不等式的使用条件,则A不正确;对于选项B,y=2√x2+32√x2+3=2√x2+3√x2+3,令√x2+3=t(t≥√3),即y=2t+2t (t≥√3)在[√3,+∞)上单调递增,则最小值为y min=2√3√3=8√33,则B不正确;对于选项C,x(2−x)=−(x2−2x+1)+1=−(x−1)2+1≤1,则C正确;对于选项D,当a>3时,a+4a−3=a−3+4a−3+3≥2√(a−3)⋅4a−3+3=7,当且仅当a−3=4a−3时,即a=5,等号成立,则D不正确.故选:C.10、前后两个不等式解集相同的有()①x+52x−1≥0与(2x−1)(x+5)≥0②x+52x−1>0与(2x−1)(x+5)>0③x2(2x−1)(x+5)≥0与(2x−1)(x+5)≥0④x2(2x−1)(x+5)>0与(2x−1)(x+5)>0A.①②B.②④C.①③D.③④答案:B分析:由不含参的一元二次不等式,分式不等式、高次不等式的解法解出各个不等式,对选项一一判断即可得出答案.对于①,由x+52x−1≥0可得{2x−1≠0(x+5)(2x−1)≥0,解得:x>12或x≤−5.(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故①不正确;对于②,由x+52x−1>0可得{2x−1≠0(x+5)(2x−1)>0,解得:x>12或x<−5.(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故②正确;对于③,x2(2x−1)(x+5)≥0的解集为:{x|x=0或x≤−5或x≥12},(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故③不正确;对于④,x2(2x−1)(x+5)>0的解集为:{x|x<−5或x>12},(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故④正确;故选:B.填空题11、函数y=3x+1x−1(x>1)的最小值是_____答案:3+2√3分析:利用基本不等式可求得原函数的最小值.因为x >1,则x −1>0,所以y =3(x −1)+1x−1+3≥2√3(x −1)×1x−1+3=2√3+3,当且仅当3(x −1)=1x−1,因为x >1,即当x =3+√33时,等号成立. 所以函数y =3x +1x−1(x >1)的最小值是2√3+3.所以答案是:3+2√3.12、为配制一种药液,进行了二次稀释,先在体积为V 的桶中盛满纯药液,第一次将桶中药液倒出10升后用水补满,搅拌均匀第二次倒出8升后用水补满,若第二次稀释后桶中药液含量不超过容积的60%,则V 的取值范围为___________.答案:10≤V ≤40分析:根据题意列出不等式,最后求解不等式即可.第一次操作后,利下的纯药液为V −10,第二次操作后,利下的纯药液为V −10−V−10V ×8,由题意可知: V −10−V−10V ×8≤V ⋅60%⇒V 2−45V +200≤0⇒5≤V ≤40,因为V ≥10,所以10≤V ≤40,所以答案是:10≤V ≤4013、已知∀a ∈[0,2]时,不等式ax 2+(a +1)x +1−32a <0恒成立,则x 的取值范围为__________. 答案:(−2,−1)分析:由题意构造函数关于a 的函数f (a ) =(x 2+x −32)a +x +1,则可得{f(0)<0f(2)<0,从而可求出x 的取值范围.由题意,因为当a ∈[0,2],不等式ax 2+(a +1)x +1−32a <0恒成立,可转化为关于a 的函数f (a ) =(x 2+x −32)a +x +1,则f (a )<0对任意a ∈[0,2]恒成立,则满足{f(0)=x +1<0f(2)=2x 2+2x −3+x +1<0, 解得−2<x <−1,即x 的取值范围为(−2,−1).所以答案是:(−2,−1)解答题14、若x ,y 为正实数,且2x +8y −xy =0,求x +y 的最小值.答案:18解析:首先已知条件变形为8x +2y =1,再化简x +y =(x +y )(8x +2y ),利用基本不等式求最小值.2x +8y −xy =0⇒8x +2y =1 x +y =(x +y )(8x +2y )=8+8y x +2x y +2=10+(8y x +2x y)≥10+2×4=18 (当8y x =2x y 时取“=”)所以x +y 的最小值是18.小提示:本题考查基本不等式求最值,意在考查“1”的妙用,基本不等式求最值使用的三个原则“一正,二定,三相等”,缺一不可,做题时需注意.15、解关于x 的不等式ax 2−2≥2x −ax (a ∈R ).答案:详见解析.分析:分类讨论a ,求不等式的解集即可.原不等式变形为ax 2+(a −2)x −2≥0.①当a =0时,x ≤−1;②当a ≠0时,不等式即为(ax −2)(x +1)≥0,当a >0时,x ≥2a 或x ≤−1;由于2a −(−1)=a+2a ,于是当−2<a <0时,2a ≤x ≤−1;当a =−2时,x =−1;当a<−2时,−1≤x≤2.a,+∞);综上,当a=0时,不等式的解集为(−∞,−1];当a>0时,不等式的解集为(−∞,−1]∪[2a,−1];当a=−2时,不等式的解集为{−1};当a<−2时,不等式的解集为当−2<a<0时,不等式的解集为[2a[−1,2].a。
2024年人教版高中数学必修第一册

2024年人教版高中数学必修第一册第二章一元二次函数、方程和不等式关键知识点归纳一、一元二次函数1. 定义•一元二次函数:形如f(x)=ax2+bx+c(其中a=0)的函数称为一元二次函数。
2. 性质•开口方向:由系数a决定,a>0时开口向上,a<0时开口向下。
•对称轴:x=−2ab。
•顶点坐标:(−2ab,f(−2ab))。
•判别式:Δ=b2−4ac,用于判断函数与坐标轴的交点个数。
3. 应用•求函数的最值:根据开口方向和顶点坐标。
•解决实际问题:如利润最大化、成本最小化等。
二、一元二次方程1. 定义•一元二次方程:形如ax2+bx+c=0(其中a=0)的方程称为一元二次方程。
2. 解法•公式法:x=2a−b±Δ,其中Δ=b2−4ac。
•分解因式法:将方程左侧化为两个一次式的乘积,再令每个一次式等于零求解。
•韦达定理:对于方程ax2+bx+c=0,有x1+x2=−ab,x1⋅x2=ac。
3. 判别式•Δ>0:方程有两个不相等的实数根。
•Δ=0:方程有两个相等的实数根。
•Δ<0:方程无实数根。
4. 应用•解决实际问题:如速度、距离、时间的关系等。
三、一元二次不等式1. 定义•一元二次不等式:形如ax2+bx+c>0(或<,≥,≤)的不等式称为一元二次不等式。
2. 解法•因式分解法:将不等式左侧化为两个一次式的乘积,根据一次式的符号变化求解。
•数轴标根法:对于不等式的根,在数轴上标出,根据不等式的符号变化确定解集。
3. 应用•解决实际问题:如价格范围、取值范围等。
简要解释或描述•一元二次函数:描述了自变量x和因变量y之间的一种特殊关系,其中y是x的二次多项式。
•一元二次方程:涉及x的二次方程,可以描述很多实际问题中的数量关系。
•一元二次不等式:涉及x的二次不等式,用于描述变量的取值范围或满足某种条件的x的集合。
这些知识点在高中数学中占据重要地位,是后续学习的基础,也是解决许多实际问题的工具。
高中数学必修一第二章一元二次函数方程和不等式重难点归纳(带答案)

高中数学必修一第二章一元二次函数方程和不等式重难点归纳单选题1、已知关于x 的不等式mx 2−6x +3m <0在(0,2]上有解,则实数m 的取值范围是( ) A .(−∞,√3)B .(−∞,127)C .(√3,+∞)D .(127,+∞) 答案:A分析:分离参数,将问题转换为m <6x x 2+3在(0,2]上有解,设函数g(x)=6xx 2+3,x ∈(0,2],求出函数g(x)=6xx 2+3的最大值,即可求得答案.由题意得,mx 2−6x +3m <0,x ∈(0,2],即m <6xx 2+3 , 故问题转化为m <6xx 2+3在(0,2]上有解, 设g(x)=6xx 2+3,则g(x)=6xx 2+3=6x+3x,x ∈(0,2],对于x +3x≥2√3 ,当且仅当x =√3∈(0,2]时取等号,则g(x)max =2√3=√3,故m <√3 , 故选:A2、已知a,b 为正实数且a +b =2,则ba +2b 的最小值为( ) A .32B .√2+1C .52D .3 答案:D分析:由题知ba +2b =2(1a +1b )−1,再结合基本不等式求解即可. 解:因为a,b 为正实数且a +b =2, 所以b =2−a , 所以,ba +2b =2−a a +2b =2a +2b −1=2(1a +1b )−1因为2a +2b =2(1a +1b )=(a +b )(1a +1b )=2+ba +ab ≥2+2=4,当且仅当a =b =1时等号成立; 所以ba +2b =2−a a+2b =2a +2b −1≥3,当且仅当a =b =1时等号成立;故选:D3、若正数x ,y 满足3x +1y =5,则3x +4y 的最小值是( ) A .245B .285C .5D .25答案:C分析:由3x +4y =15(3x +4y )(3x +1y )配凑出符合基本不等式的形式,利用基本不等式求得结果. ∵3x +4y =15(3x +4y )(3x +1y )=15(13+3x y+12y x)≥15(13+2√3x y ⋅12y x)=5(当且仅当3x y =12y x,即x =2y =1时取等号), ∴3x +4y 的最小值为5. 故选:C.4、已知1a<1b <0,则下列结论正确的是( )A .a <bB .a +b <abC .|a |>|b |D .ab >b 2 答案:B分析:结合不等式的性质、差比较法对选项进行分析,从而确定正确选项. 因为1a <1b <0,所以b <a <0,故A 错误;因为b <a <0,所以a +b <0,ab >0,所以a +b <ab ,故B 正确; 因为b <a <0,所以|a |>|b |不成立,故C 错误;ab −b 2=b (a −b ),因为b <a <0,所以a −b >0,即ab −b 2=b (a −b )<0,所以ab <b 2成立,故D 错误. 故选:B5、设a >b >1,y 1=b+1a+1,y 2=b a,y 3=b−1a−1,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 2<y 3<y 1 答案:C分析:利用作差法先比较y 1,y 2,再比较y 2,y 3即可得出y 1,y 2,y 3的大小关系.解:由a >b >1,有y 1﹣y 2=b+1a+1−b a =ab+a−ab−b (a+1)a=a−b(a+1)a >0,即y 1>y 2,由a >b >1,有y 2﹣y 3=ba −b−1a−1=ab−b−ab+a a(a−1)=a−ba(a−1)>0,即y 2>y 3,所以y 1>y 2>y 3, 故选:C.6、当0<x <2时,x(2−x)的最大值为( ) A .0B .1C .2D .4 答案:B分析:利用基本不等式直接求解.∵0<x <2,∴2−x >0,又x +(2−x)=2 ∴x(2−x)≤[x+(2−x)]24=1,当且仅当x =2−x ,即x =1时等号成立,所以x(2−x)的最大值为1 故选:B7、若不等式ax 2+bx −2<0的解集为{x|−2<x <1},则a +b =( ) A .−2B .0C .1D .2 答案:D分析:根据一元二次不等式与一元二次方程的关系以及韦达定理列方程组,可解出答案. 不等式ax 2+bx −2<0的解集为{x|−2<x <1},则方程ax 2+bx −2=0根为−2、1, 则{−ba =−2+1−2a =−2×1 ,解得a =1,b =1,∴a +b =2, 故选:D8、设a,b,c,d 为实数,且a >b >0>c >d ,则下列不等式正确的是( ) A .c 2>cd B .a −c <b −d C .ac >bd D .ca −db >0 答案:D分析:题目考察不等式的性质,A 选项不等式两边同乘负数要变号;B,C 选项可以通过举反例排除;D 选项根据已知条件变形可得已知a>b>0>c>d,对各选项逐一判断:选项A:因为0>c>d,由不等式的性质,两边同乘负数,不等式变号,可得c2<cd,所以选项A错误. 选项B:取a=2,b=1,c=−1,d=−2,则a−c=3,b−d=3,此时a−c=b−d,所以选项B错误.选项C:取a=2,b=1,c=−1,d=−2,则ac=−2,bd=−2,此时ac=bd,所以选项C错误.选项D:因为a>b>0,0>c>d,所以ad<bd<bc,所以ca >db,即ca−db>0,所以选项D正确.故选:D.多选题9、若关于x的一元二次方程(x−2)(x−3)=m有实数根x1,x2,且x1<x2,则下列结论中正确的说法是()A.当m=0时,x1=2,x2=3B.m>−14C.当m>0时,2<x1<x2<3D.当m>0时,x1<2<3<x2答案:ABD解析:根据题意得,函数y=(x−2)(x−3)与y=m图象有两个交点,进而数形结合即可得答案.解:A中,m=0时,方程为(x−2)(x−3)=0,解为:x1=2,x2=3,所以A正确;B中,方程整理可得:x2−5x+6−m=0,由不同两根的条件为:Δ=25−4(6−m)>0,所以m>−14,所以B正确.当m>0时,在同一坐标系下,分别作出函数y=(x−2)(x−3)和y=m的图像,如图,可得x1<2<3<x2,所以C不正确,D正确,故选:ABD.小提示:关键点点睛:本题考查根据一元二次方程的实数根求参数问题,解题的关键是将问题转化为函数y= (x−2)(x−3)与y=m图象有两个交点问题,进而数形结合解决.考查数形结合思想和化归转化思想,是中档题.10、若正实数a,b满足a+b=1则下列说法正确的是()A.ab有最大值14B.√a+√b有最大值√2C.1a +1b有最小值2D.a2+b2有最大值12答案:AB解析:对A,根据基本不等式求ab的最大值;对B,对√a+√b平方再利用基本不等式求最大值;对C,根据1a +1b=(1a+1b)(a+b)再展开求解最小值;对D,对a+b=1平方再根据基本不等式求最值.对A,ab≤(a+b2)2=(12)2=14,当且仅当a=b=12时取等号.故A正确.对B, (√a+√b)2=a+b+2√ab≤a+b+a+b=2,故√a+√b≤√2,当且仅当a=b=12时取等号.故B正确.对C, 1a +1b=(1a+1b)(a+b)=2+ba+ab≥2+2√ba⋅ab=4.当且仅当a=b=12时取等号.所以1a+1b有最小值4.故C错误.对D, (a+b)2=1⇒a2+2ab+b2=1≤a2+(a2+b2)+b2,即a2+b2≥12,故a2+b2有最小值12.故D错误.故选:AB小提示:本题主要考查了基本不等式求解最值的问题,需要根据所给形式进行合适的变形,再利用基本不等式.属于中档题.11、已知a,b∈R,则下列命题正确的是()A.若a≠b,则a2≠b2B.若a2≠b2,则a≠bC.若a>b,则a2>b2D.若a>|b|,则a2>b2答案:BD分析:根据不等式的性质判断各选项.当a=−b时,如a=2,b=−2时a2=b2成立,A错;若a=b则一定有a2=b2,所以a2≠b2时,一定有a≠b,B正确;2>−3,但22<(−3)2,C错;a>|b|,则a2>|b|2=b2,D正确.故选:BD.填空题12、设x>0,y>0,x+2y=5,则√xy的最小值为______. 答案:4√3分析:把分子展开化为2xy+6,再利用基本不等式求最值.∵xy =xy,∵x>0,y>0,x+2y=5,xy>0,∴√xy ≥√3√xy√xy=4√3,当且仅当xy=3,即x=3,y=1时成立,故所求的最小值为4√3.小提示:使用基本不等式求最值时一定要验证等号是否能够成立.13、已知关于x的不等式−x2+6ax−3a2≥0(a>0)的解集为[x1,x2],则x1+x2+3ax1x2的最小值是___________.答案:2√6分析:由题知x1+x2=6a,x1x2=3a2,进而根据基本不等式求解即可.解:因为关于x的不等式−x2+6ax−3a2≥0(a>0)的解集为[x1,x2],所以x1,x2是方程−x2+6ax−3a2=0(a>0)的实数根,所以x1+x2=6a,x1x2=3a2,因为a>0,所以x1+x2+3ax1x2=6a+1a≥2√6,当且仅当6a=1a,即a=√66时等号成立,所以x1+x2+3ax1x2的最小值是2√6所以答案是:2√614、二次函数y=ax2+4x+c的最小值为0,则1a +1c的最小值为______.答案:1分析:根据题意可得ac=4,利用基本不等式即可求解. 由二次函数y=ax2+4x+c的最小值为0,则42−4ac=0,解得ac=4,所以1a +1c≥2√1a⋅1c=2√14=1,当且仅当a=c时取等号,所以答案是:1解答题15、汽车在行驶中,由于惯性的作用,刹车后还要继续向前滑行一段距离才能停住,我们称这段距离为“刹车距离”.刹车距离是分析事故产生原因的一个重要因素.在一个限速为40km/h的弯道上,甲、乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事后现场勘察测得甲车的刹车距离小于12m,乙车的刹车距离略超过10m.又知甲、乙两种车型的刹车距离s(单位:m)与车速x(单位:km h⁄)之间分别有如下关系:s 甲=0.1x+0.01x2,s乙=0.05x+0.005x2.问:甲、乙两车有无超速现象?答案:甲车没超速,乙车超速分析:分别解不等式s甲=0.1x+0.01x2<12、s乙=0.05x+0.005x2>10,即可得出结论.由s甲=0.1x+0.01x2<12可得x2+10x−1200<0,解得0≤x<30,由s乙=0.05x+0.005x2>10可得x2+10x−2000>0,解得x>40,所以,甲车没超速,乙车超速.。
高中数学必修一第二章一元二次函数方程和不等式知识点总结全面整理(带答案)

高中数学必修一第二章一元二次函数方程和不等式知识点总结全面整理单选题1、已知x>0,y>0,x+2y=1,则1x +1y的最小值为()A.3+2√2B.12C.8+4√3D.6答案:A分析:根据基本不等中“1”的用法,即可求出结果. 因为x>0,y>0,x+2y=1,所以(1x +1y)(x+2y)=3+2yx+xy≥3+2√2,当且仅当2yx =xy,即x=√2−1,y=2−√22时,等号成立.故选:A.2、当0<x<2时,x(2−x)的最大值为()A.0B.1C.2D.4答案:B分析:利用基本不等式直接求解.∵0<x<2,∴2−x>0,又x+(2−x)=2∴x(2−x)≤[x+(2−x)]24=1,当且仅当x=2−x,即x=1时等号成立,所以x(2−x)的最大值为1故选:B3、已知x∈R,则“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的()条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要答案:C分析:先证充分性,由(x−2)(x−3)≤0求出x的取值范围,再根据x的取值范围化简|x−2|+|x−3|即可,再证必要性,若|x−2|+|x−3|=1,即|x−2|+|x−3|=|(x−2)−(x−3)|,再根据绝对值的性质可知(x−2)(x−3)≤0.充分性:若(x−2)(x−3)≤0,则2≤x≤3,∴|x−2|+|x−3|=x−2+3−x=1,必要性:若|x−2|+|x−3|=1,又∵|(x−2)−(x−3)|=1,∴|x−2|+|x−3|=|(x−2)−(x−3)|,由绝对值的性质:若ab≤0,则|a|+|b|=|a−b|,∴(x−2)(x−3)≤0,所以“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的充要条件,故选:C.4、若非零实数a,b满足a<b,则下列不等式成立的是()A.ab <1B.ba+ab>2C.1ab2<1a2bD.a2+a<b2+b答案:C分析:举出符合条件的特例即可判断选项A,B,D,对于C,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C5、对∀x∈R,不等式(a−2)x2+2(a−2)x−4<0恒成立,则a的取值范围是()A.−2<a≤2B.−2≤a≤2C.a<−2或a≥2D.a≤−2或a≥2答案:A分析:对a讨论,结合二次函数的图象与性质,解不等式即可得到a的取值范围.不等式(a−2)x2+2(a−2)x−4<0对一切x∈R恒成立,当a −2=0,即a =2时,−4<0恒成立,满足题意;当a −2≠0时,要使不等式恒成立,需{a −2<0Δ<0,即有{a <24(a −2)2+16(a −2)<0 , 解得−2<a <2.综上可得,a 的取值范围为(−2,2].故选:A.6、已知实数x ,y 满足x 2+y 2=2,那么xy 的最大值为( )A .14B .12C .1D .2答案:C分析:根据重要不等式x 2+y 2≥2xy 即可求最值,注意等号成立条件.由x 2+y 2=2≥2xy ,可得xy ≤1,当且仅当x =y =1或x =y =−1时等号成立.故选:C.7、设a >b >c >0,则2a 2+1ab +1a(a−b)−10ac +25c 2取得最小值时,a 的值为( )A .√2B .2C .4D .2√5答案:A解析:转化条件为原式=1ab +ab +1a(a−b)+a(a −b)+(a −5c)2,结合基本不等式即可得解.2a 2+1ab +1a (a −b )−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)−ab −a(a −b)+2a 2−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)+a 2−10ac +25c 2 =1ab +ab +1a(a −b)+a(a −b)+(a −5c)2 ≥2√1ab ⋅ab +2√1a(a−b)⋅a(a −b)+0=4,当且仅当{ab =1a(a −b)=1a =5c ,即a =√2,b =√22,c =√25时,等号成立.小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.8、若x<0,则x+14x−2有()A.最小值−1B.最小值−3C.最大值−1D.最大值−3答案:D分析:根据基本不等式,首先取相反数,再尝试取等号,可得答案.因为x<0,所以x+14x −2=−(−x+1−4x)−2≤−2√−x⋅1−4x−2=−3,当且仅当−x=1−4x,即x=−12时等号成立,故x+14x−2有最大值−3.故选:D.多选题9、对于任意实数a,b,c,d,则下列命题正确的是()A.若ac2>bc2,则a>b B.若a>b,c>d,则a+c>b+dC.若a>b,c>d,则ac>bd D.若a>b,则1a >1b答案:AB分析:可由性质定理判断A、B对,可代入特例判断选项C、D错.解:若ac2>bc2,两边同乘以1c2则a>b,A对,由不等式同向可加性,若a>b,c>d,则a+c>b+d,B对,当令a=2,b=1,c=﹣1,d=﹣2,则ac=bd,C错,令a=﹣1,b=﹣2,则1a <1b,D错.10、关于x的一元二次不等式x2−2x−a≤0的解集中有且仅有5个整数,则实数a的值可以是()A.2B.4C.6D.8答案:BC解析:求出不等式的解,分析其中只有5个整数解,得a的不等式,解之,然后判断各选项可得.易知Δ=4+4a≥0,即a≥−1,解原不等式可得1−√1+a≤x≤1+√1+a,而解集中只有5个整数,则2≤√1+a<3,解得3≤a<8,只有BC满足.故选:BC.11、已知实数a,b,c满足c<b<a,且ac<0,则下列不等式一定成立的是()A.ab>ac B.c(b−a)>0C.ac(a−c)<0D.cb2<ab2答案:ABC分析:根据c<b<a,且ac<0,得到a>0,c<0,然后利用不等式的基本性质,逐项判断.因为实数a,b,c满足c<b<a,且ac<0,所以a>0,c<0,由b>c,a>0,得ab>ac,故A正确;由b<a,c<0,得c(b−a)>0,故B正确;由a>c,ac<0,得ac(a−c)<0,故C正确;由a>c,b2≥0,得cb2≤ab2,当b=0时,等号成立,故D错误;故选:ABC填空题12、若不等式x2−2>mx对满足|m|≤1的一切实数m都成立,则x的取值范围是___________答案:x<−2或x>2分析:令f(m)=mx−x2+2,依题意可得−1≤m≤1时f(m)<0恒成立,则{f(1)<0f(−1)<0,即可得到关于x 的一元二次不等式组,解得即可;解:因为x2−2>mx,所以mx−x2+2<0令f(m)=mx−x2+2,即f(m)<0在|m|≤1恒成立,即−1≤m≤1时f(m)<0恒成立,所以{f(1)<0f(−1)<0,即{x−x 2+2<0−x−x2+2<0,解x−x2+2<0得x>2或x<−1;解−x−x2+2<0得x>1或x<−2,所以原不等式组的解集为x∈(−∞,−2)∪(2,+∞)所以答案是:(−∞,−2)∪(2,+∞)13、已知−1<x+y<4,2<x−y<4,则3x+2y的取值范围是_____.答案:(−32,12)解析:利用换元法,结合不等式的性质进行求解即可.设x+y=m,x−y=n,因此得:x=m+n2,y=m−n2,−1<m<4,2<n<4,3x+2y=3⋅m+n2+2⋅m−n2=5m2+n2,因为−1<m<4,2<n<4,所以−52<5m2<10,1<n2<2,因此−32<5m2+n2<12,所以−32<3x+2y<12.所以答案是:(−32,12)14、关于x的不等式x2−4x+4a≥a2在[1,6]内有解,则a的取值范围为________.答案:[−2,6]分析:根据不等式有解可得当x∈[1,6]时,a2−4a≤(x2−4x)max,结合二次函数的最值可求得结果. ∵x2−4x+4a≥a2在[1,6]内有解,∴a2−4a≤(x2−4x)max,其中x∈[1,6];设y=x2−4x(1≤x≤6),则当x=6时,y max=36−24=12,∴a2−4a≤12,解得:−2≤a≤6,∴a的取值范围为[−2,6].所以答案是:[−2,6].解答题15、若0<a<b,则下列不等式哪些是成立的?若成立,给予证明;若不成立,请举出反例.(1)a+1b <b+1a;(2)a2+1a2≥a+1a;(3)a2b +b2a>a+b.答案:(1)正确,证明见解析;(2)正确,证明见解析;(3)正确,证明见解析. 解析:(1)作差分解因式,即可得出答案;(2)作差分解因式,即可得出答案;(3)用基本不等式,即可得出答案.(1)正确a+1b −b−1a=(a−b)(1+1ab)<0(2)正确a2+1a2−(a+1a)=(a+1a)2−(a+1a)−2=(a+1a−2)(a+1a+1)≥0(3)正确a2b +b>2a,b2a+a>2b∴a2b+b2a+a+b>2a+2b∴a2b+b2a>a+b小提示:本题考查证明不等式,一般采用作差法、作商法、基本不等式,属于容易题.。
高中数学必修一第二章一元二次函数方程和不等式知识点总结(超全)(带答案)

高中数学必修一第二章一元二次函数方程和不等式知识点总结(超全) 单选题1、已知−1≤x+y≤1,1≤x−y≤5,则3x−2y的取值范围是()A.[2,13]B.[3,13]C.[2,10]D.[5,10]答案:A分析:设3x−2y=m(x+y)−n(x−y)=(m−n)x+(m+n)y,求出m,n的值,根据x+y,x−y的范围,即可求出答案.设3x−2y=m(x+y)−n(x−y)=(m−n)x+(m+n)y,所以{m−n=3m+n=−2,解得:{m=12n=−52,3x−2y=12(x+y)+52(x−y),,因为−1≤x+y≤1,1≤x−y≤5,所以3x−2y=12(x+y)+52(x−y)∈[2,13],故选:A.2、前后两个不等式解集相同的有()①x+52x−1≥0与(2x−1)(x+5)≥0②x+52x−1>0与(2x−1)(x+5)>0③x2(2x−1)(x+5)≥0与(2x−1)(x+5)≥0④x2(2x−1)(x+5)>0与(2x−1)(x+5)>0A.①②B.②④C.①③D.③④答案:B分析:由不含参的一元二次不等式,分式不等式、高次不等式的解法解出各个不等式,对选项一一判断即可得出答案.对于①,由x+52x−1≥0可得{2x−1≠0(x+5)(2x−1)≥0,解得:x>12或x≤−5.(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故①不正确;对于②,由x+52x−1>0可得{2x−1≠0(x+5)(2x−1)>0,解得:x>12或x<−5.(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故②正确;对于③,x2(2x−1)(x+5)≥0的解集为:{x|x=0或x≤−5或x≥12},(2x−1)(x+5)≥0的解集为:{x|x≥12或x≤−5},故③不正确;对于④,x2(2x−1)(x+5)>0的解集为:{x|x<−5或x>12},(2x−1)(x+5)>0的解集为:{x|x>12或x<−5},故④正确;故选:B.3、y=x+4x(x≥1)的最小值为()A.2B.3C.4D.5答案:C分析:利用均值不等式求解即可.因为y=x+4x (x≥1),所以x+4x≥2√x×4x=4,当且仅当x=4x即x=2时等号成立.所以当x=2时,函数y=x+4x有最小值4.故选:C.4、若不等式x2+ax+1≥0对于一切x∈(0,12]恒成立,则a的最小值是()A.0B.−2C.−52D.−3答案:C解析:采用分离参数将问题转化为“a≥−(x+1x )对一切x∈(0,12]恒成立”,再利用基本不等式求解出x+1x的最小值,由此求解出a的取值范围.因为不等式x2+ax+1≥0对于一切x∈(0,12]恒成立,所以a≥−(x+1x )对一切x∈(0,12]恒成立,所以a≥[−(x+1x )]max(x∈(0,12]),又因为f(x)=x+1x 在(0,12]上单调递减,所以f(x)min=f(12)=52,所以a ≥−52,所以a 的最小值为−52,故选:C.小提示:本题考查利用基本不等式求解最值,涉及不等式在给定区间上的恒成立问题,难度一般.不等式在给定区间上恒成立求解参数范围的两种方法:参变分离法、分类讨论法.5、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1, ∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .6、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab <1B .ba +ab >2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C7、已知函数y=x−4+9x+1(x>−1),当x=a时,y取得最小值b,则a+b=()A.−3B.2C.3D.8答案:C分析:通过题意可得x+1>0,然后由基本不等式即可求得答案解:因为x>−1,所以9x+1>0,x+1>0,所以y=x−4+9x+1=x+1+9x+1−5≥2√(x+1)⋅9x+1−5=1,当且仅当x+1=9x+1即x=2时,取等号,所以y的最小值为1,所以a=2,b=1,所以a+b=3,故选:C8、小李从甲地到乙地的平均速度为a,从乙地到甲地的平均速度为b(a>b>0),他往返甲乙两地的平均速度为v,则()A.v=a+b2B.v=√abC.√ab<v<a+b2D.b<v<√ab答案:D分析:平均速度等于总路程除以总时间设从甲地到乙地的的路程为s,从甲地到乙地的时间为t1,从乙地到甲地的时间为t2,则t1=sa ,t2=sb,v=2st1+t2=2s sa+sb=21a+1b,∴v =21a +1b>21b +1b=b ,v =21a +1b=2ab a+b <2√ab=√ab ,故选:D. 多选题9、若a >0,b >0,a +b =2,则( )A .ab ≤1B .√a +√b ≤√2C .a 2+b 2≥2D .1a +1b ≥2 答案:ACD分析:根据基本不等式依次讨论各选项即可得答案.对于A ,由基本不等式得,2=a +b ≥2√ab 则ab ≤1,当且仅当a =b =1时等号成立,故A 正确; 对于B ,令a =32, b =12时,√a +√b =√6+√22>√2=√2+√22,故√a +√b ≤√2不成立,故B 错误;对于C ,由A 选项得ab ≤1,所以a 2+b 2=(a +b)2−2ab =4−2ab ≥2,当且仅当a =b =1时等号成立,故C 正确;对于D ,根据基本不等式的“1”的用法得(1a +1b )(a+b 2)=12(1a +1b )(a +b ) =12(1+1+b a +a b ) =1+12(b a +ab )≥1+12⋅2√1=2,当且仅当ba =ab ,即a =b =1时等号成立,故D 正确. 故选:ACD .10、若方程x 2+2x +λ=0在区间(−1,0)上有实数根,则实数λ的取值可以是( ) A .−3B .18C .14D .1答案:BC解析:分离参数得λ=−x 2−2x ,求出−x 2−2x 在(−1,0)内的值域即可判断. 由题意λ=−x 2−2x 在(−1,0)上有解.∵x ∈(−1,0),∴λ=−x 2−2x =−(x +1)2+1∈(0,1), 故选:BC .11、不等式ax 2+bx +c ≥0的解集是{x |−1≤x ≤2},则下列结论正确的是( ) A .a +b =0B .a +b +c >0 C .c >0D .b <0答案:ABC分析:根据二次函数图像与二次不等式关系求解即可. 解:因为不等式ax 2+bx +c ≥0的解集是{x |−1≤x ≤2},所以a <0,且{−ba=−1+2=1>0c a =−2<0,所以{b >0,b =−a,c >0, 所以a +b =0,c >0,b >0,故AC 正确,D 错误.因为二次函数y =ax 2+bx +c 的两个零点为−1,2,且图像开口向下, 所以当x =1时,y =a +b +c >0,故B 正确. 故选:ABC . 填空题 12、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)13、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值. 设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32,因此,z=x+2y的最小值是32.所以答案是:32.14、某校生物兴趣小组为开展课题研究,分得一块面积为32m2的矩形空地,并计划在该空地上设置三块全等的矩形试验区(如图所示).要求试验区四周各空0.5m,各试验区之间也空0.5m.则每块试验区的面积的最大值为___________m2.答案:6分析:设矩形空地的长为x m,根据图形和矩形的面积公式表示出试验区的总面积,利用基本不等式即可求出结果.设矩形空地的长为x m,则宽为32xm,依题意可得,试验区的总面积S=(x−0.5×4)(32x −0.5×2)=34−x−64x≤34−2√x⋅64x=18,当且仅当x=64x即x=8时等号成立,所以每块试验区的面积的最大值为183=6m2.所以答案是:6解答题15、已知一元二次函数f(x)=ax2+bx+c (a>0,c>0)的图像与x轴有两个不同的公共点,其中一个公共点的坐标为(c,0),且当0<x<c时,恒有f(x)>0.(1)当a=1,c=12时,求出不等式f(x)<0的解;(2)求出不等式f(x)<0的解(用a,c表示);(3)若以二次函数的图象与坐标轴的三个交点为顶点的三角形的面积为8,求a的取值范围;(4)若不等式m2−2km+1+b+ac≥0对所有k∈[−1, 1]恒成立,求实数m的取值范围.答案:(1)(12,1);(2)(c,1a);(3)a∈(0, 18];(4)m≤−2 或 m=0 或m≥2.分析:(1)根据根与系数的关系,求出f(x)=0的另一根,得到不等式f(x)<0的解;(2)根据根与系数的关系,求出f(x)=0另一根,并判断两根的大小,得到不等式f(x)<0的解;(3)先求出f(x)的图像与坐标轴的交点,表示出以这些点组成的三角形的面积,再将a 用c 表示出来,再求得a 的范围;(4)根据f(c)=0,得到a,b,c 的关系式,化简不等式,将k,m 分离,分离时注意讨论m 的符号,求得实数m 的范围.(1)当a =1,c =12时,f(x)=x 2+bx +12,f(x)的图像与x 轴有两个不同交点, ∵f(12)=0设另一个根为x 2,则12x 2=12,∴x 2=1,则f(x)<0的解集为(12,1). (2)f(x)的图像与x 轴有两个交点,∵f(c)=0,设另一个根为x 2, 则cx 2=c a ∴x 2=1a 又当0<x <c 时,恒有f(x)>0,则1a >c , ∴f(x)<0的解集为(c,1a ).(3)由(2)的f(x)的图像与坐标轴的交点分别为(c,0),(1a ,0),(0,c) 这三交点为顶点的三角形的面积为S =12(1a −c)c =8, ∴a =c 16+c2≤2√16c=18,故a ∈(0, 18].(4)∵f(c)=0,∴ac 2+bc +c =0,又∵c >0,∴ac +b +1=0, 要使m 2−2k m ≥0,对所有k ∈[−1, 1]恒成立,则 当m >0时,m ≥(2k)max =2; 当m <0时,m ≤(2k)min =−2;当m =0时,02≥2k ⋅0,对所有k ∈[−1, 1]恒成立. 从而实数m 的取值范围为m ≤−2 或 m =0 或m ≥2.小提示:本题考查了二次函数,一元二次方程,一元二次不等式三个二次之间关系及应用,根与系数的关系,恒成立求参问题,参变分离技巧,属于中档题.。
数学人教A版必修第一册第二章一元二次函数、方程和不等式章末复习

解答此类问题关键是创设应用不等式的条件,合理拆分项或
配凑因式是常用的解题技能,而拆与凑的目的在于使“和式”或
“积式”成定值.
例6.求不等式 2 − 5 + 6 > 0的解集.
解:对于方程 2 − 5 + 6 = 0,
∵∆> 0,∴它有两个实数根.解得1 = 2,2 = 3.
基本不等式
≤
+
2
( > 0, > 0) 当且仅当 = 时等号成立
利用基本不等式求最值应满足三个条件“一正、二定、三相等”.
例3.已知 > 0, > 0.若 − = 4,证明: +
4
+1
≥ 7.
证明:( 1 )由 − = 4,得 = + 4,
所以 +
{| ≠ − }
2
∅
∅
例 7. 已知 = 2 + 2 − 2 + 4 .如果对一切 ∈ , > 0恒
成立,求实数的取值范围 .
解.只有当二次函数 = 2 + 2 − 2 + 4 与直角坐标系中的
轴无交点时,才能满足题意;
∴其相应方程 2 + 2 − 2 + 4 = 0
2
D .若 > >
,则
A 选项,若 = 0或 = 0, 或 显然无意义.故 A 选项错误;
对于 B 选项,若 = 0,则 2 = 2 .故 B 选项错误;
对于 C 选项,因为 > 0 > ,所以各项同时乘以得 2 > 0 > .故 C 正确;
高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版(带答案)

高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、已知x,y,z都是正实数,若xyz=1,则(x+y)(y+z)(z+x)的最小值为()A.2B.4C.6D.8答案:D分析:均值定理连续使用中要注意等号是否同时成立.由x>0,y>0,z>0可知x+y≥2√xy>0(当且仅当x=y时等号成立)y+z≥2√yz>0(当且仅当y=z时等号成立)x+z≥2√xz>0(当且仅当x=z时等号成立)以上三个不等式两边同时相乘,可得(x+y)(y+z)(z+x)≥8√x2y2z2=8(当且仅当x=y=z=1时等号成立)故选:D2、已知2<a<3,−2<b<−1,则2a−b的范围是()A.(6,7)B.(5,8)C.(2,5)D.(6,8)答案:B分析:由不等式的性质求解即可.2<a<3,−2<b<−1,故4<2a<6,1<−b<2,得5<2a−b<8故选:B3、下列命题中,是真命题的是()A.如果a>b,那么ac>bc B.如果a>b,那么ac2>bc2C.如果a>b,那么ac >bcD.如果a>b,c<d,那么a−c>b−d答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案.对于A ,如果c =0,那么ac =bc ,故错误; 对于B ,如果c =0,那么ac 2=bc 2,故错误; 对于C ,如果c <0,那么ac <bc ,故错误;对于D ,如果c <d ,那么−c >−d ,由a >b ,则a −c >b −d ,故正确. 故选:D.4、y =x +4x (x ≥1)的最小值为( ) A .2B .3C .4D .5 答案:C分析:利用均值不等式求解即可.因为y =x +4x(x ≥1),所以x +4x≥2√x ×4x=4,当且仅当x =4x即x =2时等号成立.所以当x =2时,函数y =x +4x 有最小值4. 故选:C.5、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞) 答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解.解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13, 当a >1,x ∈[−a,−1]⊆(−∞,13],符合, 故实数a 的取值范围为[−13,+∞). 故选:C.6、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1, ∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .7、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab <1B .ba +ab >2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C8、若a,b,c为实数,且a<b,c>0,则下列不等关系一定成立的是()A.a+c<b+c B.1a <1bC.ac>bc D.b−a>c答案:A分析:由不等式的基本性质和特值法即可求解.对于A选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a<b⇒a+c<b+c,A选项正确;对于B选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若a=−2,b=−1,则1a >1b,B选项错误;对于C选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,c>0,0<a<b⇒ac<bc,C选项错误;对于D选项,因为a<b⇒b−a>0,c>0,所以无法判断b−a与c大小,D选项错误.多选题9、若−1<a<b<0,则()A.a2+b2>2ab B.1a <1bC.a+b>2√ab D.a+1a>b+1b答案:AD分析:应用作差法判断B、D,根据重要不等式判断A,由不等式性质判断C.A:由重要不等式知:a2+b2≥2ab,而−1<a<b<0,故a2+b2>2ab,正确;B:由−1<a<b<0,则1a −1b=b−aab>0,故1a>1b,错误;C:由−1<a<b<0,则a+b<0<2√ab,错误;D :(a +1a )−(b +1b )=a −b +1a −1b =a −b +b−a ab=(a −b)(ab−1ab)>0,故a +1a >b +1b ,正确.故选:AD10、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4 答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确;由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4, 当且仅当{ab =1ab a b =b a ,即a =b =1时取等号,故D 正确. 故选:ACD.11、十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a 、b 、c ∈R ,则下列命题正确的是( )A .若a >b >0,则ac 2>bc 2B .若a <b <0,则a +1b <b +1a C .若a <b <c <0,则ba <b+ca+c D .若a >0,b >0,则b 2a +a 2b≥a +b答案:BCD解析:取c =0可判断A 选项的正误;利用作差法可判断BCD 选项的正误. 对于A 选项,当c =0时,则ac 2=bc 2,A 选项错误;对于B 选项, (a +1b )−(b +1a )=(a −b )+(1b −1a )=(a −b )+a−b ab=(a −b )(1+1ab ),∵a <b <0,a −b <0,ab >0,∴1+1ab >0,则(a +1b )−(b +1a )<0,B 选项正确; 对于C 选项,ba −b+ca+c =b (a+c )−a (b+c )a (a+c )=c (b−a )a (a+c ),∵a <b <c <0,则b −a >0,a +c <0,则ba −b+ca+c <0,C 选项正确; 对于D 选项,(b 2a +a 2b)−(a +b )=b 2−a 2a+a 2−b 2b=(b 2−a 2)(1a −1b )=(b 2−a 2)(b−a )ab=(b+a )(b−a )2ab,∵a >0,b >0,则(b 2a +a 2b)−(a +b )=(b+a )(b−a )2ab≥0,D 选项正确.故选:BCD.小提示:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便. 填空题 12、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)13、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值. 设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32, 因此,z =x +2y 的最小值是32.所以答案是:32.14、已知集合A={x|−5<−2x+3<7},B={x|x2−(3a−1)x+2a2−a<0} ,若B⊆A,则实数a的取值范围为______.答案:[−12,5 2 ]分析:分类讨论解不等式,再利用集合的包含关系列式求解作答.依题意,B={x|(x−a)(x−2a+1)<0},当a<2a−1,即a>1时,B=(a,2a−1),当a=2a−1,即a=1时,B=∅,当a>2a−1,即a<1时,B=(2a−1,a),又A=(−2,4),B⊆A,于是得{a>12a−1≤4,解得1<a≤52,或{a<12a−1≥−2,解得−12≤a<1,而∅⊆A,则a=1,综上得:−12≤a≤52,所以实数a的取值范围为[−12,52 ].所以答案是:[−12,5 2 ]解答题15、实数a、b满足-3≤a+b≤2,-1≤a-b≤4.(1)求实数a、b的取值范围;(2)求3a-2b的取值范围.答案:(1)a∈[-2,3],b∈[-72,3 2 ](2)[-4,11]分析:(1)由a=12[(a+b)+(a-b)],b=12[(a+b)-(a-b)]根据不等式的性质计算可得;(2)求出3a-2b=12(a+b)+52(a-b),再利用不等式的性质得解.(1)解:由-3≤a+b≤2,-1≤a-b≤4,则a=12[(a+b)+(a-b)],所以-4≤(a+b)+(a-b)≤6,所以-2≤12[(a+b)+(a-b)]≤3,即-2≤a≤3,即实数a的取值范围为[-2,3].因为b=12[(a+b)-(a-b)],由-1≤a-b≤4,所以-4≤b -a ≤1,所以-7≤(a +b )-(a -b)≤3, 所以-72≤12[(a +b )-(a -b)]≤32,∴-72≤b ≤32,即实数b 的取值范围为[-72,32].(2)解:设3a -2b =m (a +b )+n(a -b)=(m +n )a +(m -n)b , 则{m +n =3m -n =-2 ,解得{m =12n =52 ,∴3a -2b =12(a +b )+52(a -b ), ∵-3≤a +b ≤2,-1≤a -b ≤4. ∴-32≤12(a +b )≤1,-52≤52(a -b )≤10, ∴-4≤3a -2b ≤11,即3a -2b 的取值范围为[-4,11].。
(2019)新版高中数学必修一第二章 一元二次函数、方程和不等式 等式与不等式性质

(2019新版)高中数学人教A 版必修一 第二章 一元二次函数、方程和不等式2.1 等式与不等式性质不等式的概念我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系.含有这些不等号的式子叫做不等式. 考点一:列不等式例1:完成一项装修工程,请木工共需付工资每人500无,请瓦工共需付工资每人400元,现有工人工资预算20 000元,设木工x 人,瓦工y 人,则工人满足的关系式是( ) A .5x +4y <200 B .5x +4y ≥200 C .5x +4y =200D .5x +4y ≤200解析:选D 据题意知,500x +400y ≤20 000,即5x +4y ≤200,故选D.练习:某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式(组)表示就是( ) A.⎩⎪⎨⎪⎧x ≥95y ≥380z >45 B.⎩⎪⎨⎪⎧ x ≥95y >380z ≥45 C.⎩⎪⎨⎪⎧x >95y >380z >45D .⎩⎪⎨⎪⎧x ≥95y >380z >45解析:选D 由题中x 不低于95即x ≥95,y 高于380即y >380,z 超过45即z >45. 作业:1.用不等式(组)表示下列问题中的不等关系: (1)限速80 km/h 的路标; (2)桥头上限重10 吨的标志;(3)某酸奶的质量检查规定,酸奶中脂肪的含量f 应不多于2.5%,蛋白质的含量p 不少于2.3%.解:(1)设汽车行驶的速度为v km/h ,则v ≤80. (2)设汽车的重量为ω吨,则ω≤10.(3)⎩⎨⎧f ≤2.5%,p ≥2.3%.问题1:怎样判断两个实数a、b的大小?提示:若a-b是正数,则a>b;若a-b是负数,则a<b;若a-b是零,则a=b. 问题2:你能否由问题1得出两个实数比较大小的方法?提示:能.通过两个实数作差,判断差的正负比较大小.比较两个实数a、b大小的依据考点二:比较两数(式)的大小例2:比较下列各组中两个代数式的大小:(1)x2+3与2x;(2)已知a,b为正数,且a≠b,比较a3+b3与a2b+ab2的大小.x-12+2≥2>0,∴x2+3>2x.解:(1)(x2+3)-2x=x2-2x+3=()(2)(a3+b3)-(a2b+ab2)=a3+b3-a2b-ab2=a2(a-b)-b2(a-b)=(a-b)(a2-b2)=(a-b)2(a+b),∵a>0,b>0,且a≠b,∴(a-b)2>0,a+b>0.∴(a3+b3)-(a2b+ab2)>0,即a3+b3>a2b+ab2.练习:(1)若x≠-2且y≠1,则M=x2+y2+4x-2y的值与-5的大小关系是() A.M>-5 B.M<-5C.M≥-5 D.M≤-5解析:选A M-(-5)=x2+y2+4x-2y+5=(x+2)2+(y-1)2,∵x≠-2,y≠1,∴(x+2)2>0,(y-1)2>0,因此(x+2)2+(y-1)2>0.故M>-5. (2)比较x3+6x与x2+6的大小.解:(x3+6x)-(x2+6)=x3-x2+6x-6=x2(x-1)+6(x-1)=(x-1)(x2+6)∵x2+6>0.∴当x>1时,(x-1)(x2+6)>0,即x3+6x>x2+6.当x=1时,(x-1)(x2+6)=0,即x3+6x=x2+6.当x<1时,(x-1)(x2+6)<0,即x3+6x<x2+6.作业:2.(1)如果a >b ,那么c -2a 与c -2b 中较大的是________. 解析:c -2a -(c -2b)=2b -2a =2(b -a)<0. 答案:c -2b(2)已知a =x 3+y 3,b =x 2y+xy 2,其中x ,y 均为正数,则a ,b 的大小关系为 . 解:a =x 3+y 3,b =x 2y+xy 2,则a ﹣b =x 3+y 3﹣x 2y ﹣xy 2=x 2(x ﹣y )﹣y 2(x ﹣y )=(x ﹣y )(x 2﹣y 2)=(x ﹣y )2(x+y ),x ,y 均为正数,所以(x ﹣y )2≥0,x+y >0,所以(x ﹣y )2(x+y )≥0,即a ﹣b ≥0, 所以a ≥b .故答案为:a ≥b .例3:已知:﹣1<b <0,a <0,那么下列不等式成立的是( ) A .a >ab >ab 2B .ab 2>ab >aC .ab >a >ab 2D .ab >ab 2>a解:∵﹣1<b <0,a <0,∴ab >0,b <0<1.b 2<1.∴ab ﹣ab 2=ab (1﹣b )>0,ab 2﹣a =a (b 2﹣1)>0.∴ab >ab 2>a .故选:D .练习:已知实数a 、x 满足x <a <0,则a 2、x 2、ax 中的最大数为 .解:已知实数a 、x 满足x <a <0,由不等式的性质可得:x 2>a 2>0,ax >a 2>0,x 2>ax >0,所以x 2>ax >a 2>0,则a 2、x 2、ax 中的最大数为x 2,故答案为:x 2. 作业:3. 若-1<a <b <0,试比较1a ,1b ,a 2,b 2的大小.解:∵-1<a <b <0,取11,,23a b =-=-则2211112,3,,.49a b a b =-=-== ∴a 2>b 2>1a >1b .考点三:不等式的性质 (1)对称性:a>b ⇔b<a ; (2)传递性:a>b ,b>c ⇒a>c ; (3)可加性:a>b ⇒a +c>b +c. (4)可乘性:⎭⎬⎫a>b c>0⇒ac>bc ;⎭⎬⎫a>b c<0⇒ac<bc ; (5)同向可加性:⎭⎬⎫a>b c>d ⇒a +c>b +d ;(6)同向同正可乘性:⎭⎬⎫a>b>0c>d>0⇒ac>bd ; (7)正数乘方性:a>b>0⇒a n >b n (n ∈N ,n ≥2).例4:用不等号“>”或“<”填空:(1)如果a>b,c<d,那么a﹣c b﹣d;(2)如果a>b>0,c<d<0,那么ac bd;(3)如果a>b>0,那么;(4)如果a>b>c>0.那么.解:(1))如果a>b,c<d,那么a﹣c>b﹣d;(2)如果a>b>0,c<d<0,那么ac<bd;(3)如果a>b>0,那么<;(4)如果a>b>c>0.那么<.故答案为:>,<,<,<.练习:若a,b,c∈R且a>b,则下列不等式中一定成立的是()A.ac>bc B.(a﹣b)c2>0 C.D.﹣2a<﹣2b 解:∵a,b,c∈R且a>b,∴取c=0,可排除A,B;取a=1,b=﹣1可排除C.由不等式的性质知当a>b时,﹣2a<﹣2b,故D正确.故选:D.作业:4.已知:a,b,c,d∈R,则下列命题中必成立的是()A.若a>b,c>b,则a>cB.若a>-b,则c-a<c+bC.若a>b,c<d,则ac>bdD.若a2>b2,则-a<-b解析:选B选项A,若a=4,b=2,c=5,显然不成立,选项C不满足倒数不等式的条件,如a>b>0,c<0<d时,不成立;选项D只有a>b>0时才可以.否则如a=-1,b =0时不成立,故选B.例5:(多选)对于任意实数a,b,c,d,则下列命题正确的是()A.若ac2>bc2,则a>b B.若a>b,c>d,则a+c>b+dC.若a>b,c>d,则ac>bd D.若a>b,则>解:若ac2>bc2,则a>b,A对,由不等式同向可加性,若a >b ,c >d ,则a +c >b +d ,B 对, 当令a =2,b =1,c =﹣1,d =﹣2,则ac =bd ,C 错, 令a =﹣1,b =﹣2,则,D 错.故选:AB .练习:(多选)若b <a <0列结论正确的是( ) A .a 2<b 2 B .ab <b 2 C .()b <()aD .+>2解:A .∵b <a <0,∴﹣b >﹣a >0,∴b 2>a 2,正确; B .∵b <a <0,∴b 2>ab ,正确; C .∵,b <a ,∴,因此C 不正确;D .∵b <a <0,∴,,∴,正确.故选:ABD . 作业:5. (多选)若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 都成立的是( ) A .ab ≤1B .+C .a 2+b 2≥2D .a 3+b 3≥3解:根据a >0,b >0,a +b =2,取a =b =1,则BD 不成立,再取31,,22a b ==验证,故AC 正确.故选:AC .考点四:利用不等式的性质求范围例6:已知2<a <3.﹣2<b <﹣1,求2a+b 的取值范围. 解:∵2<a <3.﹣2<b <﹣1,∴4<2a <6,∴2<2a+b <5. 练习:设-1<a <1,﹣3<b <2,求23ba -的取值范围. 解析: -2<2a <2, 21,33b -<<21,33b -<-<82 3.33ba -<-< 作业:6.已知1<a <4,2<b <8.试求2a +3b 与a -b 的取值范围. 解:∵1<a <4,2<b <8,∴2<2a <8,6<3b <24∴8<2a +3b <32.∵2<b <8,∴-8<-b <-2.又∵1<a <4,∴1+(-8)<a +(-b)<4+(-2),即-7<a -b <2.故2a +3b 的取值范围是8<2a +3b <32,a -b 的取值范围是-7<a -b <2考点五:利用不等式的性质证明例7:已知a >b >0,c <d <0,e <0,求证:e a -c >eb -d.证明: ∵c <d <0,∴-c >-d >0,又∵a >b >0,∴a +(-c)>b +(-d)>0, 即a -c >b -d >0,∴0<1a -c <1b -d ,又∵e <0,∴e a -c >eb -d .练习:已知a >b ,m >n ,p >0,求证:n -ap <m -bp.证明:∵a >b ,又p >0,∴ap >bp.∴-ap <-bp ,又m >n ,即n <m. ∴n -ap <m -bp. 作业:7.(1)a <b <0,求证:b a <ab ;(2)已知a >b ,1a <1b,求证:ab >0.证明:(1)由于b a -a b =b 2-a 2ab =(b +a )(b -a )ab,∵a <b <0,∴b +a <0,b -a >0,ab >0,∴(b +a )(b -a )ab <0,故b a <ab.(2)∵1a <1b ,∴1a -1b <0,即b -a ab<0,而a >b ,∴b -a <0,∴ab >0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新教材人教A版高一数学必修一知识点总结第二章一元二次函数、方程和不等式【考纲要求】序号考点课标要求1等式与不等式的性质①梳理等式的性质了解②理解不等式的概念理解③掌握不等式的性质掌握2基本不等式①掌握基本不等式掌握②结合具体实例,能用基本不等式解决简单的最大值或最小值问题理解3二次函数与一元二次方程、不等式①会结合一元二次函数的图象,判断一元二次方程实根的存在性及实根的个数,了解函数的零点与方程根的关系了解②经历从实际情境中抽象出一元二次不等式的过程,了解一元二次不等式的现实意义了解③能借助一元二次函数求解一元二次不等式,并能用集合表示一元二次不等式的解集掌握④借助一元二次函数的图象,了解一元二次不等式与相应函数、方程的联系了解2.1 等式性质与不等式性质知识点总结1.等式的基本性质性质内容对称性传递性可加性可乘性可除性2.不等式的基本性质性质内容对称性传递性可加性可乘性同向可加性同向同正可乘性正数乘方性3.比较两个实数大小(1)数轴上任意两点中,右边点对应的实数比左边点对应的实数大(2)对于任意两个实数和,①②③4.作差比较法一般步骤(1)作差:对要比较大小的两个数(或式子)作差(2)变形:对差进行变形,方法有因式分解、配方、通分、分母或分子有理化等(3)判断差的符号:结合变形的结果及题设条件判断差的符号(4)作出结论5.不等式的推广.(1)几个同向不等式的两边分别相加,所得到的不等式与原不等式同向,即若,,…,,则.(2)几个两边都是正数的同向不等式,将它们的两边分别相乘,所得到的不等式与原不等式同向,即若,,…,,则.(3).(5).(6).考法突破【知识点一等式的基本性质】例1对任意实数,给出下列命题:①“”是“”充要条件;②“是无理数”是“是无理数”的充要条件;③“”是“”的充分条件;④“”是“”的必要条件.其中真命题的序号是__________.答案②④变式训练1给出下列命题①若,则;②方程有两个实根;③对于实数,若,则;④若,则;其中真命题是__________.【知识点二不等式的基本性质】例1若,则()ABCD变式训练1 已知是实数,给出下列四个命题:①若,则;②若,且,则;③若,则;④若,则其中正确的命题的序号是( ) A①④B①②④C③④【知识点三比较大小】例1已知,,则和的大小关系正确的是()ABCD变式训练1设,,,则有( )ABCD2.2 基本不等式知识点总结如果,那么,当且仅当时,等号成立。
叫做正数的算术平均数,叫做正数的几何平均数。
2.几何意义.如图,是圆的直径,点是上一点,,,过点作垂直的弦,连接,,则,,显然有,即在圆中半径长不小于半弦长.3.基本不等式常用变形结论基本不等式常用结论等号成立条件与同号,当且仅当时取等号,当且仅当时取等号,当且仅当时取等号,当且仅当时取等号,当且仅当时取等号4.最值定理已知都是正数,则(1)如果等于定值,那么当时,和有最小值,即两个正数的积为定值时,它们的(2)如果等于定值,那么当时,积有最大值,即两个正数的和为定值时,它们的积有最大值(和定积最大)。
(3)取得最值条件简单的说就是:一正,二定,三相等(当且仅当时取等号)5.利用基本不等式求最值需注意的问题:(1)各数(或式)均为正.(2)和或积为定值.(3)判断等号能否成立,“一正、二定、三相等”这三个条件缺一不可.(4)当多次使用基本不等式时,一定要注意每次是否能保证等号成立,并且要注意取等号的条件的一致性.考法突破【知识点一利用基本不等式比较大小】例1已知,,且,则,,,中最小的是( )ABCD例2 若,且,,则与的大小关系是()ABCD例3 已知,,,则()ABCD【知识点二用基本不等式证明不等式】例1 已知,求证:.变式训练1已知都是正数,求证:.变式训练2 已知,求证:.【知识点三积定和最小】例1若,则的最小值为()A2BC4D8例2已知,则的最小值是()ABCD【知识点四和定积最大】例1函数的最大值是()A. B.C. D.变式训练1已知为正实数,且,求的最大值.【知识点五分离常数】例1若,则有()A.最大值B.最小值C.最大值D.最小值【知识点六“1”的代换】例1已知,则的最小值是( ) A.B.C.4.5D.变式训练1 已知且,则的最小值为()A.C.D.【知识点七分式化简】例1函数的最大值为( )A.B.C.D.变式训练1已知均为正实数,且,则的最大值为__________.答案.【知识点八利用基本不等式解决实际应用问题】例1某轮船公司的一艘轮船每小时花费的燃料费与轮船航行速度的平方成正比,比例系数为.轮船的最大速度为海里/小时.当船速为海里/小时时,它的燃料费是每小时元,其余航行运作费用(不论速度如何)总计是每小时元.假定运行过程中轮船以速度海里/小时匀速航行.(1)求的值;(2)求该轮船航行海里的总费用(燃料费+航行运作费用)的最小值.答案(1)值为,(2)该轮船航行海里的总费用W的最小值为(元).变式训练1某工厂生产的某种产品,当年产量在吨至吨之间时,年生产总成本(万元)与年产量(吨)之间的关系可近似地表示成,问年产量为多少时,每吨的平均成本最低?并求出该最低成本.答案。
年产量为吨时,每吨的平均成本最低,最低为万元.2.3 二次函数与一元二次方程、不等式知识点总结1.一元二次不等式.定义:我们把只含有一个未知数,并且未知数的最高次数是的不等式,称为一元二次不等式. 一般式:或,其中,,为常数,.解集:使一元二次不等式成立的的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.2.二次函数与一元二次方程、不等式.一元二次不等式的解法:将原不等式化成的形式,计算的值,,方程有两个不相等的实数根,解得,,原不等式的解集为或,,方程有两个相等的实数根,解得,原不等式的解集为,,方程没有实数根,原不等式的解集为.3.二次函数与一元二次方程、不等式的解得对应关系.的图象的根有两个不相等的实根,,且有两个相等的实数根,没有实数根的解集或的解集4.解不含参数的一元二次不等式的步骤.(1)通过对不等式的变形,使不等式右侧为,使二次系数为正. (2)对不等式左侧因式分解,若不易分解,则计算对应方程的判别式. (3)求出相应的一元二次方程的根或根据判别式说明方程有无实根.(4)根据一元二次方程根的情况画出对应的二次函数的图象的草图.(5)根据图象写出不等式的解集.记忆口诀:设相应的二次函数的图象开口向上,并与轴相交,则有口诀:大于取两边,小于取中间.5.分式不等式的解法.(1)解分式不等式的思路——转化为整式不等式.(2)分式不等式的标准形式:或,化分式不等式为标准形式的方法,移项、通分、右边化为,左边化为的形式.(3)分式不等式的同解变形.6.含有参数的一元二次不等式的讨论原则.(1)不等式对应的方程有实根只是两根大小由参数的范围决定,故按根的大小讨论参数.(2)若二次项系数含有参数,需对二次项系数等于与不等于讨论,对于不为的情况再按大于或小于讨论.(3)若不等式对应的一元二次方程根的情况不确定,需对其判别式进行讨论.7.已知不等式的解集求参数的解题思路.已知不等式的解集求参数的问题实质是考查三个“二次”间的关系,其解题的一般思路:(1)根据所给的解集确定相应方程的根和二次项系数的符号.(2)由根与系数的关系,或将根直接代入方程,求出参数的值或参数之间的关系,进而求解.8.一元二次不等式的恒成立问题的解法.(1)当未说明不等式为一元二次不等式时,应分二次项系数等于零和不等于零两种情况讨论.(2)一元二次不等式恒成立问题的常见类型:设,①在上恒成立,②在上恒成立.(3)分离参数,将恒成立问题转化为求最值问题,即:恒成立;恒成立.9.用一元二次不等式求解实际应用题的一般程序.(1)审题:弄清题意,分析条件和结论,理顺数量关系.(2)建模:建立一元二次不等式模型.(3)求解:解一元二次不等式.(4)还原:把数学结论还原为实际问题.易错提醒:只有一元二次不等式才有相应判别式的研究,如果二次项系数带有参数,因此可能不是一元二次型,解答此类题目最容易出错的地方就是直接默认函数为一元二次型而采用判别式处理.考法突破【知识点一解不含参数的一元二次不等式】例1已知集合,,则( )ABCD变式训练1设集合,则集合的真子集个数为( )A.B.C.D.【知识点二解含参数的一元二次不等式】例1设集合.若,则实数的取值范围为()A.B.C.D.或变式训练1已知集合,若,则实数的取值范围为()A. B.C. D.【知识点三三个“二次”之间的关系】例1如果不等式的解集是或,求关于的不等式的解集.答案变式训练1已知不等式的解集为,求不等式的解集.答案或【知识点四分式不等式的解法】例1不等式的解集是__________.答案变式训练1解不等式.答案或例2解关于的不等式.变式训练2若,解关于的不等式.答案。
当,原不等式的解集为.当时,原不等式的解集为.当时,原不等式的解集为.【知识点五高次不等式的解法】例1解下列不等式(1).(2).变式训练1 解下列不等式:(1);(2).答案(1)或或;(2)【知识点六不等式的恒成立问题】例1.当时,恒成立,则实数的取值范围是()A. B.C. D.变式训练1 对任意的,不等式恒成立,则实数的取值范围是()A.B.C.D.【知识点七一元二次不等式的实际应用】例1为配制一种药液,进行了三次稀释,先在体积为的桶中盛满纯药液,第一次将桶中药液倒出后用水补满,第二次倒出后用水补满,第三次倒出后用水补满.(1)求第一次稀释后桶中药液的含量;(2)若第二次稀释后桶中药液含量不超过容积的,求的取值范围.答案(1);(2).变式训练1 经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量(千辆)与汽车的平均速度之间的函数关系为.(1)在该时段内,当汽车的平均速度v为多少时,车流量最大?最大车流量为多少?(精确到千辆)(2)若要求在该时段内车流量超过千辆,则汽车的平均速度应在什么范围内?答案(1)时,(千辆);(2)汽车的平均速度应大于且小于。