高中物理 静态平衡 受力分析
物体的平衡与受力分析知识点总结

物体的平衡与受力分析知识点总结一、引言物体的平衡与受力分析是物理学中重要的基础概念,对理解和解决各种物理问题具有重要意义。
本文将对物体的平衡与受力分析的相关知识进行总结,包括平衡的条件、静力学平衡和受力分析等内容。
二、平衡的条件物体的平衡是指物体处于静止或匀速直线运动状态下,不受外力作用或受到的外力合力为零的状态。
要使物体达到平衡,需要满足以下条件:1. 力的平衡:物体所受合力为零。
即∑F = 0,其中∑F表示所有作用在物体上的力的矢量和。
2. 力矩的平衡:物体所受合力矩为零。
即∑M = 0,其中∑M表示所有作用在物体上的力矩的矢量和。
三、静力学平衡静力学平衡是指物体处于静止状态下的平衡。
在静力学平衡中,物体受到的合力和合力矩均为零。
1. 物体受力平衡的条件:a. 重力平衡:物体所受重力和支持力相等,即mg = N,其中m为物体的质量,g为重力加速度,N为支持力。
b. 摩擦力平衡:摩擦力是物体与支撑面接触时产生的一种力,当物体受到的摩擦力与施加在物体上的外力相等时,物体达到平衡。
2. 物体受力矩平衡的条件:a. 力矩平衡定律:在物体达到平衡的条件下,物体所受合力矩为零。
这意味着物体上作用的力矩和逆时针方向的力矩相等。
b. 杠杆原理:根据杠杆原理,当物体在杠杆上达到平衡时,物体所受的力矩为零。
杠杆原理可以用于解决一些复杂的力矩平衡问题。
四、受力分析受力分析是解决与物体平衡和运动相关的问题的重要方法,通过分析物体所受的各个外力及其作用方向和大小,可以确定物体所处的状态和运动情况。
1. 重力:地球对物体的吸引力,作用方向始终指向地心。
2. 弹力:当物体受到弹性物体的压缩或伸展时产生的力,作用方向与物体的接触面垂直,指向物体表面。
3. 支持力:支持物体的力,作用方向与物体接触面垂直,指向物体表面。
4. 摩擦力:物体相对于支撑面的运动方向产生的力,分为静摩擦力和动摩擦力。
5. 合力:作用在物体上的多个力的矢量和,用于判断物体的受力平衡情况。
「核心物理2」高中物理之共点力静态平衡核心知识讲解附例题讲解

「核心物理2」高中物理之共点力静态平衡核心知识讲解附例
题讲解
共点力静态平衡
1.试题模型:
物体处于静止或者始终处于匀速直线运动,各个力的大小及方向都不改变,要求求出某个力的大小及其他物理量。
2.解题思路:
①首先是受力分析;
②然后正交分解(一般分为水平和竖直两个方向,或分解为运动方向和垂直运动方向);
③两个方向单独列等式,例如水平和竖直分解时,第一个等式竖直向上的合力等于竖直向下的合力,第二个等式水平向左的合力等于水平向右的合力;
④通过解方程组的形式求出未知力的大小。
3.用到的知识:
受力分析、力的分解、力的平衡。
4.考题猜想:
题目中的物体处于静止或匀速直线运动状态,要求求某个力的大小或者通过求力之间的夹角以进一步求其他物理量。
物理的静态平衡教案高中

物理的静态平衡教案高中
课时:1节课
教学目标:
1. 了解静态平衡的概念;
2. 掌握如何分析静态平衡的条件;
3. 能够应用静态平衡的原理解决相关问题。
教学重点:静态平衡的原理及应用
教学难点:静态平衡条件的分析
教学准备:
1. 实验仪器:各种重物、杠杆、测力计等;
2. 教学课件:静态平衡的示意图及相关理论知识;
3. 多媒体设备。
教学步骤:
一、导入
1. 讲解什么是静态平衡,引导学生思考平衡的概念;
2. 展示实验仪器,激发学生的学习兴趣。
二、理论讲解
1. 讲解静态平衡的条件:受力平衡和力矩平衡;
2. 示范如何分析受力平衡和力矩平衡,引导学生掌握分析方法;
3. 结合实际例题,讲解如何应用静态平衡的原理解决问题。
三、实验操作
1. 给学生一些实验任务,让他们用实验仪器验证静态平衡的原理;
2. 辅导学生操作实验仪器,指导他们记录数据和分析结果。
四、讨论交流
1. 总结实验结果,引导学生思考现象背后的原理;
2. 鼓励学生提出问题并进行探讨,促进学习的深入。
五、作业布置
1. 布置相关练习题,要求学生应用所学知识解决问题;
2. 鼓励学生思考如何将静态平衡的原理应用到实际生活中。
教学反思:
通过本节课的教学,学生应该对静态平衡有了更深入的理解,能够分析静态平衡的条件并运用到实际问题中。
同时,教师应该及时发现学生的问题,并针对性地进行指导,确保学生能够真正掌握所学知识。
共点力作用下的平衡专题:三种受力分析方法 导学案-高一上学期物理人教版(2019)必修第一册

高一上物理共点力作用下的平衡专题及3种受力分析方法姓名:___________ 班级:___________一、物体受两个力平衡(即二力平衡),这两个力大小相等,方向相反。
二、如果物体受三个力平衡:(1)其中两个力的合力与第三个力等大反向则平衡。
(合成法)(分解法)(2)也可以分解第三个力,让被分解的这两个力与其余两个力分别抵消,则三个力就平衡。
(3)如果三个力首位依次相连可以组成一个封闭的三角形,则这三个力也是合力为零,即平衡。
这个方法称为三角形法,这个方法是最优的求静态平衡和动态平衡的方法。
(正交分解)(4)如果物体受三个或三个以上的力平衡,一般用正交分解法,建立直角坐标系时,尽量使更多的力落在坐标轴上,让后把不在坐标轴上的力分解到坐标轴上,如果最后x轴,y轴合力都分别为零,则物体整体合力为零,即平衡。
正交分解不用按力的效果分解。
三、静态平衡:1.(多选)如图所示,竖直放置的轻弹簧一端固定在地面上,另一端与斜面体P相连,P与斜放在其上固定的挡板MN接触且处于静止状态,则斜面体P此刻受到的外力的个数有可能是()A.2个B.3个C.4个D.5个2.(斜面上的物体所受摩擦力的问题要特别注意多解性)如图,斜面A放在水平地面上.物块B放在斜面上,有一水平力F作用在B上时,A、B均保持静止.A受到水平地面的静摩擦力为f1,B受到A的静摩擦力为f2,现使F逐渐增大,但仍使A、B处于静止状态,则()A.f1一定增大B.f1、f2都不一定增大C.f1、f2均增大D.f2一定增大3.一质量为m的物块恰好静止在倾角为θ的斜面上。
现对物块施加一个竖直向下的恒力F,如图所示。
则物块()A.仍处于静止状态B.沿斜面加速下滑C.受到的摩擦力不变D.受到的合外力增大4.如图所示,光滑半球形容器固定在水平面上,O为球心,一质量为m的小滑块,在水平力F的作用下静止于P点。
设滑块所受支持力为F N,OP与水平方向的夹角为θ.下列关系正确的是()A.F=mgsinθB.F=mgcosθC.F N=D.F N=mgtanθ5.如图,滑块A置于水平地面上,滑块B在一水平力作用下紧靠滑块A(A、B接触面竖直),此时A恰好不滑动,B刚好不下滑。
人教版高中物理必修1课件:(提高11)平衡问题的受力分析(一)(共25张PPT)

知识讲解
2.多力平衡的基本解题方法:正交分解法 利用正交分解方法解体的一般步骤:(1)明确研究对象;(2)进行受力分析;(3) 建立直角坐标系,建立坐标系的原则是让尽可能多的力落在坐标轴上,将不在坐标轴上 的力正交分解;(4)x方向,y方向分别列平衡方程求解.
特别提醒:求解平衡问题关键在于对物体正确的受力分析,不能多力,也不能少力, 对于三力平衡,如果是特殊角度,一般采用力的合成、分解法,对于非特殊角, 可采用相似三角形法求解,对于多力平衡,一般采用正交分解法.
A.3个
B.4个 C.5个
D.2个
例题讲解
例2、如图所示,物体A靠在竖直墙面上,在力F作用下,A、B保持静止.物体B的受力
个数为( )C
A.2 B.3
C.4 D.5
知识讲解
二、 共点力作用下的物体的平衡
1.共点力:几个力如果作用在物体的
,或者它们的作用线
个力叫共点力.
2.平衡状态:物体的平衡状态是指物体
例题讲解
例3、如图所示,猎人非法猎猴,用两根轻绳将猴子悬于空中,猴子处于静止状态.以下 相关说法正确的是( )AC
A.猴子受到三个力的作用 B.绳拉猴子的力和猴子拉绳的力相互平衡 C.地球对猴子的引力与猴子对地球的引力是一对作用力和反作用力 D.人将绳子拉得越紧,猴子受到的合力越大
例题讲解
例4、滑滑梯是小孩很喜欢的娱乐活动.如图所示,一个小孩正在滑梯上匀速下滑,则 ( )CD
.
3.平衡条件:共点力的平衡条件:F合=0或者
,这几
知识讲解
4.共点力平衡的几条重要推论 (1)二力平衡:如果物体在两个共点力的作用下处于平衡状态,这两个力必定大小相 等,方向相反. (2)三力平衡:如果物体在三个共点力的作用下处于平衡状态,其中任意两个力的合 力一定与第三个力大小相等,方向相反(共点的三力平衡时,表示三力的矢量可以形成 封闭的矢量三角形) (3)多力平衡:如果物体受多个力作用处于平衡状态,其中任何一个力与其余力的合 力大小相等,方向相反.
高一物理静力学解析知识点

高一物理静力学解析知识点引言:静力学是物理学的一个重要分支,研究物体在静止状态下的力学问题。
在高一物理学习中,学生首次接触静力学,掌握静力学的基本知识对于今后学习物理和理解力学世界非常重要。
本文将介绍高一物理静力学解析知识点,为学生提供一些帮助和指导。
一、力的平衡物体在静止状态下,各个力之间必须达到平衡。
根据牛顿第一定律,物体受到的合力为零时,物体将保持静止。
力的平衡可以通过力的合成和分解来解析。
1.1 力的合成力的合成是指将多个力合成为一个力。
利用力的合成可以求得合力的大小和方向。
根据平行四边形法则,两个大小和方向不同的力可以合成一个平行四边形的对角线,对角线的长度就是合力的大小。
1.2 力的分解力的分解是指将一个力分解为多个力。
利用力的分解可以将力按照指定的方向拆解,使得力的分解方向与其他力相互垂直,便于计算。
常见的力的分解方法有平行分解和垂直分解。
二、力的条件物体静止的时候,除了力的平衡外,还需要满足力的条件。
2.1 合力为零当物体受到的合力为零时,物体处于力的平衡状态。
合力为零的情况有两种,一种是力的合成得到的合力为零,另一种是受到的多个力方向相反,大小相等,合力为零。
2.2 相互作用力物体在静止状态下,与周围环境相互作用力相等。
根据牛顿第三定律,物体对其他物体的作用力与其他物体对它的作用力大小相等,方向相反。
三、杠杆原理杠杆是一个重要的物理学工具,在静力学中有广泛的应用。
杠杆原理可以帮助我们解决力的平衡问题,并且可以应用于杠杆平衡和杠杆原理两个方面。
3.1 杠杆的定义杠杆是一个刚性物体,可以围绕某一点旋转。
在杠杆上,有一个称为支点的点,支点的位置对于杠杆的平衡非常重要。
3.2 杠杆平衡杠杆平衡是指杠杆上两个力的大小和位置达到平衡状态。
当杠杆平衡时,力矩的总和为零。
力矩是指力对于旋转点的乘积,计算公式为力乘以力臂的长度。
3.3 杠杆原理杠杆原理是应用于力的平衡的一种方法,利用杠杆的力臂和力量来求解未知力的大小和位置。
高三物理静力学知识点总结

高三物理静力学知识点总结高三物理静力学是物理课程中的一大难点,也是考试中常常出现的一个重点。
它涉及到物体在静止状态下的加速度、力的平衡和分解、杠杆原理等内容。
本文将从三个方面总结高三物理静力学的知识点,希望对同学们的学习有所帮助。
一、力的平衡和分解在物理静力学中,力的平衡和分解是一个非常重要的概念。
力的平衡指的是物体所受的合力为零,即物体静止或匀速运动。
力的分解则是将一个力分解为两个分力的过程。
首先,我们来讨论力的平衡。
在静态平衡中,物体所受合力为零,这意味着物体所受的所有力的合力为零。
根据牛顿第一定律,物体将保持其静止状态或匀速直线运动状态。
当我们对物体进行力的分析时,可以通过合力的概念来判断物体是否处于平衡状态。
如果合力为零,则物体处于静态平衡状态;如果合力不为零,则物体处于非平衡状态。
其次,我们来谈一谈力的分解。
力的分解是将一个力分解为两个分力的过程。
常见的力的分解有水平力和垂直力的分解。
例如,当一个物体受到斜面的作用力时,我们可以将该力分解为与斜面垂直的分力和与斜面平行的分力。
通过力的分解,我们可以更好地理解物体所受力的方向和大小,有助于解决具体问题。
总结一下,力的平衡和分解是物理静力学中的重要概念。
力的平衡指的是物体所受的合力为零,力的分解可以将一个力分解为两个分力。
这些概念在解决物理问题中非常有用,同学们要理解并熟练应用。
二、杠杆原理杠杆原理是物理静力学中的又一重要知识点。
它描述了一个杠杆平衡的条件和原理。
首先,我们了解一下杠杆的定义。
杠杆是由一个可转动的支点和两个伸出的杆组成。
通常,我们使用杠杆来产生力的放大或方向改变。
而杠杆原理就是描述杠杆平衡的条件。
在静态平衡的杠杆中,根据杠杆原理,两个力矩之间的关系为:力矩1乘以力臂1等于力矩2乘以力臂2。
力矩是由力和力臂共同决定的,力臂是力作用点到支点的距离。
这一原理可以用公式表达为:力1 ×力臂1 = 力2 ×力臂2。
静态平衡和动态平衡的理论解析

静态平衡和动态平衡的理论解析平衡是物理学中一个重要的概念,它涉及到物体或系统的稳定状态。
在物理学中,我们通常将平衡分为静态平衡和动态平衡两种形式。
本文将对静态平衡和动态平衡的理论进行解析,探讨其原理和应用。
一、静态平衡的理论解析静态平衡是指物体在不受外力作用时保持静止的状态。
在静态平衡下,物体的合力和合力矩均为零。
合力为零意味着物体受力平衡,而合力矩为零意味着物体不会发生转动。
静态平衡的理论基础是牛顿第一定律,即物体在受力平衡的情况下保持静止。
根据牛顿第一定律,如果物体所受合力为零,则物体将保持原来的状态,即保持静止或匀速直线运动。
静态平衡的应用非常广泛。
例如,在建筑工程中,为了确保建筑物的稳定,需要对支撑结构进行静态平衡的分析。
另外,在机械设计中,静态平衡的原理也被广泛应用于各种机械装置的设计和优化。
二、动态平衡的理论解析动态平衡是指物体在运动过程中保持平衡的状态。
与静态平衡不同,动态平衡需要考虑物体的运动和惯性。
在动态平衡下,物体的合力和合力矩仍然为零,但同时还需要考虑物体的加速度和惯性力。
动态平衡的理论基础是牛顿第二定律,即物体的加速度与所受合力成正比,与物体的质量成反比。
根据牛顿第二定律,物体在受到合力作用时将发生加速度,而动态平衡要求物体的加速度为零。
动态平衡的应用也非常广泛。
例如,在车辆工程中,为了确保车辆在高速行驶时的稳定性,需要对车轮进行动态平衡的调整。
此外,在航空航天领域,动态平衡的原理也被用于飞机和火箭的设计和测试。
三、静态平衡和动态平衡的联系和区别静态平衡和动态平衡都是物体或系统保持平衡的状态,但在具体应用和理论基础上存在一些区别。
首先,静态平衡是指物体在不受外力作用时保持静止的状态,而动态平衡是指物体在运动过程中保持平衡的状态。
其次,静态平衡只考虑物体的受力平衡,而动态平衡需要考虑物体的运动和惯性。
最后,静态平衡的理论基础是牛顿第一定律,而动态平衡的理论基础是牛顿第二定律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
受力分析精讲(1) 动力学问题是指涉及力和运动关系的问题,在整个物理学中占有非常重要的地位,是高考的热门考点。我们需要熟练判断出研究对象的受力(重力、弹力、摩擦力)情况,对于物体受力动态变化的情况,我们还需要借助一些方法来分析判断。
一般来说,对于处于静态平衡的物体,我们一般采用力的合成与分解法,正交分解法以及整体法与隔离法去分析;对于动态平衡问题,我们多采用图解法、假设法、临界法,相似三角形法等方法去解决。
知识点1:弹力有无的判断 假设法:假设将与研究对象接触的物体解除接触,判断研究对象的运动状态是否发生改变,若运动状态不变,则此处不存在弹力;若运动状态改变,则此处一定存在弹力。
替换法:例如用细绳替换装置中的杆件,看能不能维持原来的力学状态,如果能维持,则说明这个杆提供的是拉力;否则,提供的是支持力。
状态法:由运动状态分析弹力,即物体的受力必须与物体的运动状态相符合,依据物体的运动状态,由二力平衡(或牛顿第二定律)列方程,求解物体间的弹力。
例1:如图所示,物体A靠在竖直墙壁上,在竖直向上的力F作用下,A、B一起匀速向上运动。则物体A和物体B的受力个数分别为 ( ) A.2,3 B.3,4 C.4,4 D.5,4 解析:弹力是摩擦力产生的必要条件,两接触面间存在摩擦力,则接触面间一定有弹力;但两接触面间存在弹力,却不一定存在摩擦力。要有摩擦力还要具备以下两个条件:①两接触面不光滑;②接触的两物体间存在相对运动或相对运动趋势。
例2:如图所示,质量分别为m、2m的物体A、B由轻质弹簧相连后放置在匀速上升的电梯内,当电梯钢索断裂的瞬间,物体B的受力个数为 ( ) A.2 B.3 C.4 D.1
例3:如图所示,甲、乙两弹簧秤长度相同,串联起来系住一个400N重物.两弹
簧秤量程不同:甲量程为500N,乙量程为1000N.这时两弹簧秤读数大小应当 ,两弹簧秤簧伸长长度相比较,应当是 .
例4:右图所示,为一轻质弹簧的弹力F和长度l大小的关系图象,试由图线确定: (1)弹簧的原长; (2)弹簧的劲度系数; (3)弹簧长为0.20m时弹力的大小.
知识点2:静摩擦力有无及方向大小的判断 1.静摩擦力产生的条件:接触面间有压力、接触面粗糙且有相对运动趋势. 2.平衡条件法 当相互接触的两物体处于静止状态或匀速直线运动状态时,可根据二力平衡条件判断静摩擦力的存在与否及其方向.
3.假设法:利用假设法进行判断时,可按以下思路进行分析:
例5:指明物体A在以下四种情况下所受的静摩擦力的方向。 (1)物体A静止于斜面上,如图甲所示。 (2)物体A受到水平拉力作用而仍静止在水平面上,如图乙所示。 (3)物体A放在车上,在刹车过程中A相对于车厢静止,如图丙所示。 (4)物体A在水平转台上,随转台一起匀速转动,如图丁所示。 解析:先假设接触面光滑,再分析在假设条件下物体是否发生相对滑动,若滑动,说明原来物体有相对运动趋势,且相对运动趋势与假设条件下的滑动方向相同;若不滑动,则说明原来物体就没有相对运动的趋势。
例6:如图所示,某粮库使用电动传输机向粮垛上输送麻袋包,现将一麻袋包放置在倾斜的传送带上,与传送带一起向上匀速运动,其间突遇故障,传送带减速直至停止。若上述匀速和减速过程中,麻袋包与传送带始终保持相对静止,下列说法正确的是 ( ) A.匀速运动时,麻袋包只受重力与支持力作用 B.匀速运动时,麻袋包受到的摩擦力一定沿传送带向上 C.减速运动时,麻袋包受到的摩擦力一定沿传送带向下 D.减速运动时,麻袋包受到的摩擦力一定沿传送带向上
4.摩擦力的计算 1.计算摩擦力时,应先判断是静摩擦力还是滑动摩擦力. 2.滑动摩擦力用F=μFN计算,其中FN为接触面受到的正压力(并不总是等于物体的重力).或用平衡条件计算,其大小只与垂直接触面方向的力有关,与物体的运动速度无关,与接触面积的大小无关。
3.静摩擦力的计算方法 (1)最大静摩擦力Ffmax的计算: 最大静摩擦力Ffmax只在刚好要发生相对滑动这一特定状态下才表现出来。比滑动摩擦力稍大些,通常认为二者相等,即F
fmax=μFN。
(2)一般静摩擦力的计算: 一般静摩擦力F的大小和方向都与产生相对运动趋势的力密切相关,跟接触面间相互挤压的弹力FN无直接关系,因此F具有大小、方向的可变性。对具体问题要结合研究对象的运动状态(静止、匀速运动或加速运动),利用平衡条件或牛顿运动定律列方程求解。
例7:如图所示,有三个相同的物体叠放在一起,置于粗糙的水平地面上,现用水平力F作用在B上,三个物体仍然静止,下列说法中正确的是( ) A. B对A有摩擦力作用 B. B受到A、C的摩擦力作用 C. B只受到C的摩擦力作用 D. 地面对C有摩擦力作用,大小等于F
例8:如图所示,质量为1kg的物体与地面间的动摩擦因数μ=0.2,从t=0开始以初速度v0沿水平地面向右滑行,同时受到一个水平向左的恒力F=1N的作用,g取10m/s2,向右为正方向,该物体受到的摩擦力Ff随时间变化的图象是(最大静摩擦力等于滑动摩擦力) ( )
例9:如图所示,三个粗细均匀完全相同的圆木A、B、C堆放在水平地面上,处于静止状态,每个圆木的质量为m,截面的半径为R,三个截面圆心连线构成的等腰三角形的顶角∠O1=120°,若在地面上的两个圆木刚好要滑动,设最大静摩擦力等于滑动摩擦力,不考虑圆木之间的摩擦,重力加速度为g,则 ( )
A.圆木间的弹力为12mg B.每个圆木对地面的压力为32mg C.地面上的每个圆木受到地面的作用力为32mg D.地面与圆木间的动摩擦因数为32
知识点3:物体的受力分析 1.明确研究对象,可以是单个物体(质点、结点),也可以多个物体组成的整体. 2.隔离分析:将研究对象从周围物体中隔离出来,分析周围有哪些物体对它施加了力. 3.按重力、弹力、摩擦力、其他力的顺序,依据各力的方向,画出各力的示意图. 受力分析时应注意的问题 ①区分研究对象所受的力与研究对象对其他物体的作用力。 ②对于分析出的物体受到的每一个力都应找出其施力物体,不能无中生有。 ③合力和分力不能重复考虑。 “性质力”和“效果力”不能重复分析。 ④区分内力和外力。 ⑤画受力示意图时,物体所受的各个力应画成共点力,力的作用点可沿力的作用线移动。
例10:如图所示,水平地面上的L形木板M上放着 小木块m,M与m间有一处于压缩状态的弹簧,整 个装置处于静止状态.试在图中画出长木板的受力 示意图.
知识点4:处理平衡问题常用的三种方法 一、力的合成、分解法 三个力的平衡问题,一般将任意两个力合成,则该合力与第三个力等大反向,或将其中某个力沿另外两个力的反方向分解,从而得到两对平衡力。合力与它的分力是等效替代关系,在进行有关力的计算时,如果已计入了合力,就不能再计入分力;如果已计入了分力,就不能再计入合力。
力的分解方法 (1)按力产生的作用效果进行分解:
(2)正交分解:将已知力按互相垂直的两个方向进行分解的方法。(高考热点) 力的合成与分解方法的选择 一般情况下,物体只受三个力,且三个力合力为零的情况下,合成分解法和正交分解法都能用,但力的效果分解法、合成法解题较为简单;在三角形中找几何关系,利用几何关系或三角形相似求解;而物体受三个以上力或三个力合力不为零的情况多用正交分解法,但也要视题目具体情况而变。
例11:如图所示,光滑斜面的倾角是30°,轻绳的一端通过两个滑轮与A相连,另一端固定于天花板上,不计轻绳与滑轮的摩擦.物块A的质量为m,不计滑轮的质量,挂上物块B后,当动滑轮两边轻绳的夹角为90°时,A、B恰能保持静止,则物块B的质量为 ( )
A. 22m B.2m C.m D.2m
二、正交分解法 将各力分解到x轴上和y轴上,运用两坐标轴上的合力等于零的条件Fx=0,Fy=0进行分析,多用于三个以上共点力作用下的物体的平衡。值得注意的是,对x、y方向选择时,(1)一般让某一个轴沿运动方向,(2)尽可能使较多的力落在x、y轴上,(3)被分解的力尽可能是已知力,不宜分解待求力。
例12:(多选)质量为m的木块在推力F作用下,在水平地面上做匀速直线运动,如图甲所示。已知木块
与地面间的动摩擦因数为μ,那么木块受到的滑动摩擦力为下列各值的哪个( )
A. μmg B. μ(mg+Fsinθ) C. μ(mg+Fcosθ) D. Fcosθ
例13:某压榨机的结构示意图如图所示,其中B为固定铰 链,若在A铰链处作用一垂直于壁的力F,则由于力F的作用, 使滑块C压紧物体D,设C与D光滑接触,杆的重力及滑块C 的重力不计,图中a=0.5 m,b=0.05 m,则物体D所受压力的大小与力F的比值为 ( )
A.4 B.5 C.10 D.1 三、整体法与隔离法 整体法是指将相互关联的各个物体看成一个整体,并对此整体进行分析的方法,整体法的优点在于只需要分析整个系统与外界的关系,避开了系统内部繁杂的相互作用。 隔离法是指将某物体从周围物体中隔离出来,单独分析该物体的方法,隔离法的优点在于能把系统内各个物体所处的状态、物体状态变化的原因以及物体间的相互作用关系表达清楚。 在物理问题中,当分析相互作用的两个或两个以上物体整体的受力情况及分析外力对系统的作用时,宜用整体法;而在分析系统内各物体(或一个物体各部分)间的相互作用时常用隔离法。对一些较复杂问题,通常需要多次选取研究对象,交替使用整体法和隔离法。 (1)若系统内各物体具有相同的加速度,且要求物体间的相互作用力时,一般先用整体法由牛顿第二定律求出系统的加速度(注意F=ma中质量m与研究对象对应),再根据题目要求,将其中的某个物体(受力数少的物体)进行隔离分析并求解它们之间的相互作用力,即“先整体求加速度,后隔离求内力”。 (2)若系统内各个物体加速度不相同,又不需要求系统内物体间的相互作用力时,可利用牛顿第二定律对系统整体列式(F合=m1a1+m2a2+…),减少未知的内力,简化数学运算。 (3)若系统内各个物体的加速度不相同,又需要知道物体间的相互作用力时,往往把物体从系统中隔离出来,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列出方程。
例14:(多选)如图所示,用一水平力F把A、B两个物体挤压在竖直的墙上,A、B两物体均处于静止状态,下列判断正确的是 ( ) A.B物体对A物体的静摩擦力方向向下 B.F增大时,A和墙之间的摩擦力也增大 C.若B的重力大于A的重力,则B受到的摩擦力大于墙对A的摩擦力 D.不论A、B的重力哪个大,B受到的摩擦力一定小于墙对A的摩擦力
例15:如图所示,若有4个完全相同的篮球,并排放在倾角为30°的固定斜面上,各篮球依次标为“2、0、1、4”,其中4号篮球被竖直板挡住,不计所有接触处的摩擦,则1号篮球跟4号篮球间与4号篮球跟挡板间的弹力之比为( )