曲面及其方程ppt课件
合集下载
九节二次曲面-PPT课件

单叶双曲面图形
z
o x
y
x y z 2 2 1 2 a b c
2
2
2
双叶双曲面
o x
y
实轴与 x 轴相合, 虚轴与 z轴相合.
与平面 y y y b )的交线为双曲线. 1( 1
2 x2 z2 y1 2 2 1 2 b 双曲线的中心都在 y a c 轴上. y y 1
2 2 实轴与 x 轴平行, ( 1 ) y b , 1
虚轴与 z 轴平行.
x2 y2 2 1 2 a 2 b 2 2 2 ( c k ) 2 (c k ) 2 c c z k | k |c 当k由0变到c时,椭圆由大变小, 最后缩成一点。
同理与平面 x=k 和 y=k 的交线也是椭圆. 椭圆截面的大小随平面位置的变化而变化.
椭球面的几种特殊情况:
虚轴与 x 轴平行.
2 2 ( 2 ) y b , 实轴与 z 轴平行, 1
,b ,0 ) 的直线. ( 3 ) y b , 截痕为一对相交于点 (0 1
x z 0 , a c y b ( 4 ) y b , 1
x z 0 . a c y b
( x 0 ) (3)用坐标面 yoz ,x=k 与曲面相截
均可得抛物线. 同理当 p 时可类似讨论. 0 ,q 0
椭圆抛物面的图形如下:
z o x y z
x
o
y
p 0 , q 0
p 0 , q 0
q 特殊地:当 p 时,方程变为
x y z 2p 2p
旋转而成的)
第九节 二次曲面 一、基本内容
二次曲面的定义: 三元二次方程所表示的曲面. 相应地平面被称为一次曲面. 讨论二次曲面性状的截痕法: 用坐标面和平行于坐标面的平面与曲面 相截,考察其交线(即截痕)的形状,然后 加以综合,从而了解曲面的全貌.
z
o x
y
x y z 2 2 1 2 a b c
2
2
2
双叶双曲面
o x
y
实轴与 x 轴相合, 虚轴与 z轴相合.
与平面 y y y b )的交线为双曲线. 1( 1
2 x2 z2 y1 2 2 1 2 b 双曲线的中心都在 y a c 轴上. y y 1
2 2 实轴与 x 轴平行, ( 1 ) y b , 1
虚轴与 z 轴平行.
x2 y2 2 1 2 a 2 b 2 2 2 ( c k ) 2 (c k ) 2 c c z k | k |c 当k由0变到c时,椭圆由大变小, 最后缩成一点。
同理与平面 x=k 和 y=k 的交线也是椭圆. 椭圆截面的大小随平面位置的变化而变化.
椭球面的几种特殊情况:
虚轴与 x 轴平行.
2 2 ( 2 ) y b , 实轴与 z 轴平行, 1
,b ,0 ) 的直线. ( 3 ) y b , 截痕为一对相交于点 (0 1
x z 0 , a c y b ( 4 ) y b , 1
x z 0 . a c y b
( x 0 ) (3)用坐标面 yoz ,x=k 与曲面相截
均可得抛物线. 同理当 p 时可类似讨论. 0 ,q 0
椭圆抛物面的图形如下:
z o x y z
x
o
y
p 0 , q 0
p 0 , q 0
q 特殊地:当 p 时,方程变为
x y z 2p 2p
旋转而成的)
第九节 二次曲面 一、基本内容
二次曲面的定义: 三元二次方程所表示的曲面. 相应地平面被称为一次曲面. 讨论二次曲面性状的截痕法: 用坐标面和平行于坐标面的平面与曲面 相截,考察其交线(即截痕)的形状,然后 加以综合,从而了解曲面的全貌.
2.1.曲面及其方程ppt课件

z
圆
柱
l
面
oo
y
x
注意:在空间直角坐标系,缺项方程〔不完全方程〕的 图形是柱面.
:
18
z
(1) y 2 2 x 表示抛物柱面,
母线平行于 z 轴;
准线为xoy 面上的抛物线.
o
(2) x y 0表示母线平行于
z 轴的平面.
x
z
(且 z 轴在平面上)
注意:描述柱面只须指出
其准线及母线.
o
x
准线
:
用坐标面和平行于坐标面的平面与曲面相截, 考察其交线(即截痕)的形状, 然后加以综合, 从而 了解曲面的全貌.
以下用截痕法讨论几种常见的二次曲面.
:
23
(1) 椭球面
z
x2 y2 z2 a2 b2 c2 1
O y
1 用坐标面z = 0 , x = 0
x
和y = 0去截割,分别得椭圆
x 2 a2
三元二次方程
椭球面
x2 y2 z2 a2 b2 c2 1
抛物面
椭圆抛物面
双曲抛物面
(p,q同号) x 2 y 2 z 2 p 2q
x2 y2 z
2 p 2q
双曲面 单叶双曲面
双叶双曲面
椭圆锥面
x2 y2 z2 a2 b2 c2 1
x2 a2
y2 b2
z2
x2 y2 z2 a2 b2 c2 1
dx2y2 |y1|
将 z z1 , y 1 x 2y2代入 f(y1,z1)0
:
10
将 z z 1 , y 1 x 2 y 2代入 f(y1,z1)0
得方程 f( x2y2, z)0.
高等数学上册第七章第五节 曲面及其方程

0z 3
在
yOz面上的投影
z
3y2 ,
xOy面上的圆 x 2 y 2 R2
叫做它的准线,平行于 z 轴的直线 l 叫做它的母线。 其实在 yOz 面内的一条直线: y R, 绕z轴旋转而成的旋转
曲面就是该圆柱面,则圆柱面方程为: x 2 y 2 R. 即
x2 y2 R2.
9
P11
定义: 平行于定直线并沿定曲线C平行移动的直线 l形成的轨迹
方程 Fx, y 0, 在空间 z
Fx, y 0,
直角坐标系中表示:
o 母线平行于 z 轴的柱面,
其准线是 xOy 面上的曲线
y
C : Fx, y 0.
x
C
方程 Gx,z 0, 在空间
直角坐标系中表示:
方程中缺哪个字母,母线 平行于相应的轴。
母线平行于 y轴的柱面, 其准线是 xOz 面上的曲线
1
在空间解析几何中关于曲面的研究,有下列两个基本问题: (1) 已知曲面点的几何轨迹,求曲面的方程; (2) 已知曲面的方程,求这方程所表示的曲面的形状。
1、球面方程
例1 建立球心在 M 0 x0 , y0 , z0 ,
半径为 R 的球面 S 的方程.
解:Mx, y, z S M0M R
M0 M x x0 2 y y0 2 z z0 2 ,
xz 0
o
x
y
12
小 结:
1.曲面的概念
2.球面方程 x x0 2 y y0 2 z z0 2 R2
3.平面方程 Ax By Cz D 0 作业:习题7-5
4.旋转曲面
作业纸P50
设 C : f y, z 0 yoz面
下次交P49-50
03曲面及其方程、二次曲面

C:
f ( y, z) 0
x
0
绕oz轴旋转得旋转曲面
f( x2y2,z)0
2. yoz平面上的母线
C:
f ( y, z) 0
x
0
绕oy轴旋转得旋转曲面
f(y, x2z2)0
3.
xoy平面上的母线
C:
f (x,
z
0
y)
0
绕ox轴旋转得旋转曲面
x2 y2 z 2p 2q
( p与q同号 )
用截痕法讨论: 设 p0,q0
z
2019/10/17
o x
y
19
高等数学(下)主讲杨益民
(三)双曲面
(1)
x2 a2
by22
cz22
1
单叶双曲面
z
z
o
y
o
y
x x
.
2019/10/17
20
高等数学(下)主讲杨益民
(2)
x2 a2
by22
f(x, y2z2)0
2019/10/17
7
高等数学(下)主讲杨益民
例6
求xoz坐标面的上双曲线C:
x2 a2
z2 c2
1
分别绕x轴和z轴
一周生成的旋转曲面的方程。 y 0
解:
绕 x轴 旋 转 x2 a2
y2 z2 c2
1
旋 转
双
绕 z轴 旋 转x2a2y2 cz22 1
曲 面
直线L绕另一条与L相交的直线旋转一周,所得旋转曲面叫 圆锥面,两直线的交点叫圆锥面的顶点,两直线的夹角叫 圆锥面的半顶角。
同济版高等数学第六版课件第八章第五节曲面及其方程

制造领域,如汽车、航空和船舶制造等。
直纹曲面在建筑设计中的应用
总结词
设计曲面建筑外观
VS
详细描述
直纹曲面方程在建筑设计中用于描述复杂 的曲面结构。通过直纹曲面,建筑师可以 创造出独特且富有艺术感的建筑外观。直 纹曲面在建筑设计中的广泛应用,不仅提 高了建筑的审美价值,也为建筑师提供了 更多的创作空间。
方程
锥面的方程通常表示为 x^2 + y^2 = r^2(z),其中 (x, y) 是平面上的点,r 是锥顶到平面的距离,z 是锥面的参数。
性质
锥面是一个非对称的曲面,在锥顶处曲率为无穷大。
旋转曲面
定义
旋转曲面是由一条平面曲线绕 一条直线旋转一周所形成的曲
面。
方程
旋转曲面的方程通常表示为 x = x(t), y = y(t), z = z(t),其 中 t 是参数,x(t), y(t), z(t) 是
非标准曲面
定义
01
非标准曲面是指不符合常规形式的曲面,如参数曲面、隐式曲
面等。
性质
02
非标准曲面具有一些特殊的几何性质,如曲率、法向量等,这
些性质有助于理解曲面的几何结构。
应用
03
非标准曲面在计算机图形学、计算几何等领域有广泛的应用,
如动画设计、虚拟现实、游戏开发等。
曲面的微分性质
定义
曲面的微分性质是指曲面在局部的几何性质,如切线、法线、曲率 等。
给定的平面曲线。
性质
旋转曲面是一个具有旋转对称 性的曲面,其曲率随旋转角度
而变化。
直纹曲面
定义
直纹曲面是由一条直线按一定方式移动所形成的曲面 。
方程
直纹曲面的方程通常表示为 z = f(x, y),其中 f(x, y) 是给定的函数,(x, y) 是平面上的点。
直纹曲面在建筑设计中的应用
总结词
设计曲面建筑外观
VS
详细描述
直纹曲面方程在建筑设计中用于描述复杂 的曲面结构。通过直纹曲面,建筑师可以 创造出独特且富有艺术感的建筑外观。直 纹曲面在建筑设计中的广泛应用,不仅提 高了建筑的审美价值,也为建筑师提供了 更多的创作空间。
方程
锥面的方程通常表示为 x^2 + y^2 = r^2(z),其中 (x, y) 是平面上的点,r 是锥顶到平面的距离,z 是锥面的参数。
性质
锥面是一个非对称的曲面,在锥顶处曲率为无穷大。
旋转曲面
定义
旋转曲面是由一条平面曲线绕 一条直线旋转一周所形成的曲
面。
方程
旋转曲面的方程通常表示为 x = x(t), y = y(t), z = z(t),其 中 t 是参数,x(t), y(t), z(t) 是
非标准曲面
定义
01
非标准曲面是指不符合常规形式的曲面,如参数曲面、隐式曲
面等。
性质
02
非标准曲面具有一些特殊的几何性质,如曲率、法向量等,这
些性质有助于理解曲面的几何结构。
应用
03
非标准曲面在计算机图形学、计算几何等领域有广泛的应用,
如动画设计、虚拟现实、游戏开发等。
曲面的微分性质
定义
曲面的微分性质是指曲面在局部的几何性质,如切线、法线、曲率 等。
给定的平面曲线。
性质
旋转曲面是一个具有旋转对称 性的曲面,其曲率随旋转角度
而变化。
直纹曲面
定义
直纹曲面是由一条直线按一定方式移动所形成的曲面 。
方程
直纹曲面的方程通常表示为 z = f(x, y),其中 f(x, y) 是给定的函数,(x, y) 是平面上的点。
.3曲面及其方程

表示上(下)球面 . o x
M0
M
y
例2. 研究方程 的曲面.
表示怎样
解: 配方得
此方程表示: 球心为 M0(1, 2, 0), 半径为 5 的球面.
说明: 如下形式的三元二次方程 ( A≠ 0 )
都可通过配方研究它的图形. 其图形可能是 一个球面 , 或点 , 或虚轨迹.
二、柱面
z
引例. 分析方程
定义3. 平行定直线并沿定曲线 C 移动的直线 l 形成 的轨迹叫做柱面. C 叫做准线, l 叫做母线.
定义3. 平行定直线并沿定曲线 C 移动的直线 l 形成 的轨迹叫做柱面. C 叫做准线, l 叫做母线.
定义3. 平行定直线并沿定曲线 C 移动的直线 l 形成 的轨迹叫做柱面. C 叫做准线, l 叫做母线.
• 球面 ( x x0 )2 ( y y0 )2 (z z0 )2 R2
• 柱面 如,曲面F ( x , y) 0表示母线平行 z 轴的柱面. 又如,椭圆柱面, 双曲柱面, 抛物柱面等 .
• 旋转曲面
如,
曲线
f ( y,z) x0
0
绕
z
轴的旋转曲面:
f ( x2 y2 , z) 0
距离为 R 的轨迹
方程. 解: 设轨迹上动点为
依题意
即
( x x0 )2 ( y y0 )2 (z z0 )2 R
故所求方程为
( x x0 )2 ( y y0 )2 (z z0 )2 R2 z
特别,当M0在原点时,球面方程为
x2 y2 z2 R2
表示抛物柱面,
z
母线平行于 z 轴;
曲面及其方程-PPT

则F(x,y,z)=0叫做曲面S的方程 曲面S叫做方程F(x,y,z)=0的图形. ➢两个基本问题 (1) 已知一曲面作为点的几何轨迹时,
求曲面方程. (2) 已知方程时,研究它所表示的几何形状
F(x, y, z) 0
z S
oy x
(必要时需作图).
例1 求动点到定点 M 0 (x0 , y0 , z0 ) z
z
➢概念
一条平面曲线绕其平面上
C
一条定直线旋转一周 所形成的曲面.
M (x, y, z)
M1 (0, y1, z1 )
旋转曲线
母线
o y
定直线
轴
x
➢旋转曲面的方程
f ( x2 y2 , z) 0
给定yoz面上曲线C: f ( y, z) 0
在曲线C上任取一点M1(0,y1,z1)
曲线C绕z轴旋转
z2 c2
1
( a,b,c为正数)
z
(1) 范围:
x
y
x a, y b, z c
(2) 在垂直坐标面的平面上的截痕:椭圆
x2 a2
y2 b2
z2 c2
1,
z t
x2 a2
y2 b2
z2 c2
1,
x t
x2 a2
y2 b2
z2 c2
1
y t
(3) 当 a=b 时为旋转椭球面; 当a=b=c 时为球面.
z
1. 椭圆锥
z
面
x2 a2
y2 b2
z2
( a, b 为正数)
在平面 z t 上的截痕为椭圆
x2 (at)2
y2 (bt ) 2
1,
zt
o yy xx
曲面及其方程、二次曲面-PPT

8
•大家有疑问的,可以询问和交流
•可以互相讨论下,但要小声点
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
10
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
2
以下给出几例常见的曲面.
例 1 建立球心在点 M0 ( x0 , y0 , z0 )、半径为 R 的球面方程.
解 设M ( x, y, z)是球面上任一点,
根据题意有 | MM0 | R
x x0 2 y y0 2 z z0 2 R 所求方程为 x x0 2 y y0 2 z z0 2 R2
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
21
例5 证明以oz轴为旋转轴,yoz坐标面上的已知曲线
f ( y, z) 0
C:
x
0
为母线所产生的旋转曲面S的方程为: f ( x2 y2 , z) 0
11
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
12
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
13
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
播放
•大家有疑问的,可以询问和交流
•可以互相讨论下,但要小声点
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
10
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
2
以下给出几例常见的曲面.
例 1 建立球心在点 M0 ( x0 , y0 , z0 )、半径为 R 的球面方程.
解 设M ( x, y, z)是球面上任一点,
根据题意有 | MM0 | R
x x0 2 y y0 2 z z0 2 R 所求方程为 x x0 2 y y0 2 z z0 2 R2
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
21
例5 证明以oz轴为旋转轴,yoz坐标面上的已知曲线
f ( y, z) 0
C:
x
0
为母线所产生的旋转曲面S的方程为: f ( x2 y2 , z) 0
11
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
12
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
13
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
播放
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
z
00
P
M点到原点的距离
M点到坐标面的距离
M点到坐标轴的距离
到z轴: d1 x 2 y2
到x轴: d2 z 2 y 2
d1
M (x,y,z) 到y轴: d3 x2 z2
d3
d2
Q
y
N
. . .
8.
1. 空间直角坐标系
z
00
(-x,-y,-z) R
x
Q
(x,-y,-z)
x
M点的对称点
关于xoy面:
因此,三矢 a, b, c共面 其混合积 [abc] = 0
ab
h
c
b
a
.
16
5. 一般柱面 F(x,y)=0
(不含z)
F(x,y)=0表示母线平行于z轴的柱面
z 曲面S上每一点都满足方程;
母线
x F( x,y )=0 准线 z= 0
M (x,y,z) 0
S
y
N (x, y, 0)
点N满足方程,故点M满足方程
f (y1, z1)=0
z1 z
| y1 | MP x 2 y 2
P M
Sz
o
N (0, y1 , z1 ) .
z1 C
y1
y
.
x
24
10. 旋转面的方程
曲线 C
f ( y, z) 0
x
0
绕 z轴
旋转一周得旋转曲面 S
M(x,y,z) S
ff (y11,,zz11))==00 .
S
(x,y,z) (x,y,-z)
关于x轴:
(x,y,z) (x,-y,-z)
M(x,y,z)
y
P
(x,y,-z)
关于原点:
(x,y,z) (-x,-y,-z)
.
9
2. 两矢量和在轴上的投影 两矢量的和在轴上的投影等于投影的和
c
B A
A´
B´
c´
u
10
2. 两矢量和在轴上的投影 两矢量录( 1— 30 )
1 空间直角坐标系
2 两矢量和在轴上的投影
3 矢量积的分配律的证明
4 混合积的几何意义
5 一般柱面 F(x,y)=0
6 一般柱面 F(y,z)=0
7 椭圆柱面
8 双曲柱面
9 抛物柱面
10 旋转面的方程
11 双叶旋转双曲面
12 单叶旋转双曲面
13 旋转锥面
.
x
z
0
y
27
11. 双叶旋转双曲面
双
曲
线
x a
y b
z
绕 x 轴一周
得双叶旋转双曲面
.
x2 a2
y2 z2 b2
1
x
z
0
y
.
28
12. 单叶旋转双曲面
上题双曲线
x2 y2
a
2
b2
1
z 0
绕 y 轴一周
y
o
a
x
29
| a
| cos(
)
2
| a | sin a c0
将矢量a一投一转(转900), 得a2
c
c0
a
证毕
a2
a1
12
3. 证明矢量积的分配律:
| c | (a c 0 ) a c | c | (b c0 ) b c
| c | [(a b) c 0 ] (a b) c
由矢量和的平行四边形法则,
2
28 作出曲面x2 y 2 a, 2 x2 z 2 a2 , x 0, y 0, z 0所围立体 图形
29 作出曲面 z 1 x2 y2 和 x2 y2 z 1 所围立体图形 30 平面 x a, y a, z a, x y z a 在第一卦限所围立体图形
.
(a+b)c=(a c)+(b c)
得证
a c0
(a+b)c=(a c)+(b c)
将平行四边形一投一转
c
a+b
b
c0
a
b1 b1
ac
(a b) c0
bc0
a 1a 1
bc
.
a1 b1
a1 b1
(a+b)c 13 .
4. 混合积的几何意义 | [abc] || a b c | | a b | | Pr jabc | S h V
14 旋转抛物面
15 环面
16 椭球面
17 椭圆抛物面
18 双曲抛物面
19 双曲面的渐近锥面
20 单叶双曲面是直纹面
21 双曲抛物面是直纹面
22 一般锥面
23 空间曲线——圆柱螺线
24 空间曲线在坐标面上的投影
25 空间曲线作为投影柱面的交线(1)
26 空间曲线作为投影柱面的交线(2)
27 作出平面y=0 , z=0,3x+y =6, 3x+2y =12 和 x+y+z = 6所围成的立体图形
曲面S外的每一点都不满足方程17
6. 一般柱面 F(y, z)=0
(不含x)
z 准线
F( y, z )=0
x= 0
母线 0 y
x
F(y,z)=0表示母线平行于x轴的柱面
18
7. 椭圆柱面
z
x2 y2 1
a2 b2
o
y
x
19
8. 双曲柱面 z
x2 z2 a2 b2 1
o
x
y
20
9. 抛物柱面
ab
h
c
b
S=|a b|
a
14
4. 混合积的几何意义 | [abc] || a b c | | a b | | Pr jabc | S h V
ab
h
c
b
a
.
15
4. 混合积的几何意义 | [abc] || a b c | | a b | | Pr jabc | S h V
z
y 2 2 px
o
y x
21
10. 旋转面的方程
曲线 C
f ( y, z) 0
x
0
绕 z轴
z
C
o
y
22
10. 旋转面的方程
曲线 C
f ( y, z) 0
x
0
绕 z轴
z
.
C
o
y
x
23
10. 旋转面的方程
曲线 C
f ( y, z) 0
x
0
绕 z轴
z
旋转一周得旋转曲面 S
M(x,y,z) S
3
1. 空间直角坐标系
八个卦限
z
0 y
x
4
1. 空间直角坐标系
八个卦限
zБайду номын сангаас
0
.
x
y
5
1. 空间直角坐标系
八个卦限
点的坐标
Ⅳ
Ⅲ
z z
Ⅱ
Ⅰ
M (x,y,z)
M (x,y,z)
0
y
y
.
x
N
x
Ⅵ
Ⅷ
Ⅴ
6
1. 空间直角坐标系
z
坐标和点
z
(x,y,z) M
M (x,y,z)
00
y
y
x
N
x
.
7
1. 空间直角坐标系
Pr j AB AB
c
Pr j BC BC
B A
Pr j AC AC
A´
B´
c´
u
.
AB BC AC
.
Pr j AB Pr j BC Pr j AC
11
3. 证明矢量积的分配律: (a+b)c=(a c)+(b c)
引理 a c a2
证明 两矢方向: 一致;引入
|a2|= |a1|
z1 z
| y1 | MP x 2 y 2
S:f ( x 2 y 2 , z) 0.
x
z
P M
z
N (0, y1 , z1 ) .
z1 C
o
y1
y
.
25
11. 双叶旋转双曲面
双
曲
线
x a
y b
z
绕 x 轴一周
x
0
y
26
11. 双叶旋转双曲面
双
曲
线
x a
y b
z
绕 x 轴一周
z
00
P
M点到原点的距离
M点到坐标面的距离
M点到坐标轴的距离
到z轴: d1 x 2 y2
到x轴: d2 z 2 y 2
d1
M (x,y,z) 到y轴: d3 x2 z2
d3
d2
Q
y
N
. . .
8.
1. 空间直角坐标系
z
00
(-x,-y,-z) R
x
Q
(x,-y,-z)
x
M点的对称点
关于xoy面:
因此,三矢 a, b, c共面 其混合积 [abc] = 0
ab
h
c
b
a
.
16
5. 一般柱面 F(x,y)=0
(不含z)
F(x,y)=0表示母线平行于z轴的柱面
z 曲面S上每一点都满足方程;
母线
x F( x,y )=0 准线 z= 0
M (x,y,z) 0
S
y
N (x, y, 0)
点N满足方程,故点M满足方程
f (y1, z1)=0
z1 z
| y1 | MP x 2 y 2
P M
Sz
o
N (0, y1 , z1 ) .
z1 C
y1
y
.
x
24
10. 旋转面的方程
曲线 C
f ( y, z) 0
x
0
绕 z轴
旋转一周得旋转曲面 S
M(x,y,z) S
ff (y11,,zz11))==00 .
S
(x,y,z) (x,y,-z)
关于x轴:
(x,y,z) (x,-y,-z)
M(x,y,z)
y
P
(x,y,-z)
关于原点:
(x,y,z) (-x,-y,-z)
.
9
2. 两矢量和在轴上的投影 两矢量的和在轴上的投影等于投影的和
c
B A
A´
B´
c´
u
10
2. 两矢量和在轴上的投影 两矢量录( 1— 30 )
1 空间直角坐标系
2 两矢量和在轴上的投影
3 矢量积的分配律的证明
4 混合积的几何意义
5 一般柱面 F(x,y)=0
6 一般柱面 F(y,z)=0
7 椭圆柱面
8 双曲柱面
9 抛物柱面
10 旋转面的方程
11 双叶旋转双曲面
12 单叶旋转双曲面
13 旋转锥面
.
x
z
0
y
27
11. 双叶旋转双曲面
双
曲
线
x a
y b
z
绕 x 轴一周
得双叶旋转双曲面
.
x2 a2
y2 z2 b2
1
x
z
0
y
.
28
12. 单叶旋转双曲面
上题双曲线
x2 y2
a
2
b2
1
z 0
绕 y 轴一周
y
o
a
x
29
| a
| cos(
)
2
| a | sin a c0
将矢量a一投一转(转900), 得a2
c
c0
a
证毕
a2
a1
12
3. 证明矢量积的分配律:
| c | (a c 0 ) a c | c | (b c0 ) b c
| c | [(a b) c 0 ] (a b) c
由矢量和的平行四边形法则,
2
28 作出曲面x2 y 2 a, 2 x2 z 2 a2 , x 0, y 0, z 0所围立体 图形
29 作出曲面 z 1 x2 y2 和 x2 y2 z 1 所围立体图形 30 平面 x a, y a, z a, x y z a 在第一卦限所围立体图形
.
(a+b)c=(a c)+(b c)
得证
a c0
(a+b)c=(a c)+(b c)
将平行四边形一投一转
c
a+b
b
c0
a
b1 b1
ac
(a b) c0
bc0
a 1a 1
bc
.
a1 b1
a1 b1
(a+b)c 13 .
4. 混合积的几何意义 | [abc] || a b c | | a b | | Pr jabc | S h V
14 旋转抛物面
15 环面
16 椭球面
17 椭圆抛物面
18 双曲抛物面
19 双曲面的渐近锥面
20 单叶双曲面是直纹面
21 双曲抛物面是直纹面
22 一般锥面
23 空间曲线——圆柱螺线
24 空间曲线在坐标面上的投影
25 空间曲线作为投影柱面的交线(1)
26 空间曲线作为投影柱面的交线(2)
27 作出平面y=0 , z=0,3x+y =6, 3x+2y =12 和 x+y+z = 6所围成的立体图形
曲面S外的每一点都不满足方程17
6. 一般柱面 F(y, z)=0
(不含x)
z 准线
F( y, z )=0
x= 0
母线 0 y
x
F(y,z)=0表示母线平行于x轴的柱面
18
7. 椭圆柱面
z
x2 y2 1
a2 b2
o
y
x
19
8. 双曲柱面 z
x2 z2 a2 b2 1
o
x
y
20
9. 抛物柱面
ab
h
c
b
S=|a b|
a
14
4. 混合积的几何意义 | [abc] || a b c | | a b | | Pr jabc | S h V
ab
h
c
b
a
.
15
4. 混合积的几何意义 | [abc] || a b c | | a b | | Pr jabc | S h V
z
y 2 2 px
o
y x
21
10. 旋转面的方程
曲线 C
f ( y, z) 0
x
0
绕 z轴
z
C
o
y
22
10. 旋转面的方程
曲线 C
f ( y, z) 0
x
0
绕 z轴
z
.
C
o
y
x
23
10. 旋转面的方程
曲线 C
f ( y, z) 0
x
0
绕 z轴
z
旋转一周得旋转曲面 S
M(x,y,z) S
3
1. 空间直角坐标系
八个卦限
z
0 y
x
4
1. 空间直角坐标系
八个卦限
zБайду номын сангаас
0
.
x
y
5
1. 空间直角坐标系
八个卦限
点的坐标
Ⅳ
Ⅲ
z z
Ⅱ
Ⅰ
M (x,y,z)
M (x,y,z)
0
y
y
.
x
N
x
Ⅵ
Ⅷ
Ⅴ
6
1. 空间直角坐标系
z
坐标和点
z
(x,y,z) M
M (x,y,z)
00
y
y
x
N
x
.
7
1. 空间直角坐标系
Pr j AB AB
c
Pr j BC BC
B A
Pr j AC AC
A´
B´
c´
u
.
AB BC AC
.
Pr j AB Pr j BC Pr j AC
11
3. 证明矢量积的分配律: (a+b)c=(a c)+(b c)
引理 a c a2
证明 两矢方向: 一致;引入
|a2|= |a1|
z1 z
| y1 | MP x 2 y 2
S:f ( x 2 y 2 , z) 0.
x
z
P M
z
N (0, y1 , z1 ) .
z1 C
o
y1
y
.
25
11. 双叶旋转双曲面
双
曲
线
x a
y b
z
绕 x 轴一周
x
0
y
26
11. 双叶旋转双曲面
双
曲
线
x a
y b
z
绕 x 轴一周