范德蒙行列式的应用

合集下载

[整理版]范德蒙行列式及其应用

[整理版]范德蒙行列式及其应用

范德蒙行列式及其应用摘要:在高等代数中,行列式无疑是一个重点和难点。

它主要应用于高等代数理论,作为一种特殊的行列式——范德蒙行列式不仅具有特殊的形式,而且有非常广泛的应用.本文主要探讨范德蒙行列式在向量空间理论,线性变化理论,多项式理论中以及行列式计算中的应用.关键词:范德蒙行列式;多项式;线性变换一. 范德蒙行列式定义及性质1.范德蒙行列式的定义定义1 关于变元1x ,2x n x 的n 阶行列式122221211112111n n n n n n nx x x D x x x x x x ---=(1)叫做1x ,2x n x 的n 阶范德蒙行列式,记作n V (1x ,2x ,…n x ).2.我们用定理证明范德蒙德行列式已知在错误!未找到引用源。

级行列式中,第错误!未找到引用源。

行(或第错误!未找到引用源。

列)的元素除错误!未找到引用源。

外都是零,那么这个行列式等于错误!未找到引用源。

与它的代数余子式错误!未找到引用源。

的乘积错误!未找到引用源。

,在错误!未找到引用源。

=错误!未找到引用源。

中,从最后一行开始,每一行减去它相邻前一行的错误!未找到引用源。

倍得错误!未找到引用源。

=错误!未找到引用源。

根据上述定理错误!未找到引用源。

=错误!未找到引用源。

提出每一列的公因子后得错误!未找到引用源。

=错误!未找到引用源。

最后一个因子是错误!未找到引用源。

阶范德蒙行列式,用错误!未找到引用源。

表示,则有错误!未找到引用源。

=错误!未找到引用源。

同样可得错误!未找到引用源。

=(错误!未找到引用源。

)(错误!未找到引用源。

)错误!未找到引用源。

(错误!未找到引用源。

)错误!未找到引用源。

此处错误!未找到引用源。

是一个n-2阶范德蒙行列式,如此继续下去,最后得错误!未找到引用源。

=错误!未找到引用源。

(错误!未找到引用源。

)错误!未找到引用源。

(错误!未找到引用源。

)错误!未找到引用源。

(错误!未找到引用源。

范德蒙德行列式的研究与应用

范德蒙德行列式的研究与应用

范德蒙德行列式的研究与应用给定n个数$x_1,x_2,...,x_n$,范德蒙德行列式定义为:$$\begin{vmatrix}1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & x_n & x_n^2 & \cdots & x_n^{n-1} \\\end{vmatrix}$$1.行列式的值只与$x_1,x_2,...,x_n$有关,而与n无关。

2.当$x_1,x_2,...,x_n$中存在两个数相同时,行列式的值为0。

3.当$x_1,x_2,...,x_n$中的数互不相同时,行列式的值为:$$\prod_{1 \leq i < j \leq n} (x_j - x_i)$$其中$\prod$表示乘积。

1.插值多项式:给定n个互不相同的点$(x_1,y_1),(x_2,y_2),...,(x_n,y_n)$,根据这些点来构造一个插值多项式可以使用范德蒙德行列式。

具体而言,可以通过以下公式计算出多项式的系数:$$\begin{bmatrix}x_1^0 & x_1^1 & x_1^2 & \cdots & x_1^{n-1} \\x_2^0 & x_2^1 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\x_n^0 & x_n^1 & x_n^2 & \cdots & x_n^{n-1} \\\end{bmatrix}\begin{bmatrix}a_0\\a_1\\\vdots \\a_{n-1}\\\end{bmatrix}\begin{bmatrix}y_1\\y_2\\\vdots \\y_n\\\end{bmatrix}$$其中,$a_0,a_1,...,a_{n-1}$为待求的多项式系数。

范德蒙行列式经典例题

范德蒙行列式经典例题

范德蒙行列式经典例题范德蒙行列式是19世纪的数学家哈勒•范德蒙提出的一种数学思想,它可以用来解决许多数学问题。

范德蒙行列式的经典应用是用来解决二元一次方程,而这样就给出了许多可以用来练习的例题。

下面将介绍列出几个范德蒙行列式经典例题:一、解决一元二次方程题目:2x2+7x+1=0解:通过范德蒙行列式,可得:|2 7||1 0|令左边矩阵的行列式D = 2*0-7*1 = -7则根据范德蒙行列式,可求出:x1= D/2= -7/2x2= (-7+-√49)/4即根为x1=-3.5,x2=-1.5二、解决多元一次方程题目:2x+y+6z=17 , 5x-y-3z=2 , 4x+3y-2z=1解:通过范德蒙行列式,可得:|2 1 6||5 -1 -3||4 3 -2|令左边矩阵的行列式D = (2*(-1)*(-2)-1*5*(-3)+6*3*4) = 28 则根据范德蒙行列式,可求出:x1= (17*(-2)*(-3)-2*(-1)*6+1*5*4)/D= 6x2= (17*(-1)*4-2*3*6+1*(-3)*5)/D= 4x3= (17*2*3-2*(-1)*(-3)+1*(-1)*(-2))/D= 3三、应用范德蒙行列式进行微积分题目:求∫sin2(x)dx解:利用范德蒙行列式,可得:| sin 2x -1 || cos 2x 0 |令左边矩阵的行列式D = sin2x * 0 - (-1) * cos2x = cos2x则根据范德蒙行列式,则可求得∫sin2(x)dx= sin2x + c,其中c为常数。

四、直角梯形面积计算题目:梯形ABCD的对角线AB和CD的长分别为2 cm 和4 cm,且∠BAC=45°,求梯形ABCD的面积S。

解:通过范德蒙行列式,可得:|2 tan45°||4 0 |令左边矩阵的行列式D = (2 * 0 - tan45° * 4) = -2因此面积S = D / 2 = -1由此可看出,梯形ABCD的面积为1平方厘米。

范德蒙德行列式的几点应用

范德蒙德行列式的几点应用

第2讲 范德蒙德行列式的几点应用我们知道,n 阶范德蒙德行列式()2111121222121111n n n ijj i nn nnnx x x x x x V x x x x x --<-==-∏≤≤,当这些i x 两两互异时,0n V ≠.这个事实有助于我们理解不少结果.例1 证明一个n 次多项式之多有n 个互异根. 证 设()2012n n f x a a x a x a x =++++有1n +个互异的零点121,,,n x x x +,则有()20120n i i i n i f x a a x a x a x =++++=,1 1i n +≤≤.即这个关于01,,,n a a a 的齐次线性方程组的系数行列式()211122221121111101nn ijj i n n n n n x x x x x x x x x x x <++++=-≠∏≤≤,因此0120n a a a a =====.这个矛盾表明()f x 至多有n 个互异根. 例2 设12,,,n a a a 是n 个两两互异的数.证明对任意n 个数12,,,n b b b ,存在惟一的次数小于n 的多项式()L x :()1nj i i j ii jx a L x b a a =≠-=-∑∏,使得()i i L a b =,1 i n ≤≤.证 从定义容易看出()L x 的次数小于n ,且()i i L a b =,故只需证明唯一性即可. 设()210121n n f x c c x c x c x --=++++满足()i i f a b =,1 i n ≤≤,即这个关于0121,,,,n c c c c -的线性方程组的系数行列式()21111212221211101n n ijj i nn nnna a a a a a a a a a a --<-=-≠∏≤≤,故0121,,,,n c c c c -是唯一的,必须()()f x L x =.这个例子就是有名的拉格朗日插值公式.例3 设()()()121,,,n f x f x f x -是1n -个复系数多项式,满足 ()()()121211|n n n n n n x x f x xf x x f x ---++++++,证明()()()1211110n f f f -====.证 设()()()()()211211n n n n n n f x xf x x f x p x x x ---+++=+++,取22cossini n nππω=+,分别以21,,,n x ωωω-=代入,可得这个关于()()()1211,1,,1n f f f -的齐次线性方程组的系数行列式()()()22221211101n n n n n ωωωωωω-----≠,因此()()()1211110n f f f -====.例4 设n 是奇数,()()()121,,,n f x f x f x -是1n -个复系数多项式,满足()()()123221211|n n n n n n n n x x x f x xf x x f x -------+-++++,证明()()()1211110n f f f --=-==-=.证 注意到当n 是奇数时,()()123111n n n n x x x x x ---+=+-+-+,可按照例3的思路完成证明.例5 设A 是个n 阶矩阵,证明A 的属于不同特征值的特征向量线性无关.证 设12,,,r λλλ是A 的两两不同的r 个特征值,非零向量12,,,r ααα适合i i i A αλα=,1 i r ≤≤,假设11220r r x x x ααα+++=,那么有()11220j r r A x x x ααα+++=,1 1j r -≤≤.即()1110r r rjjj i i i i i i i i i i A x x A x ααλα===⎛⎫==⋅= ⎪⎝⎭∑∑∑,注意到()0j ir rλ⨯≠,必须11220r r x x x ααα====,于是120r x x x ====,这证明了12,,,r ααα线性无关.例6 计算行列式()()()()()()()()()111212122211121111n n n n n n n x x x x x x D x x x ϕϕϕϕϕϕϕϕϕ---=,其中()11kk k k nk x x a xa ϕ-=+++.解 注意到下面的等式: 即得()1n ijj i nD x x <=-∏≤≤.例7 计算行列式1212111111111n n n x x x D x x x n n n ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,其中()()11!x x x x k k k --+⎛⎫= ⎪⎝⎭.解 直接利用例6可得()()111!2!1!n ijj i nD x x n <=--∏≤≤. 例8 设12,,,n a a a 是正整数,证明n 阶行列式。

范德蒙行列式及其应用

范德蒙行列式及其应用

范德蒙行列式及其应用1 预备知识定义1.1)133(]1[p121211112111,n n n n n nx x x D x x x n x x x ---⋯⋯=,⋯⋯⋯⋯⋯⋯叫做 的阶范德蒙行列式.12111121111212111n i i i n i i i n n n n nx x x D n x x x x x x x x x ---+++⋯⋯⋯⋯⋯⋯⋯=⋯⋯⋯⋯⋯⋯叫做阶准范德蒙行列式.定理1.2)133(]1[p ∏≤≤≤-=ni j jin x x D 1)(.证明 方法一)133(]1[p由n D 的最后一行开始,每一行减去它的相邻的前一行乘以1x ,并由行列式的展开定理可得递推公式111312)())((----=n n n D x x x x x x D Λ,其中1-n D 是n x x x Λ32的n-1阶范德蒙行列式,由以上递推公式可求得∏≤≤≤-=ni j jin x x D 1)(.证明 方法二将n D 看作系数与121,,-n x x x Λ有关,未知量是n x 的一元多项式.则当)1,,2,1(-==n i x x i n Λ时,0=n D .所以121,,-n x x x Λ是n D 的根,所以,)1,2,1()(-=-n i D x x n i n Λ.又因为当j i ≠时,1),(=--j n i n x x x x ,所以*---=-)())()((12121n n n n n n x x x x x x x x x g D ΛΛ另一方面,如果将n D 按最后一列展开,可知道, n D 是n x 的n-1次多项式,且1-n n x 项的系数是n-1阶范德蒙行列式12122212111nn n n n nx x x D x x x ----⋯⋯=⋯⋯⋯⋯⋯与*可比较得 )(211n n x x x g D Λ=-.因此1121)())((-----=n n n n n n D x x x x x x D Λ;同理22122111)())((---------=n n n n n n D x x x x x x D Λ;依似类推,最后有)(1212x x D D -=.又因为11=D ,所以∏≤≤≤-=ni j jin x x D 1)(.另外利用行列式的性质可推得n 阶范德蒙行列式的性质)1(]2[p 性质1 若将n D 逆时针旋转ο90,可得值为 n n n D 2)1()1(--.性质2 若将n D 顺时针旋转ο90,可得值为n n n D 2)1()1(--.性质3 若将n D 旋转ο180,可得值为n D .2 范德蒙行列式在行列式计算中的应用2.1 简单变形 例1 计算()()()()11111nnn a a a n D a a a n -⋯-⋯⋯⋯⋯=-⋯-⋯解 由范德蒙行列式性质3得!)())()((111∏∏∏=≤≤≤≤≤≤=-=---=nk ni j ni j k j i i a j a D例2 计算n+1阶行列式211111111112122222222221111111111nn n n n n n n n n n n n n n n n n n n n n n n n n n n n n a a b a b a b a b a a b a b a b a b D a a b a b a b a b ---+++++++++⋯⋯=⋯⋯⋯⋯⋯⋯⋯解 从第i 行提取公因子)1,,2,1(+=n i a ni Λ,就可以得到转置的n+1阶范德蒙行列式,于是()111b nnn i iji j i n D a b =≤<≤+=-∏∏例3 计算行列式2111111212222221111n n n n n nn n x x x x x x x x x x D x x x x x ---⋯-⋯-=⋯⋯⋯⋯⋯⋯-解 从第i 行提取公因子)1,,2,1(1+=-n i x x i iΛ,然后再把第1列加到第2列,之后再把第2列加到第3列,⋯,再把第n-1列加到第n 列,就得到n 阶范德蒙行列式,于是()111nii j i j i ni x D x x x =≤<≤=--∏∏.例4 计算行列式()()()()()()11112122221222212221111n nnnn n n n n n n n n n n n D n n n n ----⋯--⋯--=⋯⋯⋯⋯⋯--⋯⋯解 由范德蒙行列式性质得()()()()()()()()12111111112122212122221222n n n n n n nnnn n n n n D n n n n n n n n +----⋯--⋯⋯⋯⋯⋯⋯=-⋯--⋯--()1!nn =-1!2!⋯2.2 升阶法求解 例1 计算n 阶行列式221111222222221*********n n n n n n n n n n n n nnnnx x x x x x x x D x x x x x x x x --------⋯⋯⋯⋯⋯⋯⋯⋯=⋯⋯解 将D 升阶为下面的n+1阶行列式221111112212222212211111122122111111n n n n n n n n n n n n n n n n n n n n n n n n n nx x x x x x x x x x x x x x x x x x x x xx x x x ----+-----------⋯⋯⋯⋯⋯⋯⋯⋯⋯∆=⋯⋯⋯既插入一行与一列,使1+∆n 是关于x x x x n ,,,21Λ的n+1阶范德蒙行列式,此处x 是变数.于是∏≤≤≤+----=∆ni j j in n x xx x x x x x 1211)()())((Λ,故1+∆n 是一个关于x 的n 次多项式,它可以写成{}ΛΛ++++-+-=∆-≤≤≤+∏12111))(1()(n n n ni j j in x x x x x x x.另一方面,将1+∆n 按其第n+1行展开,既得Λ+-+-=∆-+≤≤≤+∏11211)1()(n n n ni j j in Dx x x x,比较1+∆n 中关于1-n x的系数,既得∏≤≤≤-+++=ni j j in x xx x x D 121)()(Λ.例2 计算211122222111111111nnnnnnx x x x x x D x x x ++++++=+++L L L LL LL解 将行列式增加第一行第一列并保持行列式值不变21112100011111111nnnn nx x x D x x x +++=+++L L L L LL LL把第一列乘以-1分别加到其它的列得21112111111n n n n n x x x D x x x ---=L L L L L L L L 把第一行拆分得2211111122200011111111nn n n nn nnn nx x x x x x D x x x x x x =-L L L L LL L L L L L L L L LL第一个行列式按第一行展开提取i x 后为n 阶范德蒙行列式,第二个行列式为1n +阶范德蒙行列式()()()111121nniijijii j i nj i ni D x x x x x x =≤≤≤≤==----∏∏∏∏p p()()11121n ni i i j i i j i nx x x x ==≤≤⎡⎤=---⎢⎥⎣⎦∏∏∏p2.3 套用定理法求解 定理 2.3.1()12121211111211112121111,2,3,1n i n in i i i i p p p n n p p p i i i n n n n nx x x D x x x D i n x x x x x x x x x -----+⋯+++⋯⋯⋯⋯⋯⋯⋯==⋯=⋯-⋯⋯⋯⋯⋯⋯∑其中i p p p x x x -Λ21是1,2,3,⋯,n 中()n i -个数的正序排列,∑-in p p p x x x Λ21表示()n i -阶排列和,nD 为n 阶范德蒙行列式. W证明过程大部分是用数学归纳法给出其计算结果的,本文用代数教程中广泛使用的升阶法证明 证明 ()i 在行列式1+i D 中第1i +行和()1n +列相应的元素.考虑()1n +阶范德蒙行列式()122222121111121211111111121111n n i i i i ni i i i n i i i i n n n nnx x x x x x x x f x D x x x x x x x x x x x x x x x x ----++++⋯⋯⋯⋯⋯⋯⋯⋯==⋯=⋯⋯⋯⋯⋯⋯⋯⋯()()()()213111n x x x x x x xx --⋯--()()()3222n x x x x xx -⋯--⋯ ⋯ ⋯ ⋯ ()n x x -=()()()()121n ijj i nxx x x x x x x ≤<≤--⋯--∏ )(*()ii 由()*式的两端,分别计算多项式()f x 中i x 项的系数.在()*式的左端,由行列式计算得,ix 项的系数为行列式中该元素对应的代数余子式()()()()()111,11111i n i n i n i i A D D ++++++++=-=-在()*式的右端,由多项式计算得,由12,,n x x x ⋯为()0f x =的n 个不同根,根据根与系数的关系,ix 项的系数为()()()1212110,1,2,1nnn in i p p p ij p p p j i na x x x xx i n --⋯≤<≤=-⋯-=⋯-∑∏其中i p p p x x x -Λ21是1,2,3,⋯,n 中()n i -个数的正序排列,i p p p x x x -Λ21表示()n i -阶排列和.()iii 比较()f x 中i x 项的系数计算行列式1i D +,因为()*式的左右端i x 项的系数应相等,所以 ()()()12121111n in ii nn ii p p p ij p p p j i nD x x x xx --+-+⋯≤<≤-=-⋯-∑∏ ()()121211n in ii p p p ij p p p j i nD x x x xx --+⋯≤<≤=⋯-**∑∏()()1212110,1,2,1n nn ii p p p n p p p D x x x D i n -+⋯=-⋯=⋯-∑定理得证.利用定理可以计算各阶准范德蒙行列式,简便易行. 例1计算准范德蒙行列式1234562222221234564444444123456555555123456666666123456111111a a a a a a a a a a a a D a a a a a a a a a a a a aaaaaa=解 由定理,因为6,3,n i ==所以()123123416p p p ij p p p j i D a a a aa ≤<≤=-=∑∏()()12312445616ijj i a a a a a a a a a a a ≤<≤++⋯+-∏.可以看出升阶法求解中的例1套用定理求解更简单.3 范德蒙行列式在其它方面的应用例1设()21211112111111,1n n n n n n x x x a a a p x a a a ------⋯⋯=⋯⋯⋯⋯⋯⋯其中121,n a a a -,⋯是互不相同的数.(1)由行列式定义,说明()p x 是一个1n -次多项式; (2)由行列式的性质求()p x 的根.证明(1)将()p x 按第一行展开知它是x 的多项式,又1n x-的系数为()11n +-乘以一个范德蒙行列式,其值不为零(因为i a 互异),故()p x 为关于x 的1n -次多项式. (2)取()1,2,i x a i n ==⋯,则行列式两行相同其值为零,即有()0i p a =,故121,n a a a -,⋯是()p x 的全部根.例2 设()112n n f x a a x a x-=+++L 011,,,n εεε-L 为全部的n 次单位根,证明:()()()123112211132011345122341n n nn n n n n n n na a a a a a a a a a a a a a a D f f f a a a a a a a a a a εεε-------==L L L L L L LL L L L L证明 令ε为n 次原根,且假定()0,1,1iji n εε==-L 用范德蒙行列式()()()()212124211111111111n n n n n n εεεεεεεεε------∆=L L L L LLL LL左乘D ,再从每列分别提出()()()111,,n f ff εε-L 即得()()()()()()()()()()()()()()()()()()()111212121111111111n n n n n n n n n n f f f f f f D f f f f f f f f f f εεεεεεεεεεεεεεεεε----------∆==∆L L L L L LLL因为0∆≠,所以()()()()()()1101n n D f ff f f f εεεεε--==LL .只要熟悉了范德蒙行列式使用的形式和使用技巧,便可以很好地应用范德蒙行列式了.例3 如果n 次多项式()21121n n n n n o f x a a x a x a x a x ---=+++++L 有1n +个不同的根,那么()0f x ≡.证明 设121,,n x x x +L 是()f x 的1n +个不同的根,则有2111211112112222221112111100n n n n n o n nn n n o n n n n n n n n o n a a x a x a x a x a a x a x ax a x a a x a x a x a x --------+-+++⎧+++++=⎪+++++=⎪⎨⎪⎪+++++=⎩L L L L L L L L L L L L L L L L L L 上式可看作1n +个未知量10,,,n n a a a -L 1n +个方程的齐次线性方程组.其系数行列式为()2111222211121111101n n n ijj i n n n n n x x x x x x D x x x x x +≤≤++++==-≠∏p L L L L LLLL所以上式只有零解.即1100,n n a a a a -=====L 也就是说()0f x ≡.。

范德蒙行列式在多项式插值中的应用

范德蒙行列式在多项式插值中的应用

范德蒙行列式在多项式插值中的应用在多项式插值中,范德蒙行列式是一种非常重要的工具。

它可以用来求解多项式插值系数,并且具有良好的数值特性和稳定性。

在本文中,我们将分步骤地介绍范德蒙行列式在多项式插值中的应用。

第一步:了解范德蒙行列式范德蒙行列式是一种在线性代数和多项式插值中非常重要的矩阵。

它的形式为:$$D_n(x) = \begin{vmatrix}1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & x_{n-1} & x_{n-1}^2 & \cdots & x_{n-1}^{n-1}\end{vmatrix}$$其中, $x_0, x_1, \dots, x_{n-1}$ 是给定的 $n$ 个数。

范德蒙行列式的值可以通过公式计算,也可以用高斯消元法求解。

第二步:求解多项式插值系数给定 $n+1$ 个不同的点 $(x_0,y_0), (x_1,y_1), \dots,(x_n,y_n)$,我们希望找到一条经过这些点的 $n$ 次多项式:$$p_n(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1}$$这个问题可以通过范德蒙行列式求解。

具体来说,我们可以构造一个向量$$\mathbf{y} = \begin{bmatrix}y_0 \\ y_1 \\ \vdots \\ y_n\end{bmatrix}$$和一个矩阵$$\mathbf{V} = \begin{bmatrix}1 & x_0 & x_0^2 & \cdots & x_0^{n-1} \\1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & x_n & x_n^2 & \cdots & x_n^{n-1}\end{bmatrix}$$那么,我们就可以用范德蒙行列式求解系数向量 $\mathbf{a}$:$$\mathbf{a} = \frac{1}{D_n(x)} \begin{bmatrix}D_0(x) & -D_1(x) & D_2(x) & \cdots & (-1)^n D_n(x) \\-D_1(x) & D_2(x) & -D_3(x) & \cdots & (-1)^{n+1} D_{n+1}(x)\\D_2(x) & -D_3(x) & D_4(x) & \cdots & (-1)^{n+2} D_{n+2}(x) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\(-1)^{n} D_{n}(x) & (-1)^{n+1} D_{n+1}(x) & (-1)^{n+2}D_{n+2}(x) & \cdots & D_{2n}(x)\end{bmatrix} \cdot \mathbf{y}$$其中,$D_i(x)$ 是范德蒙行列式中第 $i$ 列的值。

范德蒙行列式的相关应用

范德蒙行列式的相关应用

范德蒙行列式的相关应用(一)范德蒙行列式在行列式计算中的应用 范德蒙行列式的标准规范形式是:1222212111112111()nn n i j n i j n n n nx x x D x x x x x x x x ≥>≥---==-∏根据范德蒙行列式的特点,将所给行列式包括一些非范德蒙行列式利用各种方法将其化为范德蒙行列式,然后利用范德蒙行列式的结果,把它计算出来。

常见的化法有以下几种:1.所给行列式各列(或各行)都是某元素的不同次幂,但其幂次数排列与范德蒙行列式不完全相同,需利用行列式的性质(如提取公因式,调换各行(或各列)的次序,拆项等)将行列式化为范德蒙行列式。

例1 计算222111222333nn n nD n n n =解 n D 中各行元素都分别是一个数自左至右按递升顺序排列,但不是从0变到n r -。

而是由1递升至n 。

如提取各行的公因数,则方幂次数便从0变到1n -.[]21212111111222!!(21)(31)(1)(32)(2)(1)13331n n n n D n n n n n n nn n ---==-------!(1)!(2)!2!1!n nn =--例2 计算1111(1)()(1)()1111n n n n n n a a a n a a a n D a a a n ---+----=--解 本项中行列式的排列规律与范德蒙行列式的排列规律正好相反,为使1n D +中各列元素的方幂次数自上而下递升排列,将第1n +列依次与上行交换直至第1行,第n 行依次与上行交换直至第2行第2行依次与上行交换直至第n 行,于是共经过(1)(1)(2)212n n n n n ++-+-+++=次行的交换得到1n +阶范德蒙行列式:[][](1)21111(1)211111(1)(1)()(1)()(1)(1)(2)()2(1)((1))!n n n n n n nnn n nk aa a n D a a a n a a a n a a a a a n a a a a n a n k ++---+=--=-----=--------------=∏ 若n D 的第i 行(列)由两个分行(列)所组成,其中任意相邻两行(列)均含相同分行(列);且n D 中含有由n 个分行(列)组成的范德蒙行列式,那么将n D 的第i 行(列)乘以-1加到第1i +行(列),消除一些分行(列)即可化成范德蒙行列式: 例3 计算1234222211223344232323231122334411111sin 1sin 1sin 1sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin D +Φ+Φ+Φ+Φ=Φ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+Φ解 将D 的第一行乘以-1加到第二行得:123422221122334423232323112233441111sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin ΦΦΦΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+Φ再将上述行列式的第2行乘以-1加到第3行,再在新行列式中的第3行乘以-1加到第4行得:12342222141234333412341111sin sin sin sin (sin sin )sin sin sin sin sin sin sin sin i j j i D ≤<≤ΦΦΦΦ==Φ-ΦΦΦΦΦΦΦΦΦ∏例4 计算211122222111111111nnnn n nx x x x x x D x x x ++++++=+++ (1)解 先加边,那么22111111222222222210001111111111111111111nnnn nn n n nnn nx x x x x x D x x x x x x x x x x x x ---+++=+++=+++再把第1行拆成两项之和,2211111122111120001111nnn n nnnnnnx x x x x x D x x x x x x =-11111112()(1)()()[2(1)]nnk j i k j j k ni j k nnnk j i i j k ni i x xx x x x x x x x x ≤<≤=≤<≤≤<≤===----=---∏∏∏∏∏∏2.加行加列法各行(或列)元素均为某一元素的不同方幂,但都缺少同一方幂的行列式,可用此方法: 例5 计算2221233312121113nn nnn nx x x D x x x x x x =解 作1n +阶行列式:122222121333312121111nn n nnnn n nzx x x z x x x D z x x x z x x x +==1()()ni j k i l k j nx z x x =≤<≤--∏∏由所作行列式可知z 的系数为D -,而由上式可知z 的系数为:211211(1)()()nn n j k i n j k li x x x x x x -=≥>≥--∑∏通过比较系数得:1211()()nn j k i n j k li D x x x x x x =≥>≥=-∑∏ 3.拉普拉斯展开法运用公式D =1122n n M A M A M A ++来计算行列式的值:例6 计算111111122122111000010010010010001n n n n n n nn nnx x y y x x D y y x x y y ------=解 取第1,3,21n -行,第1,3,21n -列展开得:11111111222211111111n n n n n n nnnnx x y y x x y y D x xy y------==()()j i j i n j i lx x y y ≥>≥--∏4.乘积变换法 例7 设121(0,1,22)nk k k k k ni i s xx x x k n ==+++==-∑,计算行列式 01112122n n n nn s s s s s s D s s s ---=解11121111222111nnn iii i nnn n iiii i i nnnn n n iii i i nxxxxx D xxx-=====--====∑∑∑∑∑∑∑∑211111221222222122111122111111()n nn nn n n n nnnnj i l i j nx x x x x x x x x x x x x xxx x x x x -----≤<≤==-∏例8 计算行列式000101011101()()()()()()()()()nn n n n n n n nnnn n n n a b a b a b a b a b a b D a b a b a b ++++++=+++解 在此行列式中,每一个元素都可以利用二项式定理展开,从而变成乘积的和。

范德蒙行列式的应用探究

范德蒙行列式的应用探究

范德蒙行列式的应用探究
范德蒙行列式(也称为双核格式或矩阵表示)是一种数学表示,指先把问题所
考虑的因果和变量抽象为不同维度罗列(行或列),叶构成表格,其中每一格按顺序表达一次变量的关系。

这种表示能够有效地帮助任务分解者清楚地辨明任务中存在的因果关系,以便创造出一种有针对性的解决方案。

通过使用范德蒙行列式,可以把任务中存在的因果关系构建起来。

这种表示方
法既可以把任务中各个因素用文字表达出来,也可以用简洁而准确的矩阵形式来表示。

因此,范德蒙行列式具有贴切地反映任务因果关系、把握任务结构、增强理解能力等优点,在模式分析、决策分析、任务调度等行业任务中得到了广泛应用。

例如,在服务行业中常常会遇到一组要求,也被称为SLA(服务级别协议)。

SLA的结构是复杂的,可能存在若干层次的流程关系、服务因素、责任者等,因此,使用范德蒙行列式详细描述SLA能够更好地阐明其各个层次之间的关系和联系,进而针对具体情况制定完善的SLA。

此外,范德蒙行列式也可以用于任务计划,例如在新产品的研发上。

对于一项
新产品的研发,可以采用范德蒙行列式来表示船将和其他因素之间的关系,把子任务放在一起详细描述,从而分析出每一步的责任、要求、能力等,以构建一个合理有效的研发计划。

范德蒙行列式在行业任务中有着广泛的应用,它能有效地帮助任务分解者对任
务中存在的因果关系有更清晰的认识,从而为创造出一种有针对性的解决方案提供有力的指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂零矩阵性质及应用摘要:幂零矩阵是一类特殊的矩阵,在矩阵理论中有重要的作用。

它具有一些很好的性质。

本文从矩阵的不同角度讨论了幂零矩阵的相关性质。

幂零矩阵与若当形矩阵结合可得一个很好性质,在解相关矩阵问题有很好作用,由此我们举例说明,从例子中发现了问题并对此问题实行思考得出了一些结论,对幂零矩阵的研究很有意义。

在一般矩阵中,求矩阵的逆比较麻烦,本文最后利用幂零矩阵特殊性讨论了三类特殊矩阵逆的求法。

关键词:幂零矩阵 若当块 特征值 幂零指数 一、 预备知识版社、《高等代数》(第二版) 北京大学数学系几何与代数教研室代数小组 高等教育出版社、 《高等代数选讲》 陈国利 中国矿业大学出版社及《高等代数习题集》(上册) 杨子胥 山东科学技术出版社)(一) 一些概念1、令A 为n 阶方阵,若存有正整数k ,使0k A =,A 称为幂零矩阵。

2、若A 为幂零矩阵,满足0k A =的最小正整数称为A 的幂零指数。

3、设1111n n nn a a A a a ⎛⎫⎪=⎪⎪⎝⎭,称1111n n nn a a A a a ⎛⎫⎪'= ⎪ ⎪⎝⎭为A 的转置, 称111*1n nnn A A A A A ⎛⎫⎪=⎪ ⎪⎝⎭为A 的伴随矩阵。

其中(,1,2,,)ij A i j n =为A 中元素ij a 的代数余子式4、设A 为一个n 阶方阵,A 的主对角线上所有元素的和称为A 的迹,记为trA 。

5、主对角线上元素为0的上三角称为严格的上三角。

6、形为010(,)000001J t λλλλλ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭的矩阵称为若当块,其中λ为复数,由若干个若当块组成和准对角称为若当形矩阵。

7、()f E A λλ=-称为矩阵A 的特征多项式。

满足()0f E A λλ=-=的λ的值称为矩阵A 的特征值。

8、次数最低的首项系数为1的以A 为根的多项式称为A 的最小多项式。

(二)、一些引理引理1:设A ,B 为n 阶方阵,则()()***,AB B A AB B A '''==引理2:(),()A f E A m λλλ=-分别为矩阵A 的特征多项式和最小多项式,则有()0,()0A f A m A ==。

引理3:每一个n 阶的复矩阵A 都与一若当形矩阵相似,这个若当形矩阵除去若当块的排序外被矩阵A 唯一决定的,它称为A 的若当标准形。

引理4:若当形矩阵的主对角线上和元素为它的特征值。

引理5:n 阶复矩阵A 与对角矩阵相似的充分必要条件是A 和最小多项式无重根。

引理6:相似矩阵具有相同的特征值。

引理7:设12,,,n λλλ为n 阶矩阵A 的特征值,则有12n trA λλλ=+++,12n A λλλ=⋅⋅,且对任意的多项式()f x 有()f A 的特征值为12(),(),,()n f f f λλλ。

引理8:k 阶若当块11k a J a ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭的最小多项式为()k x a -且有()0k k J aE -=。

引理9:矩阵匠最小多项式就是矩阵A 的最后一个不变因子。

引理10:A ,B 为n 阶复数域上的矩阵,若AB BA =,则存有可逆矩阵T ,使得112211n n T AT T BT λμλμλμ--⎛⎫⎛⎫⎪ ⎪**⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭。

引理11:任意n 阶A ,B 方阵,有()()tr AB tr BA =。

二、 幂零矩阵的性质(下面的性质来自《高等代数解题方法与技巧》 李师正 高等教育出版社、《高等代数》(第二版) 北京大学数学系几何与代数教研室代数小组 高等教育出版社、《高等代数选讲》 陈国利 中国矿业大学出版社、《高等代数习题集》(上册) 杨子胥 山东科学技术出版社、《关于幂零矩阵性质的探讨》 谷国梁 铜陵财经专科学校学报、《幂零矩阵的性质及应用》 韩道兰 罗雁 黄宗文 玉林师范学院学报并综合归纳得出关于幂零矩阵的十一条性质) 性质1:A 为幂零矩阵的充分必要条件是A 的特征值全为0。

证明:⇒A 为幂零矩阵 k Z +∴∃∈ .0k s tA =令0λ为A 任意一个特征值,则00,.s t A ααλα∃≠= 由引理7知,0k λ为k A 的特征值 00.k k s t A ββλβ∴∃≠= 从而有0k λ=0即有00λ=又有0k A =,知00kk A A A ==⇒= 0*(1)(1)00k k E A A A ∴-=-=-=-⋅= 00λ∴=为A 的特征值。

由0λ的任意性知,A 的特征值为0。

⇐A 的特征值全为0A ∴的特征多项式为()n f E A λλλ=-= 由引理2知,()0n f A A == 所以A 为幂零矩阵。

得证 性质2:A 为幂零矩阵的充分必要条件为0k k Z trA +∀∈=。

证明:⇒A 为幂零矩阵,由性质1,知:A 的特征值全为0 即120n λλλ====由引理7,知 k A 的特征值为120k k k n λλλ====从而有 120k k k k n trA λλλ=+++=⇐由已知,120k k k k n k Z trA λλλ+∀∈=+++=(1.1)令12,,,t λλλ为A 的不为0的特征值且i λ互不相同重数为(1,2,,)in i t =由(1.1)式及引理7,得方程组11222221122333112211220000t t t t t t t t t t t n n n n n n n n n n n n λλλλλλλλλλλλ+++=⎧⎪+++=⎪⎪+++=⎨⎪⎪⎪+++=⎩(1.2)因为方程组(1.2)的系数行列式为122221212121212121111()t t t tttttttt t t i j j i tB λλλλλλλλλλλλλλλλλλλλλλλ≤<≤===∏-又(1,2,)ii t λ=互不相同且不为0,0B ∴≠从而知,方程(1.2)只有0解,即0(1,2,,)i n i t ==即A 没有非零的特征值A ∴的特征值全为0, 由性质1,得 A 为幂零矩阵 得证性质3:若A 为幂零矩阵,则A 的若当标准形J 的若当块为幂零若当块,且J和主对角线上的元素为0证明:A 为幂零矩阵, 由性质1,知 A的特征值全为0 由引理3,知 在复数域上,存有可逆矩阵T ,使得121s J J T AT J -⎛⎫⎪⎪= ⎪ ⎪⎝⎭其中11i i i J λλ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =由引理4,知(1,2,,)i i s λ=为J 和特征值又A 与J 相似,由引理6,知A 与J 有相同的特征值 所以0(1,2,,)i i s λ== 即J 的主对角线上的元素全为0由引理8,知 (0)()0(1,2,,)i i n n i i J E J i s -===12,,,s J J J 为幂零矩阵 得证性质4:若A 为幂零矩阵,则A 一定不可逆但有1,1A E E A +=-= 证明:A 为幂零矩阵,k Z +∴∃∈ .0k s tA =00kk A A A ∴==⇒= A 一定不可逆由性质1,得 A 的特征值为120n λλλ====由引理7,得,A E E A +-的特征值分别为1212011,101n n λλλλλλ'''''''''====+=====-=且有1211n n A E λλλ'''+=== 1211n n E A λλλ''''''-===即1,1A E E A +=-= 得证 性质5:若A E +为幂零矩阵,则A 非退化 证明:令12,,,n λλλ为A 的特征值若A 退化,则有 0A = 由引理7,得 120n A λλλ==∴至少存有0i λ=0为A 的特征值又由引理7,得 0110i λ+=≠为A E +的一特征值这与A E +为幂零矩阵矛盾 得证A 为非退化性质6:若A 为幂零矩阵,B 为任意的n 阶矩阵且有AB BA =,则AB 也为幂零矩阵 证明:A 为幂零矩阵 .0k k Z s tA +∴∃∈=又AB BA = ()00k k k k AB A B B ==⋅= AB ∴也为幂零矩阵 得证性质7:若A 为幂零矩阵且0k A =,则有121()k E A E A A A ---=++++1211231111()(1)(0)k k kmE A E A A A m m m mm ---+=-+++-≠证明:0k A = k k k E E A E A ∴=-=-21()()k E A E A A A -=-++++即121()k E A E A A A ---=++++任意0m ≠,有[()]k k k k kA mE mE A mE A m E m∴=+=+=+ 211121111()((1))k k k A m E E A A A m m mm ---=+-+++-211121111()((1))k k k mE A E A A A m m m---=+-+++- 即有2111211111()((1))k k k mE A E A A A E m m mm---+⋅-+++-=1211121211231111()((1))111(1)k k k k k k mE A E A A A m m m mE A A A m m m m------∴+=-+++-=-+++-性质8:若A 为幂零矩阵且A 0≠,则A 不可对角化但对任意的n 阶方阵B ,存有幂零矩阵N ,使得B N +可对角化 证明:A 为幂零矩阵 .0k k Z s tA +∴∃∈=且A 的特征值全为零()n f E A λλλ=-=为A 的特征多项式且()0n f A A == 令()A m λ为A 的最小多项式,则有()|()A m f λλ 从而有00()(1)k A m k n λλ=≤≤因为0A 0,k 1≠∴>,又此时 00()2k A m k λλ=≥即A 的最小多项式有重根,由引理5,知 A 不可对角化 B 为n 阶方阵 由引理3,知 在复数域上,存有可逆矩阵T ,使得121s J J T BT J -⎛⎫⎪⎪= ⎪ ⎪⎝⎭其中11i i i J λλ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =令 i ii i D λλλ⎛⎫⎪⎪= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =则有0110i i i J J D ⎛⎫ ⎪⎪'=-= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =由引理8,知(0)()0i i i n n i n i J E J ''-⋅== 即i J '为幂零矩阵(1,2,,)i s =现令12s J J J J ⎛⎫' ⎪ ⎪''= ⎪ ⎪ ⎪ ⎪'⎝⎭12s D D D D ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭1112122s s s J D J J J D T BT J D J J D -⎛⎫'+⎛⎫ ⎪⎪ ⎪'+⎪'===+ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭'+⎝⎭即111()(1)B T J D T TJ T TDT ---''=+=+又D 为对角阵,由(1)式知 11B TJ T TDT --'-=可对角化 令N =1TJ T -'- 且取 12max(,,,)s k n n n = 则有120kkkk s J J J J ⎛⎫' ⎪ ⎪''==⎪ ⎪ ⎪ ⎪'⎝⎭111112()()()()()00k kk k k k kk k s J J N TJ T T J TT T T T J ----⎛⎫' ⎪ ⎪'''=-=-=-=-=⎪ ⎪ ⎪ ⎪'⎝⎭即有B N +可对角化且N 为幂零矩阵 得证性质9:n 阶幂零矩阵的幂零指数小于等于n 且幂零指数等于其若当形矩阵中阶数最高的若当块的阶数证明;令A 为n 阶幂零矩阵 由性质3知, 存有可逆矩阵T 使得121s J J T AT J -⎛⎫⎪⎪= ⎪ ⎪⎝⎭其中0110i J ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭阶数为(1,2,,)in i s =且()0i n i J = 1(1,2,,)i n n i s ≤≤=取12max(,,,)s k n n n =,则k n ≤ 且有1121112()00(1.5)k kk k k s s J J J J A T T T T T T J J ---⎛⎫⎛⎫⎪⎪⎪⎪===⋅⋅= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭即0k A =若令0k 为A 的幂零指数,则0k k n ≤≤ 00k A = 若0k k <,则000.i i s t n k ∃> 且000k i J ≠由(1.5)式,得00000112112()0k k k k k s s J J J J A T T T T J J --⎛⎫⎛⎫⎪⎪⎪⎪==≠ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭这与00k A =矛盾。

相关文档
最新文档