2018年安徽省六安市霍邱县中考数学一模试卷含答案解析

合集下载

安徽省合肥市高新区2018届中考数学一模试卷含答案解析模板

安徽省合肥市高新区2018届中考数学一模试卷含答案解析模板

2018年安徽省合肥市高新区中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的答题框中,每一小题:选对得4分,不选错选或选出的代号超过一个的一律得0分1.﹣3的倒数是()A.﹣B.3 C.D.±2.计算(m3)2÷m3的结果等于()A.m2B.m3C.m4D.m63.据统计,地球上的海洋面积约为361 000 000km2,该数用科学记数法表示为3.61×10m,则m的值为()A.6 B.7 C.8 D.94.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A.B.C.D.5.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④6.2017年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟)则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.方差是135 B.平均数是170C.中位数是173.5 D.众数是1777.不等式组的解集在数轴上表示正确的是()A.B.C. D.8.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④ D.④⑤9.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C. D.210.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:12x2﹣3y2=.12.观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,解答下列问题:3+32+33+…+32017的末位数字是.13.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为.14.如图,CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE.请写出正确结论的序号(注:将你认为正确结论的序号都填上).三、(本大题共2小题,每小题8分,满分16分)15.计算:﹣(﹣2)+(1+π)0﹣|1﹣|+﹣cos45°.16.解方程:=.四、(本大题共2小题,每小题8分,满分16分)17.如图,△A1B1C1是△ABC向右平移4个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC,并写出点A,B,C的坐标;(2)求出△AOA1的面积.18.一方有难八方支援.安徽地震局救援队在某次地震救援中,探测出某建筑物废墟下方点C处有生命迹象,在废墟一侧某面上选两探测点A、B,AB相距2.1米,探测线与地面的夹角分别是35°和45°(如图),试确定生命所在点C与探测面的距离(参考数据≈1.4,≈1.7)五、(本大题共2小题,每小题10分,满分20分)19.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.20.(2017•威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.六、(本题满分12分)21.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(﹣3,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2),是函数y=图象上的两点,且y1>y2,求实数p的取值范围.七、(本题满分12分)22.如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG=2时,求证:菱形EFGH为正方形;(3)设AH=x,DG=2x,△FCG的面积为y,试求y的最大值.八、(本题满分14分)23.音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化,某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?(3)若k=2,且要求喷出的抛物线水线不能到岸边,求a的取值范围.2018年安徽省合肥市高新区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的答题框中,每一小题:选对得4分,不选错选或选出的代号超过一个的一律得0分1.﹣3的倒数是()A.﹣B.3 C.D.±【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:﹣3的倒数是﹣.故选:A.【点评】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.计算(m3)2÷m3的结果等于()A.m2B.m3C.m4D.m6【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法法则,同底数幂相除,底数不变指数相减的性质,对各选项计算后选取答案.【解答】解:(m3)2÷m3=m6÷m3=m3,故选B.【点评】本题考查同底数幂的除法法则,熟练掌握运算法则是解题的关键.3.据统计,地球上的海洋面积约为361 000 000km2,该数用科学记数法表示为3.61×10m,则m的值为()A.6 B.7 C.8 D.9【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将361 000 000用科学记数法表示为:3.61×108.故m=8.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】本题给出了正视图与左视图,由所给的数据知凭据三视图的作法规则,来判断左视图的形状,由于正视图中的长与左视图中的长不一致,此特征即是判断俯视图开关的关键,由此标准对四个可选项依次判断即可.【解答】解:几何体的主视图和左视图完全一样均如图所示则上面的几何体从正面看和左面看的长度相等,只有等边三角形不可能,故选C.【点评】本题考点是简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.6.2017年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟)则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.方差是135 B.平均数是170C.中位数是173.5 D.众数是177【考点】方差;加权平均数;中位数;众数.【分析】根据平均数、方差、中位数和众数的定义分别进行解答,即可求出答案.【解答】解:这组数据的平均数是:(140+160+169+170×2+177×3+180×2)÷10=170,则方差=[(140﹣170)2+(160﹣170)2+(169﹣170)2+2×(170﹣170)2+3×(177﹣170)2+2×(180﹣170)2]=134.8;∵共有10个数,∴中位数是第5个和6个数的平均数,∴中位数是(170+177)÷2=173.5;∵177出现了三次,出现的次数最多,∴众数是177;∴下列说法错误的是A;故选A.【点评】此题考查了平均数、方差、中位数和众数,掌握平均数、方差、中位数和众数的定义是解题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).7.不等式组的解集在数轴上表示正确的是()A.B.C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:故选:D.【点评】本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.8.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④ D.④⑤【考点】三角形中位线定理;平行线之间的距离.【专题】压轴题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.9.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C. D.2【考点】直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.【专题】几何图形问题.【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.10.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.【考点】动点问题的函数图象;等腰三角形的性质.【专题】数形结合.【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到y=x2;当1<x≤2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到y=x2﹣2(x﹣1)2,配方得到y=﹣(x﹣2)2+2,然后根据二次函数的性质对各选项进行判断.【解答】解:当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2﹣x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2﹣x,∴EM=x﹣(2﹣x)=2x﹣2,∴S△ENM=(2x﹣2)2=2(x﹣1)2,∴y=x2﹣2(x﹣1)2=﹣x2+4x﹣2=﹣(x﹣2)2+2,∴y=,故选:A.【点评】本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.也考查了等腰直角三角形的性质.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:12x2﹣3y2=3(2x+y)(2x﹣y).【考点】提公因式法与公式法的综合运用.【分析】考查了对一个多项式因式分解的能力,本题属于基础题.当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.此题应提公因式,再用公式.【解答】解:12x2﹣3y2=3(2x﹣y)(2x+y).【点评】本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以提取公因式的要先提取公因式12.观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,解答下列问题:3+32+33+…+32017的末位数字是9.【考点】尾数特征.【专题】规律型.【分析】根据31=3,32=9,33=27,34=81,35=243,36=729,37=2187…得出3+32+33+34…+32017的末位数字相当于:3+7+9+1+…+3+7+9,进而得出末尾数字.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2017÷4=503…3,∴3+32+33+34…+32017的末位数字相当于:3+7+9+1+…+3+7+9=(3+9+7+1)×503+19=10079的末尾数为9.故答案为:9.【点评】此题主要考查了尾数特征以及数字变化规律,根据已知得出数字变化规律是解题关键.13.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为80°.【考点】切线的性质.【分析】根据切线的性质得出∠OCD=90°,进而得出∠OCB=40°,再利用圆心角等于圆周角的2倍解答即可.【解答】解:∵在⊙O中,AB为直径,BC为弦,CD为切线,∴∠OCD=90°,∵∠BCD=50°,∴∠OCB=40°,∴∠AOC=80°.故答案为:80°.【点评】本题考查了切线的性质定理以及圆周角定理的运用,熟记和圆有关的各种性质定理是解题关键.14.如图,CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE.请写出正确结论的序号①②④(注:将你认为正确结论的序号都填上).【考点】三角形中位线定理;全等三角形的判定与性质.【专题】压轴题.【分析】根据三角形的中位线定理和三角形全等的判定,此处可以运用排除法逐条进行分析.【解答】解:根据三角形的中线的概念得AE=2AB=2AC,①正确;②作CE的中点F,连接BF.根据三角形的中位线定理得AC=2BF,又AC=AB=2BD,所以BF=BD.根据三角形的中位线定理得到BF∥AC,则∠CBF=∠ACB=∠ABC.根据SAS得到△BCD≌△BCF,所以CF=CD,即CE=2CD.②正确;③根据②中的全等三角形得到∠BCD=∠BCE,若∠ACD=∠BCE,则需∠ACD=∠BCD.而CD只是三角形的中线.错误;④正确.故正确的是①②④.【点评】考查了三角形的中线的概念,能够熟练运用三角形的中位线定理,掌握全等三角形的判定和性质.三、(本大题共2小题,每小题8分,满分16分)15.计算:﹣(﹣2)+(1+π)0﹣|1﹣|+﹣cos45°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用去括号法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,第四项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=2+1﹣+1+2﹣=4+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.解方程:=.【考点】解分式方程.【分析】因为3x﹣3=3(x﹣1),所以可确定方程的最简公分母为3(x﹣1),确定方程最简公分母后,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘3(x﹣1),得:3x=2,解得x=.经检验x=是方程的根.【点评】本题考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)分式中有常数项的注意不要漏乘常数项.四、(本大题共2小题,每小题8分,满分16分)17.如图,△A1B1C1是△ABC向右平移4个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC,并写出点A,B,C的坐标;(2)求出△AOA1的面积.【考点】作图-平移变换.【分析】(1)直接把△A1B1C1是向左平移4个单位,再写出点A,B,C的坐标即可;(2)直接根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示,A(﹣3,1),B(0,2),C(﹣1,4);(2)S△AOA1=×4×1=2.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.18.一方有难八方支援.安徽地震局救援队在某次地震救援中,探测出某建筑物废墟下方点C处有生命迹象,在废墟一侧某面上选两探测点A、B,AB相距2.1米,探测线与地面的夹角分别是35°和45°(如图),试确定生命所在点C与探测面的距离(参考数据≈1.4,≈1.7)【考点】解直角三角形的应用.【分析】首先过C作CD⊥AB,设CD=x米,则DB=CD=x米,AD=CD=x米,再根据AB相距2.1米可得方程x﹣x=2.1,再解即可.【解答】解:过C作CD⊥AB,设CD=x米,∵∠ABE=45°,∴∠CBD=45°,∴DB=CD=x米,∵∠CAD=30°,∴AD=CD=x米,∵AB相距2.1米,∴x﹣x=2.1,解得:x=3.答:命所在点C与探测面的距离是3米.【点评】此题主要考查了解直角三角形的应用,关键是正确分析出CD、AD、BD的关系.五、(本大题共2小题,每小题10分,满分20分)19.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据外来务工子女有4名的班级占20%,可求得有外来务工子女的总班级数,再减去其它班级数,即可补全统计图;(2)根据班级个数和班级人数,求出总的外来务工子女数,再除以总班级数,即可得出答案;(3)根据(1)可知,只有2名外来务工子女的班级有2个,共4名学生,再设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,再根据概率公式即可得出答案.【解答】解:(1)该校班级个数为4÷20%=20(个),只有2名外来务工子女的班级个数为:20﹣(2+3+4+5+4)=2(个),条形统计图补充完整如下该校平均每班外来务工子女的人数为:(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4(个);(2)由(1)得只有2名外来务工子女的班级有2个,共4名学生,设A1,A2来自一个班,B1,B2来自一个班,画树状图如图所示;由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名外来务工子女来自同一个班级的概率为:=.【点评】本题考查了条形统计图和扇形统计图、树状图的画法以及规律公式;读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(2017•威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.【考点】相似三角形的判定与性质;等腰三角形的性质;圆周角定理.【专题】证明题.【分析】(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,然后利用等腰三角形的性质即可得到BE=CE;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.【解答】(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和圆周角定理.六、(本题满分12分)21.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(﹣3,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2),是函数y=图象上的两点,且y1>y2,求实数p的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先把B(﹣3,﹣2)代入反比例函数解析式中确定k2,然后把A(2,m)代入反比例函数的解析式确定m,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)根据函数的图象即可求得;(3)分两种情况结合图象即可求得.【解答】解:(1)把B(﹣3,﹣2)代入数y=中,∴k2=6,∴反比例函数解析式为y=,把A(2,m)代入y=得,m=3,把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:解得k1=1,b=1,∴一次函数解析式为y=x+1.(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>的解集是﹣3<x<0或x>2;(3)分两种情况:当P在第三象限时,要使y1>y2,p的取值范围为p<﹣2;当P在第一象限时,要使y1>y2,p的取值范围为p>0;故P的取值范围是p<﹣2或p>0.【点评】此题考查了用待定系数法确定反比例函数和一次函数的解析式,也考查了反比例函数和一次函数的交点问题,函数和不等式的关系.七、(本题满分12分)22.如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG=2时,求证:菱形EFGH为正方形;(3)设AH=x,DG=2x,△FCG的面积为y,试求y的最大值.【考点】四边形综合题.【分析】(1)过F作FM⊥CD,垂足为M,连接GE,由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由GE为菱形的对角线,利用菱形的性质得到一对内错角相等,利用等式的性质即可得证;(2)由于四边形ABCD为正方形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG 为正方形;(3)欲求△FCG的面积,由已知得CG的长易求,只需求出GC边的高,通过证明△AHE≌△MFG 可得.【解答】(1)证明:过F作FM⊥CD,垂足为M,连接GE,∵CD∥AB,∴∠AEG=∠MGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠AEH=∠FGM;(2)证明:在△HDG和△AEH中,∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HDG和△AEH中,,∴Rt△HDG≌△AEH(HL),∴∠DHG=∠AEH,∴∠DHG+∠AHE=90°∴∠GHE=90°,∴菱形EFGH为正方形;(3)解:过F作FM⊥CD于M,在△AHE与△MFG中,,∴△AHE≌△MFG,∴MF=AH=x,∵DG=2x,∴CG=6﹣2x,∴y=CG•FM=•x•(6﹣2x)=﹣(x﹣)2+,=.∵a=﹣1<0,∴当x=时,y最大【点评】本题考查了正方形的性质、菱形的性质、全等三角形的判定和性质,解题的关键是作辅助线:过F作FM⊥DC,交DC延长线于M,连接GE,构造全等三角形和内错角.八、(本题满分14分)23.音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化,某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?(3)若k=2,且要求喷出的抛物线水线不能到岸边,求a的取值范围.【考点】二次函数的应用.【分析】(1)根据抛物线的顶点在直线y=kx上,抛物线为y=ax2+bx,k=1,且喷出的抛物线水线最大高度达3m,可以求得a,b的值;(2)根据k=1,喷出的水恰好达到岸边,抛物线的顶点在直线y=kx上,可以求得抛物线的对称轴x 的值,从而可以得到此时喷出的抛物线水线最大高度;(3)抛物线的顶点在直线y=2x上可得b的值,根据喷出的抛物线水线不能到岸边,而出水口离岸边18m可知其对称轴﹣<9,可得a的范围.【解答】解:(1)∵y=ax2+bx的顶点为(﹣,﹣),抛物线的顶点在直线y=kx上,k=1,抛物线水线最大高度达3m,∴﹣=,=3,解得,a=﹣,b=2,即k=1,且喷出的抛物线水线最大高度达3m,此时a、b的值分别是﹣,2;(2)∵k=1,喷出的水恰好达到岸边,出水口离岸边18m,抛物线的顶点在直线y=kx上,∴此时抛物线的对称轴为x=9,y=x=9,即此时喷出的抛物线水线最大高度是9米;(3)∵y=ax2+bx的顶点为(﹣,﹣),抛物线的顶点在直线y=2x上,∴﹣×2=﹣,解得:b=4,∵喷出的抛物线水线不能到岸边,出水口离岸边18m,∴﹣<9,即:﹣<9,解得:a>﹣,又∵a<0,∴﹣<a<0.【点评】本题考查二次函数的应用,解题的关键是明确题意,根据题目给出的信息列出相应的关系式,找出所求问题需要的条件.。

2021年安徽省六安市霍邱县中考一模数学试题含答案

2021年安徽省六安市霍邱县中考一模数学试题含答案

2021年安徽省六安市霍邱县中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分,每小题都给出A、B、C、D四个选项,其中只有一个是正确的1.下列各数中,最小的数是()A.﹣B.﹣1C.0D.2.下列各式中,运算结果为a6的是()A.a3•a3B.(a3)3C.a3+a3D.a12÷a23.如图是由6个完全一样的小正方体搭成的几何体,则它的俯视图是()A.B.C.D.4.下列各多项式中,能因式分解的是()A.a2+b2B.a2﹣ab+b2C.﹣a2﹣4D.a2﹣a+5.数轴上A,B,C,D四点中,两点之间的距离最接近于+1的是()A.点A和点B B.点B和点C C.点C和点D D.点A和点C6.某家用电器商城销售一款每台进价为a元的空调,标价比进价提高了30%,因商城销售方向调整,决定打九折降价销售,则每台空调的实际售价为()元.A.90%(1+30%)a B.(1+30%)(1﹣90%)aC.(1+30%)a÷90%D.(1+30%﹣10%)a7.若一组数据3,4,5,x,8的平均数是4.4,则这组数据的中位数为()A.5B.4C.3D.4.48.据统计,2018年底某款APP用户数约为5千万,2020年底达到7千万.假设未来几年内仍将保持相同的增长率,则该款APP用户数首次突破1亿的年份是()A.2022年B.2023年C.2024年D.2025年9.如图,E是平行四边形ABCD的边AD的延长线上一点,连接BE交CD于点F,连接CE,BD.添加以下条件,仍不能判定四边形BCED为平行四边形的是()A.∠ABD=∠DCE B.∠AEC=∠CBD C.EF=BF D.∠AEB=∠BCD10.已知等腰直角△ABC的斜边AB=4,正方形DEFG的边长为,把△ABC和正方形DEFG 如图放置,点B与点E重合,边AB与EF在同一条直线上,将△ABC沿AB方向以每秒个单位的速度匀速平行移动,当点A与点E重合时停止移动在移动过程中,△ABC与正方形DEFG 重叠部分的面积S与移动时间t(s)的函数图象大致是()A.B.C.D.二、填空(本大题共4小题,每小题5分,满分20分)11.2020年12月22日开通运营的“合安高铁(合肥一安庆)总投资约334.5亿元,将334.5亿元用科学记数法表示为元.12.不等式组的解集是.13.如图,从一块半径是cm的圆形铁皮(⊙O面)上剪出一个圆心角(∠BAC)为60°的扇形BAC,点B和点C在⊙O的圆周上,若OA=2cm,则所剪出扇形的面积等于cm2.14.将矩形ABCD按如图所示的方式折叠、BE、EG、FG为折痕,若顶点A,G,D恰好都落在点O 处(1)的值为.(2)若AD=4,则四边形BEGF的面积为.三、(本大题共2小题,每小题8分,满分16分)15.计算:(﹣3)2+()﹣1﹣2cos45°+|﹣|.16.某商店决定购进A、B两种纪念品出售,若购进A种纪念品10件,B种纪念品5件,则需要215元;若购进A种纪念品5件,B种纪念品10件,则需要205元.(1)求A、B两种纪念品的购进单价;(2)已知商店购进两种纪念品(A、B都要有)共花费450元,那么该商店购进这两种纪念品有几种可能的方案,请直接写出所有的具体购买方案.四、(本大题共2小题,每小题8分,满分16分)17.如图,每一个小方格正方形的边长均为一个单位长度,△ABC的顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)请在网格中画出△ABC关于原点O的中心对称图形△A1B1C1.(2)以点O为位似中心,位似比为2:1将△ABC放大得到△A2B2C2,请在网格中画出△A2B2C2不要超出方格区域)(3)求△A2B2C2的面积.18.我们把按一定规律排列的一列数称为数列.若对于一个数列中任意相邻有序的三个数a,b,c 总满足c=ab+2a﹣b,则称这个数列为“梦数列”.(1)若0,1,﹣1,2,y是“梦数列”,则y=;(2)如果数列…,x,3,6x﹣1,…是“梦数列”,求x的值;(3)如果数列…,2m,n,5…是“梦数列”,求代数式8m﹣2n+4mn﹣9的值.五、(本大题共2小题,每小题10分,满分20分)19.如图,小强利用学到的数学知识测量某大桥主架在水面以上部分AB的高度,他在C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,C处与大桥主架的水平距离CM为60米,且AB垂直于水面(点A,B,C,M在同一平面内).求AB的高度(结果精确到1米)(参考数据sin14°≈0.24,cos14°≈0.97,tan14°≈0.25,≈1.73)20.如图,反比例函数y1=和一次函数y2=mx+n相交于点A(1,3),B(﹣3,a).(1)求一次函数和反比例函数的表达式;(2)连接OA,试问在x轴上是否存在点P,使得△OAP为以OA为腰的等腰三角形,若存在,直接写出满足题意的点P的坐标;若不存在,说明理由.六、(本题满分12分)21.新学期,某校开设了“国学经典”课程为了解学生对“国学经典”课程的掌握情况,从八年级学生中随机抽取了部分学生进行一次综合测试,测试结果分为四个等级:A级为优秀,B级为良好,C级为合格,D级待进步,将测试结果绘制成了如图所示的两幅不完整的统计图,根据统计图中的信息解答下列问题:(1)本次抽样测试的人数是名;(2)扇形统计图中表示A级的扇形圆心角α的度数是,请把条形统计图补充完整;(3)若该校八年级共有学生500名,且全部参加这次测试,估计优秀的人数为;(4)某班有4名得优秀的学生:甲、乙、丙、丁班主任要从中随机抽取两名同学进行经验分享,请利用列表法或画树状图,求甲被选中的概率.七、(本题满分12分)22.一段长为30m的墙MN前有一块矩形ABCD空地,用100m长的篱笆围成如图所示的图形,(靠墙的一边不用篱笆,篱笆的厚度忽略不计),其中四边形AEFH和四边形CDHG是矩形,四边形EBGF是边长为10m的正方形,设CD=xm.(1)若矩形CDHG面积为125m2,求CD长;(2)当CD长为多少m时,矩形ABCD的面积最大,最大面积是多少?八、(本题满分14分)23.在Rt△ABC中,AC=BC,∠ACB=90°,是AB的中点,∠EDF=45°,∠EDF绕顶点D旋转,角的两边分别与AC、BC的延长线相交于点E,F,DF交AC于M,DE交BC于N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,求证:CD2=CE•CF;(3)若CD=2,CF=,求DN的长.2020—2021学年度九年级第一次模拟考试数学学科参考答案一、选择题(本大题共10题,每小题4分,满分40分)二、填空(本大题共分,每小题分,满分分)11.103.34510⨯ 12.31x -<≤ 13.92π ;(2)2(第1小题3分,第2小题2分) 三、(本大共2小题,每小题8分,满分16分)15.解:原式=9222+-⨯+ (4)=11 ............ 6 =11 (8)16.解:(1)设A 种纪念品的购进单价为x 元,B 种纪念品的购进单价为y 元, 依题意,得:105215510205x y x y +=⎧⎨+=⎩, (3)解得:1513x y =⎧⎨=⎩. (4)答:A 种纪念品的购进单价为15元,B 种纪念品的购进单价为13元.…………… 4 (2)该商店共有2种进货方案方案1:购进4件A 种纪念品,30件B 种纪念品;方案2:购进17件A 种纪念品,15件B 种纪念品; ..................... 8 四、(本大共2小题,每小题8分,满分16分) 17.解:(1)△111A B C 如图所示;..................... 3 (2)△222A B C 如图所示; (6)(3)△222A B C 的面积1114(43413132)22222=⨯-⨯⨯-⨯⨯-⨯⨯=. (8)18.解:(1)﹣6; (2)(2)∵数列 …,x ,3,6x ﹣1,… 是“梦数列”,∴6x ﹣1=3x+2x ﹣3,解得x =﹣2,即x 的值为﹣2; (5)(3)∵数列…,2m ,n ,5…是“梦数列”, ∴5=2mn+4m ﹣n , ∴8m ﹣2n+4mn ﹣9=2(2mn+4m ﹣n )﹣9=2×5﹣9=1.…………… 8 五、(本大共2小题,每小题10分,满分20分) 19.解:AB 垂直于桥面,90AMC BMC ∴∠=∠=︒,在Rt AMC ∆中,60CM =,30ACM ∠=︒, tan AMACM CM∠=, tan AM CM ACM ∴=∠=⨯=3602033(米),…………… 4 在Rt BMC ∆中,60CM =,14BCM ∠=︒,tan BMBCM CM∠=, tan .MB CM BCM ∴=∠=⨯=6002515(米), (8)1520350AB AM MB ∴=+=+≈(米) (9)答:大桥主架在水面以上部分AB 的高度约为50米.… 10 20. 解:(1)∵点A (1,3)在反比例函数1ky x=的图象上, ∴k =1×3=3,∴反比例函数的解析式为13y x=,.…………3 ∵点B (﹣3,a )在反比例函数13y x=的图象上,∴﹣3a =3,∴a =﹣1,∴B (﹣3,﹣1),∵点A (1,3),B (﹣3,﹣1)在一次函数2y mx n =+的图象上,∴331m n m n +=⎧⎨-+=-⎩,∴12m n =⎧⎨=⎩,∴一次函数的解析式为22y x =+; (7)(2)点P 的坐标为(﹣10,0)或(2,0)或(10,0).………… 10 六、(本题满分12分) 21.解:(1)40 …………… 2 (2)54°…………1把条形统计图补充完整如图: (4)(3)75 (6)(4)把甲、乙、丙、丁分别记为A 、B 、C 、D , 画树状图如下: (10)从以上树状图可以看出共有12种等可能的结果,其中甲被选中的结果有6个, ∴P (甲被选中)==. (12)七、(本题满分12分)22.解:(1)由题意得:320100x GC ++=, ∴(803)GC x m =-, (1)10803903BC BG GC x x =+=+-=-,而030BC <,即090330x <-≤,解得2030x ≤<,………… 2 矩形CDHG 的面积()GC CD x x =⋅=-=803125,…………4 解得25x =或53(舍去) (5)答:CD 长为25m .…………6 (2) 设矩形ABCD 的面积为S 2m ,则S BC CD =⋅=()()2903315675x x x -=--+ (9)-<30,故抛物线开口向下,而2030x <,当15x >时,S 随x 的增大而减小,所以当x 取小值20时,S 取得最大值600. (11)答:当CD 长为20m 时,矩形ABCD 的面积最大,最大面积为6002m .……………12 八、(本题满分14分) 23.(1)证明:ACB ∠=90,AC BC =,CD 是AB 边上的中线,45ACD BCD ∴∠=∠=︒,90ACF BCE ∠=∠=︒, 135DCF DCE ∴∠=∠=︒,在DCF ∆和DCE ∆中, CF CE DCF DCE DC DC =⎧⎪∠=∠⎨⎪=⎩,()DCF DCE SAS ∴∆≅∆ DE DF ∴=; …………………… 4 (2)证明:DCF ∠=135, 45F CDF ∴∠+∠=︒,FDE ∠=45,45CDE CDF ∴∠+∠=︒, F CDE ∴∠=∠,DCF DCE ∠=∠,F CDE ∠=∠, FCD DCE ∴∆∆∽, …………………… 7 ∴CF CD CD CE=, CD CE CF ∴=⋅2; …………………… 8 (3)解:过点D 作DG BC ⊥于G , DCB ∠=45,22GC GD ∴=== 由(2)可知, CD CE CF =⋅2,222CD CE CF∴==, ECN DGN ∠=∠,ENC DNG ∠=∠, ENC DNG ∴∆∆∽, ∴CN CE NG DG =2222NG -=, 解得,2NG =, 由勾股定理得,2225DN DG NG +. (14)。

安徽省六安市霍邱县中考数学二模试卷

安徽省六安市霍邱县中考数学二模试卷
22. 霍邱县三流乡开展产业扶贫,鼓励农民养殖龙虾,去年喜获丰收,今年随着各地龙 虾节的火热举办,该乡某龙虾养殖大户为了发挥技术优势,以 16 元/kg 的价格,一 次性收购了 10000kg 小龙虾,计划养殖一段时间后再出售.已知这批小龙虾每天需 要养殖成本 600 元.设这批小龙虾放养 t 天后的质量为 akg,销售单价为 y 元/kg,
药品进行了两次降价,第一次降价 15%,第二次降价的百分率为 x,则该药品两次
降价后的价格变为多少元?( )
第 1 页,共 15 页
A. 345(1-15%)(1-x)
B. 345(1-15%)(1-x%)
C.
D.
8. 下列判断正确的是( )
A. 甲乙两组学生身高的平均数均为 1.58,方差分别为 S 甲 2=2.3,S 乙 2=1.8,则甲
第 6 页,共 15 页
1.【答案】B
答案解析
【解析】解:-(-2019)=2019, A.-2019 与 2019 不相等,故此选项不符合题意; B.2019 与 2019 相等,故此选项符合题意; C.-|-2019|=-2019,与 2019 不相等,故此选项不符合题意;
D.- 与 2019 不相等,故此选项不符合题意;
4.【答案】D
【解析】解:移项得:- <-2, 系数化 1,得:x>4.
第 7 页,共 15 页
∴原不等式的解集为:x>4, 故选:D. 根据解不等式的步骤:移项、系数化为 1 求解即可求得答案. 此题考查了一元一次不等式的解法.注意解不等式依据不等式的基本性质,特别是在系 数化为 1 这一个过程中要注意不等号的方向的变化.去分母的过程中注意不能漏乘没有 分母的项.
才是底数不变,指数相加. (2)此题还考查了合并同类项的方法,要熟练掌握.

2018年安徽省合肥市庐阳区中考数学一模试卷和解析答案

2018年安徽省合肥市庐阳区中考数学一模试卷和解析答案

2018年安徽省合肥市庐阳区中考数学一模试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣2地绝对值是()A.﹣2 B.2 C.±2 D.2.(4分)计算(﹣2x2)3地结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x53.(4分)如图所示地工件,其俯视图是()A.B.C.D.4.(4分)2018年3月5日,李克强总理在政府工作报告中指出,过去五年农村贫困人口脱贫6800万,脱贫攻坚取得阶段性胜利,6800万用科学记数法表示为()A.6800×104B.6.8×104C.6.8×107D.0.68×1085.(4分)不等式组地解集在数轴上表示正确地是()A.B.C.D.6.(4分)如图,把一块含有45°地直角三角形地两个顶点放在直尺地对边上.如果∠1=20°,那么∠2地度数是()A.15°B.20°C.25°D.30°7.(4分)下列关于x地一元二次方程有实数根地是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=08.(4分)某企业因春节放假,二月份产值比一月份下降20%,春节后生产呈现良好上升势头,四月份比一月份增长15%,设三、四月份地月平均增长率为x,则下列方程正确地是()A.(1﹣20%)(1+x)2=1+15% B.(1+15%%)(1+x)2=1﹣20%C.2(1﹣20%)(1+x)=1+15% D.2(1+15%)(1+x)=1﹣20%9.(4分)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)地图象可能是()A.B.C.D.10.(4分)如图,已知菱形ABCD地周长为16,面积为8,E为AB地中点,若P为对角线BD上一动点,则EP+AP地最小值为()A.2 B.2 C.4 D.4二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)9地平方根是.12.(5分)分解因式:a3﹣2a2+a=.13.(5分)如图,正五边形ABCDE地边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则地长为.14.(5分)矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上地点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE地长为.三、解答题(本大题共2小题,共计68分)15.(8分)计算:()﹣2﹣+(﹣4)0﹣cos45°.16.(8分)《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地点出发,甲地速度为7,乙地速度为3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?四、解答题(本大题共2小题,每小题8分,共16分)17.(8分)如图,在平面直角坐标系中,△ABC地三个顶点都在格点上,点A 地坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称地△A1B1C1,并写出点A1地坐标.(2)画出△A1B1C1绕原点O旋转180°后得到地△A2B2C2,并写出点A2地坐标.18.(8分)观察下面地点阵图和相应地等式,探究其中地规律:(1)认真观察,并在④后面地横线上写出相应地等式.①1=1 ②1+2==3 ③1+2+3==6 ④…(2)结合(1)观察下列点阵图,并在⑤后面地横线上写出相应地等式.①1=12②1+3=22③3+6=32④6+10=42⑤…(3)通过猜想,写出(2)中与第n个点阵相对应地等式.五、解答题(本大题共2小题,每小题10分,共20分)19.(10分)如图,用细线悬挂一个小球,小球在竖直平面内地A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB地长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)20.(10分)已知:如图,在半径为4地⊙O中,AB、CD是两条直径,M为OB 地中点,CM地延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM•MB=EM•MC;(2)求EM地长;(3)求sin∠EOB地值.六、解答题(本题满分12分)21.(12分)为大力弘扬“奉献、友爱、互助、进步”地志愿服务精神,传播“奉献他人、提升自我”地志愿服务理念,合肥市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务地情况,收集整理数据后,绘制以下不完整地统计图,请你根据统计图中所提供地信息解答下列问题:(1)请把折线统计图补充完整;(2)求扇形统计图中,网络文明部分对应地圆心角地度数;(3)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动地概率.七、解答题(本题满分12分)22.(12分)某旅行社推出一条成本价位500元/人地省内旅游线路,游客人数y (人/月)与旅游报价x(元/人)之间地关系为y=﹣x+1300,已知:旅游主管部门规定该旅游线路报价在800元/人~1200元/人之间.(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价地取值范围;(2)求经营这条旅游线路每月所需要地最低成本;(3)档这条旅游线路地旅游报价为多少时,可获得最大利润?最大利润是多少?八、解答题(本题满分14分)23.(14分)已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作CE ⊥AB于点E,点F为AB上一点,且EF=EB,连结DF.(1)求证:CD=CF;(2)连结DF,交AC于点G,求证:△DGC∽△ADC;(3)若点H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=3,DC=2,求地值.2018年安徽省合肥市庐阳区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣2地绝对值是()A.﹣2 B.2 C.±2 D.【解答】解:﹣2地绝对值是:2.故选:B.2.(4分)计算(﹣2x2)3地结果是()A.﹣8x6B.﹣6x6C.﹣8x5D.﹣6x5【解答】解:(﹣2x2)3=(﹣2)3•(x2)3=﹣8x6.故选:A.3.(4分)如图所示地工件,其俯视图是()A.B.C.D.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.4.(4分)2018年3月5日,李克强总理在政府工作报告中指出,过去五年农村贫困人口脱贫6800万,脱贫攻坚取得阶段性胜利,6800万用科学记数法表示为()A.6800×104B.6.8×104C.6.8×107D.0.68×108【解答】解:6800万用科学记数法表示为6.8×107.故选:C.5.(4分)不等式组地解集在数轴上表示正确地是()A.B.C.D.【解答】解:,由①得:x<1;由②得:x≤4,则不等式组地解集为x<1,表示在数轴上,如图所示故选:C.6.(4分)如图,把一块含有45°地直角三角形地两个顶点放在直尺地对边上.如果∠1=20°,那么∠2地度数是()A.15°B.20°C.25°D.30°【解答】解:∵直尺地两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.7.(4分)下列关于x地一元二次方程有实数根地是()A.x2+1=0 B.x2+x+1=0 C.x2﹣x+1=0 D.x2﹣x﹣1=0【解答】解:A、这里a=1,b=0,c=1,∵△=b2﹣4ac=﹣4<0,∴方程没有实数根,本选项不合题意;B、这里a=1,b=1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;C、这里a=1,b=﹣1,c=1,∵△=b2﹣4ac=1﹣4=﹣3<0,∴方程没有实数根,本选项不合题意;D、这里a=1,b=﹣1,c=﹣1,∵△=b2﹣4ac=1+4=5>0,∴方程有两个不相等实数根,本选项符合题意;故选:D.8.(4分)某企业因春节放假,二月份产值比一月份下降20%,春节后生产呈现良好上升势头,四月份比一月份增长15%,设三、四月份地月平均增长率为x,则下列方程正确地是()A.(1﹣20%)(1+x)2=1+15% B.(1+15%%)(1+x)2=1﹣20%C.2(1﹣20%)(1+x)=1+15% D.2(1+15%)(1+x)=1﹣20%【解答】解:设三、四月份地月平均增长率是x,一月份产值为“1”.根据题意得,(1﹣20%)(1+x)2=1+15%,故选:A.9.(4分)在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)地图象可能是()A.B.C.D.【解答】解:A.由函数y=mx+m地图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B.由函数y=mx+m地图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x=﹣=<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C.由函数y=mx+m地图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D.由函数y=mx+m地图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x=﹣=<0,则对称轴应在y轴左侧,与图象符合,故D选项正确.故选:D.10.(4分)如图,已知菱形ABCD地周长为16,面积为8,E为AB地中点,若P为对角线BD上一动点,则EP+AP地最小值为()A.2 B.2 C.4 D.4【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD地周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E地值最小,最小值为CE地长=2,故选:B.二、填空题(本大题共4小题,每小题5分,共20分)11.(5分)9地平方根是±3.【解答】解:∵±3地平方是9,∴9地平方根是±3.故答案为:±3.12.(5分)分解因式:a3﹣2a2+a=a(a﹣1)2.【解答】解:a3﹣2a2+a=a(a2﹣2a+1)=a(a﹣1)2.故答案为:a(a﹣1)2.13.(5分)如图,正五边形ABCDE地边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则地长为π.【解答】解:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴地长==π,故答案为:π.14.(5分)矩形纸片ABCD中,已知AD=8,AB=6,E是边BC上地点,以AE为折痕折叠纸片,使点B落在点F处,连接FC,当△EFC为直角三角形时,BE地长为3或6.【解答】解:①当∠EFC=90°时,如图1,∵∠AFE=∠B=90°,∠EFC=90°,∴点A、F、C共线,∵矩形ABCD地边AD=8,∴BC=AD=8,在Rt△ABC中,AC===10,设BE=x,则CE=BC﹣BE=8﹣x,由翻折地性质得,AF=AB=6,EF=BE=x,∴CF=AC﹣AF=10﹣6=4,在Rt△CEF中,EF2+CF2=CE2,即x2+42=(8﹣x)2,解得x=3,即BE=3;②当∠CEF=90°时,如图2,由翻折地性质得,∠AEB=∠AEF=×90°=45°,∴四边形ABEF是正方形,∴BE=AB=6,综上所述,BE地长为3或6.故答案为:3或6.三、解答题(本大题共2小题,共计68分)15.(8分)计算:()﹣2﹣+(﹣4)0﹣cos45°.【解答】解:原式=4﹣3+1﹣×=2﹣1=1.16.(8分)《九章算术》“勾股”章有一题:“今有二人同所立,甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会.问甲乙行各几何”.大意是说,已知甲、乙二人同时从同一地点出发,甲地速度为7,乙地速度为3.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?【解答】解:设经x秒二人在B处相遇,这时乙共行AB=3x,甲共行AC+BC=7x,∵AC=10,∴BC=7x﹣10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x﹣10)2=102+(3x)2,∴x=0(舍去)或x=3.5,∴AB=3x=10.5,AC+BC=7x=24.5,答:甲走了24.5步,乙走了10.5步.四、解答题(本大题共2小题,每小题8分,共16分)17.(8分)如图,在平面直角坐标系中,△ABC地三个顶点都在格点上,点A 地坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称地△A1B1C1,并写出点A1地坐标.(2)画出△A1B1C1绕原点O旋转180°后得到地△A2B2C2,并写出点A2地坐标.【解答】解:(1)如图所示:点A1地坐标(2,﹣4);(2)如图所示,点A2地坐标(﹣2,4).18.(8分)观察下面地点阵图和相应地等式,探究其中地规律:(1)认真观察,并在④后面地横线上写出相应地等式.①1=1 ②1+2==3 ③1+2+3==6 ④…(2)结合(1)观察下列点阵图,并在⑤后面地横线上写出相应地等式.①1=12②1+3=22③3+6=32④6+10=42⑤10+15=52…(3)通过猜想,写出(2)中与第n个点阵相对应地等式.【解答】解:(1)根据题中所给出地规律可知:;(2)由图示可知点地总数是5×5=25,所以10+15=52.(3)由(1)(2)可知.五、解答题(本大题共2小题,每小题10分,共20分)19.(10分)如图,用细线悬挂一个小球,小球在竖直平面内地A、C两点间来回摆动,A点与地面距离AN=14cm,小球在最低点B时,与地面距离BM=5cm,∠AOB=66°,求细线OB地长度.(参考数据:sin66°≈0.91,cos66°≈0.40,tan66°≈2.25)【解答】解:设细线OB地长度为xcm,作AD⊥OB于D,如图所示:∴∠ADM=90°,∵∠ANM=∠DMN=90°,∴四边形ANMD是矩形,∴AN=DM=14cm,∴DB=14﹣5=9cm,∴OD=x﹣9,在Rt△AOD中,cos∠AOD=,∴cos66°==0.40,解得:x=15,∴OB=15cm.20.(10分)已知:如图,在半径为4地⊙O中,AB、CD是两条直径,M为OB 地中点,CM地延长线交⊙O于点E,且EM>MC.连接DE,DE=.(1)求证:AM•MB=EM•M C;(2)求EM地长;(3)求sin∠EOB地值.【解答】(1)证明:连接AC、EB,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB,∴,∴AM•BM=EM•CM;(2)解:∵DC是⊙O地直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC为正数,∴EC=7,∵M为OB地中点,∴BM=2,AM=6,∵AM•BM=EM•CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:过点E作EF⊥AB,垂足为点F,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF=,∴sin∠EOB=.六、解答题(本题满分12分)21.(12分)为大力弘扬“奉献、友爱、互助、进步”地志愿服务精神,传播“奉献他人、提升自我”地志愿服务理念,合肥市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务地情况,收集整理数据后,绘制以下不完整地统计图,请你根据统计图中所提供地信息解答下列问题:(1)请把折线统计图补充完整;(2)求扇形统计图中,网络文明部分对应地圆心角地度数;(3)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动地概率.【解答】解:(1)该班全部人数:12÷25%=48人.社区服务地人数为48×50%=24,补全折线统计如图所示:(2)网络文明部分对应地圆心角地度数为360°×=45°;(3)分别用A,B,C,D表示“社区服务、助老助残、生态环保、网络文明”四个服务活动,画树状图得:∵共有16种等可能地结果,他们参加同一服务活动地有4种情况,∴他们参加同一服务活动地概率为.七、解答题(本题满分12分)22.(12分)某旅行社推出一条成本价位500元/人地省内旅游线路,游客人数y (人/月)与旅游报价x(元/人)之间地关系为y=﹣x+1300,已知:旅游主管部门规定该旅游线路报价在800元/人~1200元/人之间.(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价地取值范围;(2)求经营这条旅游线路每月所需要地最低成本;(3)档这条旅游线路地旅游报价为多少时,可获得最大利润?最大利润是多少?【解答】解:(1)由题意得y<200时,即﹣x+1300<200,解得:x>1100,即该旅游线路报价地取值范围为1100元/人~1200元/人之间;(2)设经营这条旅游线路每月所需要地成本为z,∴z=500(﹣x+1300)=﹣500x+650000,∵﹣500<0,∴当x=1200时,z最低,即z=50000;(3)设经营这条旅游线路地总利润为w,则w=(x﹣500)(﹣x+1300)=﹣x2+1800x﹣650000=﹣(x﹣900)2+160000,当x=900时,w=160000.最大八、解答题(本题满分14分)23.(14分)已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点C作CE ⊥AB于点E,点F为AB上一点,且EF=EB,连结DF.(1)求证:CD=CF;(2)连结DF,交AC于点G,求证:△DGC∽△ADC;(3)若点H为线段DG上一点,连结AH,若∠ADC=2∠HAG,AD=3,DC=2,求地值.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠BAC,在△ADC和△ABC中∴△ADC≌△ABC,∴CD=CB,∵CE⊥AB,EF=EB,∴CD=CF;(2)解:∵△ADC≌△ABC,∴∠ADC=∠B,∵CF=CB,∴∠CFB=∠B,∴∠ADC=∠CFB,∴∠ADC+∠AFC=180°,∵四边形AFCD地内角和等于360°,∴∠DCF+∠DAF=180°,∵CD=CF,∴∠CDG=∠CFD,∵∠DCF+∠CDF+∠CFD=180°,∴∠DAF=∠CDF+∠CFD=2∠CDG,∵∠DAB=2∠DAC,∴∠CDG=∠DAC,∵∠DCG=∠ACD,∴△DGC∽△ADC;(3)解:∵△DGC∽△ADC,∴∠DGC=∠ADC,=,∵∠ADC=2∠HAG,AD=3,DC=2,∴∠HAG=∠DGC,=,∴∠HAG=∠AHG,=,∴HG=AG,∵∠GDC=∠DAC=∠FAG,∠DGC=∠AGF,∴△DGC∞△AGF,∴==,赠送:初中数学几何模型举例【模型四】 几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

安徽省蚌埠市固镇县2018年中考数学一模试卷含答案解析

安徽省蚌埠市固镇县2018年中考数学一模试卷含答案解析

安徽省蚌埠市固镇县2018届数学中考一模试卷一、单选题1.﹣2的绝对值是()A. 2B. ﹣2C. ±2D.【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】根据负数的绝对值等于它的相反数,得|﹣2|=2.故答案为:A.【分析】-2的绝对值的意思是数轴上表示-2的点到原点的距离,所以绝对值是一个非负数.2.下列计算正确的是()A. B. C. D.【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,同底数幂的除法,完全平方公式及运用【解析】【解答】A.(a3)2=a6,A不符合题意;B.a6÷a3=a3,B不符合题意;C.(ab)2=a2b2,C符合题意;D.(a+b)2=a2+2ab+b2,D不符合题意;故答案为:C.【分析】根据同底数幂的乘除法则,积的乘方法则和完全平方式化简运算.3.支付宝与“滴滴打车联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2017年“滴滴打车账户流水总金额达到4930000000元,用科学记数法表示为()A. 4.93×108B. 4.93×109C. 4.93×1010D. 4.93×1011【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】由科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.因此4930000000=4.93×109.故答案为:B.【分析】用科学计数法表示绝对值较大的数,即a×10n,要求1≤|a|<10,n为整数.,所以选B.4.如图,在一个长方体上放着一个小正方体,若这个组合体的俯视图如图所示,则这个组合体的左视图是()A. B. C. D.【答案】B【考点】简单组合体的三视图【解析】【解答】解:由原立体图形和俯视图中长方体和正方体的位置关系,可排除A、C、D.故答案为:B.【分析】先细心观察原立体图形和俯视图中长方体和正方体的位置关系,结合四个选项选出答案.5.不等式组的最小整数解是()A. 1B. 2C. 3D. 4【答案】C【考点】解一元一次不等式组【解析】【解答】解不等式组得,大于2的最小整数是3.故答案为:C.【分析】分别求出每个不等式的解集,再找它们的公共解集,即为不等式组的解.6.如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=60°,则∠2等于()A. 130°B. 140°C. 150°D. 160°【答案】C【考点】角的平分线,平行线的性质【解析】【解答】∵AB//CD,∴∠GEB=∠1=60°,∵∠GEB的平分线EF交CD于点F,∴∠GEF=∠BEF=30°,∵AB//CD,∴∠BEF+∠2=180°,∴∠2=150°.故答案为:C.【分析】由AB//CD,可得同旁内角互补可得∠BEF+∠2=180°,而∠BEF=∠GEB=∠1,∠1已知.7.在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:这此测试成绩的中位数和众数分别为()A. 47, 49B. 48, 49C. 47.5, 49D. 48, 50【答案】B【考点】中位数,众数【解析】【解答】1+2+4+2+5+1=15,则这些数从小到大排列中的第7个是中位数,即为47;49的人数最多为5,故众数为49;故答案为:B.【分析】由中位数的定义和众数的定义去解答.8.如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数在第一象限的图像经过点B,与OA交于点P,若OA2-AB2=18,则点P的横坐标为()A. 9B. 6C. 3D. 3【答案】C【考点】待定系数法求反比例函数解析式,等腰直角三角形【解析】【解答】解:由题意可知,OC=AC,DB=DA,OA=OC,AB=BD,点B的横坐标为:OC+BD,纵坐标为OC-BD,∵OA2-AB2=18,∴OC2-BD2=9,即(OC+BD)(OC-BD)=9,∴k=9,故答案为:A.【分析】由图可知点B的横坐标为:OC+BD,纵坐标为OC-BD,则k=(OC+BD)(OC-BD)=OC2-BD2,即要求出OC2-BD2的值,由OA=OC,AB=BD,可求得.9.如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE= ,∠EAF=135°,则以下结论正确的是()A. DE=1B. tan∠AFO=C. AF=D. 四边形AFCE的面积为【答案】C【考点】正方形的性质,相似三角形的判定与性质【解析】【解答】因为四边形ABCD是正方形,所以AB=CB=CD=AD=1,AC⊥BA, ∠ADO=∠ABO=45°,所以OD=OB=OA= , ∠ABF=∠ADE=135°,在Rt△AEO中,根据勾股定理可得:EO= ,DE= ,A不符合题意;因为∠EAF =135°, ∠BAD =90°,所以∠EAF =135°,∠BAF+∠DAE=45°, 所以∠BAF =∠AED, 所以△ABF ∽△EDA ,所以, ,所以BF=,Rt△AOF中,由勾股定理可得:AF= ,C符合题意;所以tan∠AFO= ,B不符合题意;所以,D不符合题意,故答案为:C.【分析】因为正方形的对角线相等且互相垂直平分,因为AD=1,,所以AO=,又因为AE=,由勾股定理可知DE=;因为∠EAF=,而∠ABF=∠ADE=135°,所以可知△ABF ∽△EDA,利用相似三角形对应边成比例,可知AF=,因此选C.10.二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是()A. 4个B. 3个C. 2个D. 1个【答案】D【考点】二次函数图象与系数的关系,二次函数图像与坐标轴的交点问题【解析】【解答】解:①因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2,所以﹣ =﹣1,b=2a,当x=﹣3时,y<0,即9a﹣3b+c<0,9a﹣6a+c<0,3a+c<0,∵a<0,∴4a+c<0,所以此选项结论正确;②∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm<a﹣b,m(am+b)+b<a,所以此选项结论不正确;③ax2+(b﹣1)x+c=0,△=(b﹣1)2﹣4ac,∵a<0,c>0,∴ac<0,∴﹣4ac>0,∵(b﹣1)2≥0,∴△>0,∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;④由图象得:当x>﹣1时,y随x的增大而减小,∵当k为常数时,0≤k2≤k2+1,∴当x=k2的值大于x=k2+1的函数值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此选项结论不正确;所以正确结论的个数是1个,故答案为:D.【分析】①根据对称轴列式,得b=2a,由图象可知:左交点的横坐标大于﹣3,当x=﹣3时,y<0,代入可得结论正确;②开口向下,则顶点坐标的纵坐标是最大值,那么y=am2+bm+c<a﹣b+c,化简可得结论不正确;③计算△的值作判断;④比较k2与k2+1的值,根据当x>﹣1时,y随x的增大而减小,由图象得出结论.二、填空题11.分解因式:2xy2+4xy+2x=________.【答案】2x(y+1)2【考点】提公因式法因式分解,因式分解﹣运用公式法【解析】【解答】解:原式=2x(y2+2y+1)=2x(y+1)2,故答案为:2x(y+1)2【分析】分解因式的步骤是:一提公因式,二用公式。

2018年安徽省芜湖市南陵县中考一模数学试卷(解析版)

2018年安徽省芜湖市南陵县中考一模数学试卷(解析版)

2018年安徽省芜湖市南陵县中考数学一模试卷一、选择题(本题共10小题,每小题4分,共40分)每一个小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在下面的答题表中,每一小题选对得4分,不选、选错或选出的代号超过一个的一律得0分.1.(4分)﹣3﹣(﹣4)的结果是()A.1B.﹣1C.7D.﹣72.(4分)下列运算正确的是()A.6a﹣5a=1B.(a2)3=a5C.3a2+2a3=5a5D.2a2•3a3=6a53.(4分)代数式2﹣1的值在两个相邻整数之间,则这两个整数是()A.1和2B.2和3C.3和4D.4和54.(4分)南海是我们固有领土,南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍,其中350万用科学记数法表示为()A.3.5×106B.3.5×107C.0.35×108D.3.5×109 5.(4分)如图,l1∥l2,将直角三角板如图所示的方式放置,则∠1+∠2=()A.75°B.80°C.90°D.100°6.(4分)如图所示的长方体中间有一个圆形孔洞,则它的主视图为()A.B.C.D.7.(4分)2016年夏季奥运会将在巴西的里约热内卢举行,为此小明查阅资料,制作了我国在第24~30届奥运会荣获金牌总数的折线统计图,如图,下列说法正确的是()A.金牌总数逐届增加B.我国历届荣获金牌数的众数是51C.我国历届荣获金牌数的中位数是28D.我国历届荣获金牌数的平均数是328.(4分)某市2013年生产总值(GDP)比2012年增长了12%,由于受到国际金融危机的影响,预计2014年比2013年增长7%.若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)29.(4分)如图,在△ABC中,BC=10,D、E分别为AB、AC的中点,连接BE、CD交于点O,OD=3,OE=4,则△ABC的面积为()A.36B.48C.60D.7210.(4分)函数y=,当y=a时,对应的x有唯一确定的值,则a的取值范围为()A.a≤0B.a≤0或a=2C.0<a<2D.a<0二、填空题(每小题5分,满分20分)11.(5分)因式分解:8m﹣2m3=.12.(5分)计算:+=.13.(5分)已知关于x的方程的解是正数,则m的取值范围是.14.(5分)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)解方程组.16.(8分)化简:.四、(本大题共2小题,每小题8分,满分16分)17.(8分)现有一组有规律排列的数:1、﹣1、、﹣、、﹣、1、﹣1、、﹣、、﹣…其中,1、﹣1、、﹣、、﹣这六个数按此规律重复出现,问:(1)第50个数是什么数?(2)把从第1个数开始的前2017个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的位置如图所示(顶点是网格线的交点)(1)请画出△ABC向右平移2单位再向下平移3个单位的格点△A1B1C1;(2)画出△ABC绕点O逆时针方向旋转90°得到的△A2B2C2并求出旋转过程中点B到B2所经过的路径长.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,渔政310船在南海海面上沿正东方向以20海里/小时的速度匀速航行,在A地观测到我渔船C在东北方向上的我国某传统渔场,若渔政310船航向不变,航行半小时后到达B处,此时观测到我渔船C在北偏东30°方向上.问渔政310船再航行多久,离我渔船C的距离最近?(假设我渔船C捕鱼时移动距离忽略不计,结果不取近似值)20.(10分)已知:CD是圆O的直径,弦AB与CD交于点H,CE⊥AB于点E,OF⊥AB于点F,CB=5,CA=,BE=4.(1)求证:CD•CE=CA•CB(2)求OF的长.六、(本题满分12分)21.(12分)某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐:(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率;(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.七、(本题满分12分)22.(12分)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.八、(本题满分14分)23.(14分)如图,在等腰直角△ABC中,∠ABC=90°,AB=BC=4,P为AC 中点,E为AB边上一动点,F为BC边上一动点,且满足条件∠EPF=45°,记四边形PEBF的面积为S1;(1)求证:∠APE=∠CFP;(2)记△CPF的面积为S2,CF=x,y=.①求y关于x的函数解析式和自变量的取值范围,并求y的最大值.②在图中作四边形PEBF关于AC的对称图形,若它们关于点P中心对称,求y的值.2018年安徽省芜湖市南陵县中考数学一模试卷参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)每一个小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在下面的答题表中,每一小题选对得4分,不选、选错或选出的代号超过一个的一律得0分.1.(4分)﹣3﹣(﹣4)的结果是()A.1B.﹣1C.7D.﹣7【解答】解:﹣3﹣(﹣4),=﹣3+4,=1.故选:A.2.(4分)下列运算正确的是()A.6a﹣5a=1B.(a2)3=a5C.3a2+2a3=5a5D.2a2•3a3=6a5【解答】解:A、应为6a﹣5a=a,故本选项错误;B、应为(a2)3=a2×3=a6,故本选项错误;C、3a2与2a3不是同类项,不能合并,故本选项错误;D、2a2•3a3=2×3a2•a3=6a5,正确.故选:D.3.(4分)代数式2﹣1的值在两个相邻整数之间,则这两个整数是()A.1和2B.2和3C.3和4D.4和5【解答】解:∵2=,4<8<9,∴2<2<3,∴1<2﹣1<2,即在1和2之间.故选:A.4.(4分)南海是我们固有领土,南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍,其中350万用科学记数法表示为()A.3.5×106B.3.5×107C.0.35×108D.3.5×109【解答】解:将350万用科学记数法表示为3.5×106.故选:A.5.(4分)如图,l1∥l2,将直角三角板如图所示的方式放置,则∠1+∠2=()A.75°B.80°C.90°D.100°【解答】解:如图所示:过点B作BD∥l1,由题意可得:BD∥l1∥l2,则∠1=∠3,∠2=∠4,故∠1+∠2=∠3+∠4=90°.故选:C.6.(4分)如图所示的长方体中间有一个圆形孔洞,则它的主视图为()A.B.C.D.【解答】解:从正面看是三个矩形,中间矩形的左右两边是虚线,故选:B.7.(4分)2016年夏季奥运会将在巴西的里约热内卢举行,为此小明查阅资料,制作了我国在第24~30届奥运会荣获金牌总数的折线统计图,如图,下列说法正确的是()A.金牌总数逐届增加B.我国历届荣获金牌数的众数是51C.我国历届荣获金牌数的中位数是28D.我国历届荣获金牌数的平均数是32【解答】解:A、金牌总数在第25、26届不变、第30届减少,此选项错误;B、我国历届荣获金牌数的众数是16,此选项错误;C、我国历届荣获金牌数的中位数是28,此选项正确;D、我国历届荣获金牌数的平均数是=,此选项错误;故选:C.8.(4分)某市2013年生产总值(GDP)比2012年增长了12%,由于受到国际金融危机的影响,预计2014年比2013年增长7%.若这两年GDP年平均增长率为x%,则x%满足的关系是()A.12%+7%=x%B.(1+12%)(1+7%)=2(1+x%)C.12%+7%=2•x%D.(1+12%)(1+7%)=(1+x%)2【解答】解:设2012年的国内生产总值为1,∵2013年国内生产总值(GDP)比2012年增长了12%,∴2013年的国内生产总值为1+12%;∵2014年比2013年增长7%,∴2014年的国内生产总值为(1+12%)(1+7%),∵这两年GDP年平均增长率为x%,∴2014年的国内生产总值也可表示为:(1+x%)2,∴可列方程为:(1+12%)(1+7%)=(1+x%)2.故选:D.9.(4分)如图,在△ABC中,BC=10,D、E分别为AB、AC的中点,连接BE、CD交于点O,OD=3,OE=4,则△ABC的面积为()A.36B.48C.60D.72【解答】解:∵D、E分别为AB、AC的中点,∴DE∥BC,∴△DOE∽△BOC,∴,∴OB=8,OD=6,∴BC=10,∴△BOC是直角三角形,∴△BOC的面积是24,∴△BEC的面积是36,△BDE的面积是18,∴△ABC的面积是72,故选:D.10.(4分)函数y=,当y=a时,对应的x有唯一确定的值,则a的取值范围为()A.a≤0B.a≤0或a=2C.0<a<2D.a<0【解答】解:如图,由题意可知:y=a时,对应的x有唯一确定的值,即直线y=a与该函数图象只有一个交点,∴a≤0故选:A.二、填空题(每小题5分,满分20分)11.(5分)因式分解:8m﹣2m3=2m(2﹣m)(2+m).【解答】解:原式=2m(4﹣m2)=2m(2﹣m)(2+m).故答案为:2m(2﹣m)(2+m).12.(5分)计算:+=8.【解答】解:+=4+4=8.故答案为:8.13.(5分)已知关于x的方程的解是正数,则m的取值范围是m>﹣6且m≠﹣4.【解答】解:解关于x的方程得x=m+6,∵x﹣2≠0,解得x≠2,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.14.(5分)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=2+或4+2.【解答】解:如图1所示:作AE∥BC,延长AE交CD于点N,过点B作BT⊥EC于点T,当四边形ABCE为平行四边形,∵AB=BC,∴四边形ABCE是菱形,∵∠A=∠C=90°,∠B=150°,BC∥AN,∴∠ADC=30°,∠BAN=∠BCE=30°,则∠NAD=60°,∴∠AND=90°,∵四边形ABCE面积为2,∴设BT=x,则BC=EC=2x,故2x2=2,解得:x=1(负数舍去),则AE=EC=2,EN==,故AN=2+,则AD=DC=4+2;如图2,当四边形BEDF是平行四边形,∵BE=BF,∴平行四边形BEDF是菱形,∵∠A=∠C=90°,∠B=150°,∴∠ADB=∠BDC=15°,∵BE=DE,∴∠AEB=30°,∴设AB=y,则BE=2y,AE=y,∵四边形BEDF面积为2,∴AB×DE=2y2=2,解得:y=1,故AE=,DE=2,则AD=2+,综上所述:CD的值为:2+或4+2.故答案为:2+或4+2.三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)解方程组.【解答】解:,①×2得4x+2y=4③,②+③得7x=14,解得:x=2,把x=2代入①得2×2+y=2解得:y=﹣2,∴原方程组的解为.16.(8分)化简:.【解答】解:原式=÷=•=.四、(本大题共2小题,每小题8分,满分16分)17.(8分)现有一组有规律排列的数:1、﹣1、、﹣、、﹣、1、﹣1、、﹣、、﹣…其中,1、﹣1、、﹣、、﹣这六个数按此规律重复出现,问:(1)第50个数是什么数?(2)把从第1个数开始的前2017个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有多少个数的平方相加?【解答】解:(1)∵50÷6=8…2,∴第50个数是﹣1;(2)∵1+(﹣1)++(﹣)++(﹣)=0,2017÷6=336…1,∴从第1个数开始的前2017个数相加,结果是1;(3)∵=12,520÷12=43…4,,∴从第1个数起,把连续若干个数的平方加起来,如果和为520,则共有43×6+3=261个数的平方相加.18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的位置如图所示(顶点是网格线的交点)(1)请画出△ABC向右平移2单位再向下平移3个单位的格点△A1B1C1;(2)画出△ABC绕点O逆时针方向旋转90°得到的△A2B2C2并求出旋转过程中点B到B2所经过的路径长.【解答】解:(1)如图;(2)如图;旋转过程中,点B到B2所经过的路径长为以OB为半径,90°为圆心角的弧长,=×2π×3=π.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,渔政310船在南海海面上沿正东方向以20海里/小时的速度匀速航行,在A地观测到我渔船C在东北方向上的我国某传统渔场,若渔政310船航向不变,航行半小时后到达B处,此时观测到我渔船C在北偏东30°方向上.问渔政310船再航行多久,离我渔船C的距离最近?(假设我渔船C捕鱼时移动距离忽略不计,结果不取近似值)【解答】解:过点C作CD⊥AB交AB的延长线于点D,由已知可得,∠BDC=90°,∠CBD=60°,∠ADC=90°,∠CAD=45°,∴BD==CD,AD=CD,∵AB=20×0.5=10,∴10+BD=CD,即10+=CD,解得,CD=15+5,∴BD=AD﹣AB=15+5﹣10=5+5,∵,∴渔政310船再航行小时,离我渔船C的距离最近.20.(10分)已知:CD是圆O的直径,弦AB与CD交于点H,CE⊥AB于点E,OF⊥AB于点F,CB=5,CA=,BE=4.(1)求证:CD•CE=CA•CB(2)求OF的长.【解答】(1)证明:连接AD.∵CD是直径,∠DAC=90°,∵CE⊥AB,∴∠DAC=∠CEB=90°,∵∠D=∠B,∴△ACD∽△ECB,∴,∴CD•CE=CA•CB.(2)连接OA.在Rt△BCE中,CH==3,在Rt△ACH中,AE==8,∵BE=4,AE=8,∴AB=12,∵OF⊥AB,∴AF=FB=6,∵CD•CE=CA•CB,∴CD=,∴OA=CD=,在Rt△AOF中,OF=.六、(本题满分12分)21.(12分)某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐:(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率;(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.【解答】解:(1)画树状图得:甲、乙、丙三名学生在同一个餐厅用餐的概率为=;(2)∵共有8种等可能的情况,其中甲、乙、丙三名学生中至少有一人在B餐厅用餐的有7种情况,∴甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率为.七、(本题满分12分)22.(12分)如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣6)2+h.已知球网与O点的水平距离为9m,高度为2.43m,球场的边界距O点的水平距离为18m.(1)当h=2.6时,求y与x的关系式(不要求写出自变量x的取值范围)(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,求h的取值范围.【解答】解:(1)∵h=2.6,球从O点正上方2m的A处发出,∴抛物线y=a(x﹣6)2+h过点(0,2),∴2=a(0﹣6)2+2.6,解得:a=﹣,故y与x的关系式为:y=﹣(x﹣6)2+2.6,(2)当x=9时,y=﹣(x﹣6)2+2.6=2.45>2.43,所以球能过球网;当y=0时,,解得:x1=6+2>18,x2=6﹣2(舍去)故会出界;(3)当球正好过点(18,0)时,抛物线y=a(x﹣6)2+h还过点(0,2),代入解析式得:,解得:,此时二次函数解析式为:y=﹣(x﹣6)2+,此时球若不出边界h≥,当球刚能过网,此时函数解析式过(9,2.43),抛物线y=a(x﹣6)2+h还过点(0,2),代入解析式得:,解得:,此时球要过网h>,故若球一定能越过球网,又不出边界,h的取值范围是:h≥.解法二:y=a(x﹣6)2+h过点(0,2)点,代入解析式得:2=36a+h,若球越过球网,则当x=9时,y>2.43,即9a+h>2.43解得h>球若不出边界,则当x=18时,y≤0,解得h≥.故若球一定能越过球网,又不出边界,h的取值范围是:h≥.八、(本题满分14分)23.(14分)如图,在等腰直角△ABC中,∠ABC=90°,AB=BC=4,P为AC 中点,E为AB边上一动点,F为BC边上一动点,且满足条件∠EPF=45°,记四边形PEBF的面积为S1;(1)求证:∠APE=∠CFP;(2)记△CPF的面积为S2,CF=x,y=.①求y关于x的函数解析式和自变量的取值范围,并求y的最大值.②在图中作四边形PEBF关于AC的对称图形,若它们关于点P中心对称,求y的值.【解答】解:(1)∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;在等腰直角△ABC中,∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)①∵∠APE=∠CFP,且∠FCP=∠P AE=45°,∴△APE∽△CFP,则=.在等腰直角△ABC中,AC =AB=4,又∵P为AC的中点,则AP=CP=2,∴AE ===.如图1,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH =BC=2,同理PG=2.S△APE =PH•AE=×2×=,S2=S△PCF =CF×PG =×x×2=x,∴S1=S△ABC ﹣S△APE﹣S△PCF=×4×4﹣﹣x=8﹣﹣x,∴y ===﹣+﹣1=﹣8(﹣)2+1,∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.即时,y取得最大值.而x=2在x的取值范围内,将x=2代入y ==﹣8(﹣)2+1,得y最大=1.则y关于x的函数解析式为:y =﹣+﹣1,(2≤x≤4),y的最大值为1.②如图2所示:图中两块阴影部分图形关于点P成中心对称,则阴影部分图形自身关于直线BD 对称,此时EB=BF,即AE=FC,则=x,解得x1=2,x2=﹣2(舍去),将代入y =﹣+﹣1,得y=2﹣2.第21页(共22页)第22页(共22页)。

2021-2022学年安徽省六安市霍邱县中考数学最后一模试卷含解析

2021-2022学年安徽省六安市霍邱县中考数学最后一模试卷含解析

2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(共10小题,每小题3分,共30分)1.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为()A.133B.92C .4133D.252.已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若△ABP组成的三角形恰为等腰直角三角形,则b2﹣4ac的值为()A.1 B.4 C.8 D.123.已知抛物线y=(x﹣1a)(x﹣11a+)(a为正整数)与x轴交于M a、N a两点,以M a N a表示这两点间的距离,则M1N1+M2N2+…+M2018N2018的值是()A.20162017B.20172018C.20182019D.201920204.如果关于x的分式方程1311a xx x--=++有负分数解,且关于x的不等式组2()4,3412a x xxx-≥--⎧⎪⎨+<+⎪⎩的解集为x<-2,那么符合条件的所有整数a的积是()A.-3 B.0 C.3 D.95.在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.116.关于x的方程x2+(k2﹣4)x+k+1=0的两个根互为相反数,则k值是()A .﹣1B .±2C .2D .﹣27.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A .32︒B .58︒C .138︒D .148︒8.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( ) A .2.8×103B .28×103C .2.8×104D .0.28×1059.如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )A .30tan α米 B .30sin α米 C .30tan α米 D .30cos α米10.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是_____cm .12.如图,点M 是反比例函数2y x=(x >0)图像上任意一点,MN ⊥y 轴于N ,点P 是x 轴上的动点,则△MNP 的面积为A .1B .2C .4D .不能确定13.如图,在△ABC 中,∠ACB =90°,∠ABC =60°,AB =6cm ,将△ABC 以点B 为中心顺时针旋转,使点C 旋转到AB 边延长线上的点D 处,则AC 边扫过的图形(阴影部分)的面积是_____cm 1.(结果保留π).14.已知抛物线2y ax bx c =++开口向上且经过点()1,1,双曲线1y 2x=经过点()a,bc ,给出下列结论:bc 0①>;b c 0+>②;b ③,c 是关于x 的一元二次方程()21x a 1x 02a+-+=的两个实数根;a b c 3.--≥④其中正确结论是______(填写序号)15.因式分解:4x 2y ﹣9y 3=_____.16.如图,为了测量铁塔AB 高度,在离铁塔底部(点B )60米的C 处,测得塔顶A 的仰角为30°,那么铁塔的高度AB=________米.三、解答题(共8题,共72分)17.(8分)如图,在楼房AB 和塔CD 之间有一棵树EF ,从楼顶A 处经过树顶E 点恰好看到塔的底部D 点,且俯角α为45°,从楼底B 点1米的P 点处经过树顶E 点恰好看到塔的顶部C 点,且仰角β为30°.已知树高EF=6米,求塔CD 的高度(结果保留根号).18.(8分)已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根都是整数,求k的值.19.(8分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC=8,cos∠BED=,求AD的长.20.(8分)《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.21.(8分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=12∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sin E=35,AK10,求CN的长.22.(10分)先化简22121211x x x x x ÷---++,然后从﹣1,0,2中选一个合适的x 的值,代入求值. 23.(12分)如图,已知⊙O 是以AB 为直径的△ABC 的外接圆,过点A 作⊙O 的切线交OC 的延长线于点D ,交BC 的延长线于点E . (1)求证:∠DAC=∠DCE ; (2)若AB=2,sin ∠D=13,求AE 的长.24.如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE 的点A 处测得公路对面的点C 与AE 的夹角∠CAE=30°,沿着AE 方向前进15米到点B 处测得∠CBE=45°,求公路的宽度.(结果精确到0.1米,参考数据:3≈1.73)参考答案一、选择题(共10小题,每小题3分,共30分) 1、A【解析】试题解析:连接OE ,OF ,ON ,OG ,在矩形ABCD 中,∵∠A=∠B=90°,CD=AB=4,∵AD ,AB ,BC 分别与⊙O 相切于E ,F ,G 三点, ∴∠AEO=∠AFO=∠OFB=∠BGO=90°, ∴四边形AFOE ,FBGO 是正方形, ∴AF=BF=AE=BG=2, ∴DE=3,∵DM 是⊙O 的切线, ∴DN=DE=3,MN=MG , ∴CM=5-2-MN=3-MN ,在R t △DMC 中,DM 2=CD 2+CM 2, ∴(3+NM )2=(3-NM )2+42,∴NM=43, ∴DM=3+43=133,故选B .考点:1.切线的性质;3.矩形的性质. 2、B 【解析】设抛物线与x 轴的两交点A 、B 坐标分别为(x 1,0),(x 2,0),利用二次函数的性质得到P (-2b a ,244ac b a-),利用x 1、x 2为方程ax 2+bx+c=0的两根得到x 1+x 2=-b a ,x 1•x 2=ca ,则利用完全平方公式变形得到AB=|x 1-x 224b ac a -,接着根据等腰直角三角形的性质得到|244ac b a-|=1224b aca -,然后进行化简可得到b 2-1ac 的值. 【详解】设抛物线与x 轴的两交点A 、B 坐标分别为(x 1,0),(x 2,0),顶点P 的坐标为(-2b a ,244ac b a-),则x 1、x 2为方程ax 2+bx+c=0的两根, ∴x 1+x 2=-b a ,x 1•x 2=ca,∴AB=|x 1-x 2=∵△ABP 组成的三角形恰为等腰直角三角形,∴|244ac b a -|=12•a ,222(4)16b ac a -=2244b ac a-, ∴b 2-1ac=1. 故选B . 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质和等腰直角三角形的性质. 3、C 【解析】代入y=0求出x 的值,进而可得出M a N a =1a -1a+1,将其代入M 1N 1+M 2N 2+…+M 2018N 2018中即可求出结论.【详解】解:当y=0时,有(x-1a)(x-1a+1)=0,解得:x 1=1a+1,x 2=1a, ∴M a N a =1a -1a+1,∴M 1N 1+M 2N 2+…+M 2018N 2018=1-12+12-13+…+12018-12019=1-12019=20182019. 故选C . 【点睛】本题考查了抛物线与x轴的交点坐标、二次函数图象上点的坐标特征以及规律型中数字的变化类,利用二次函数图象上点的坐标特征求出M a N a的值是解题的关键.4、D【解析】解:2()43412a x xxx①②-≥--⎧⎪⎨+<+⎪⎩,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即72x=-,符合题意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即52x=-,符合题意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合题意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即32x=-,符合题意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合题意;把a=3代入整式方程得:﹣3x=1﹣x,即12x=-,符合题意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合题意,∴符合条件的整数a取值为﹣3;﹣1;1;3,之积为1.故选D.5、B【解析】试题解析:∵D、E、F分别为AB、BC、AC中点,∴DF=12BC=2,DF∥BC,EF=12AB=32,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+32)=1.故选B.6、D【解析】根据一元二次方程根与系数的关系列出方程求解即可.【详解】设方程的两根分别为x1,x1,∵x1+(k1-4)x+k-1=0的两实数根互为相反数,∴x1+x1,=-(k1-4)=0,解得k=±1,当k=1,方程变为:x1+1=0,△=-4<0,方程没有实数根,所以k=1舍去;当k=-1,方程变为:x1-3=0,△=11>0,方程有两个不相等的实数根;∴k=-1.故选D.【点睛】本题考查的是根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1=−ba,x1x1=ca,反过来也成立.7、D【解析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等可得∠2=∠1.【详解】如图,由三角形的外角性质得:∠1=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠1=148°.故选D.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8、C【解析】试题分析:28000=1.1×1.故选C.考点:科学记数法—表示较大的数.9、C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.10、D【解析】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】先求出扇形弧长,再求出圆锥的底面半径,再根据勾股定理即可出圆锥的高.【详解】圆心角为120°,半径为6cm的扇形的弧长为1206180π⨯=4πcm∴圆锥的底面半径为2,2262-2【点睛】此题主要考查圆的弧长及圆锥的底面半径,解题的关键是熟知圆的相关公式.12、A【解析】可以设出M的坐标,MNP的面积即可利用M的坐标表示,据此即可求解.【详解】设M的坐标是(m,n),则mn=2.则MN=m,MNP的MN边上的高等于n.则MNP的面积11. 2mn==故选A.【点睛】考查反比例函数系数k的几何意义,是常考点,需要学生熟练掌握.13、9π【解析】根据直角三角形两锐角互余求出∠BAC=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BC=12 AB,然后求出阴影部分的面积=S扇形ABE﹣S扇形BCD,列计算即可得解.【详解】∵∠C是直角,∠ABC=60°,∴∠BAC=90°﹣60°=30°,∴BC=12AB=12×6=3(cm),∵△ABC以点B为中心顺时针旋转得到△BDE,∴S△BDE=S△ABC,∠ABE=∠CBD=180°﹣60°=110°,∴阴影部分的面积=S扇形ABE+S△BDE﹣S扇形BCD﹣S△ABC=S扇形ABE﹣S扇形BCD=2120?6360π﹣21203360π=11π﹣3π=9π(cm1).故答案为9π.【点睛】本题考查了旋转的性质,扇形的面积计算,直角三角形30°角所对的直角边等于斜边的一半的性质,求出阴影部分的面积等于两个扇形的面积的差是解题的关键.14、①③【解析】试题解析:∵抛物线2y ax bx c =++开口向上且经过点(1,1),双曲线12y x =经过点(a ,bc ),∴0112a a b c bc a ⎧⎪>⎪++=⎨⎪⎪=⎩,∴bc >0,故①正确;∴a >1时,则b 、c 均小于0,此时b +c <0,当a =1时,b +c =0,则与题意矛盾,当0<a <1时,则b 、c 均大于0,此时b +c >0,故②错误; ∴21(1)02x a x a+-+=可以转化为:2()0x b c x bc +++=,得x =b 或x =c ,故③正确; ∵b ,c 是关于x 的一元二次方程21(1)02x a x a +-+=的两个实数根,∴a ﹣b ﹣c =a ﹣(b +c )=a +(a ﹣1)=2a ﹣1,当a >1时,2a ﹣1>3,当0<a <1时,﹣1<2a ﹣1<3,故④错误;故答案为①③.15、y (2x+3y )(2x-3y )【解析】直接提取公因式y ,再利用平方差公式分解因式即可.【详解】4x 2y ﹣9y 3=y(4x 2-9y 2=x(2x+3y)(2x-3y).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.16、【解析】在Rt △ABC 中,直接利用tan ∠ACB=tan30°=AB BC. 【详解】在Rt △ABC 中,tan ∠ACB=tan30°=AB BC=3,BC=60,解得故答案为【点睛】本题考查的知识点是解三角形的实际应用,解题的关键是熟练的掌握解三角形的实际应用.三、解答题(共8题,共72分)17、(6+23)米【解析】根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt△PEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG的长度.【详解】由题意可知∠BAD=∠ADB=45°,∴FD=EF=6米,在Rt△PEH中,∵tanβ=EHPH=5BF,∴33∴3,∵tanβ= CG PG,∴CG=(3)·333∴CD=(3.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.18、(3)证明见解析(3)3或﹣3【解析】(3)根据一元二次方程的定义得k≠2,再计算判别式得到△=(3k-3)3,然后根据非负数的性质,即k的取值得到△>2,则可根据判别式的意义得到结论;(3)根据求根公式求出方程的根,方程的两个实数根都是整数,求出k的值.【详解】证明:(3)△=[﹣(4k+3)]3﹣4k(3k+3)=(3k﹣3)3.∵k 为整数,∴(3k ﹣3)3>2,即△>2.∴方程有两个不相等的实数根.(3)解:∵方程kx 3﹣(4k+3)x+3k+3=2为一元二次方程,∴k≠2.∵kx 3﹣(4k+3)x+3k+3=2,即[kx ﹣(k+3)](x ﹣3)=2,∴x 3=3,2111k x k k+==+. ∵方程的两个实数根都是整数,且k 为整数,∴k=3或﹣3.【点睛】本题主要考查了根的判别式的知识,熟知一元二次方程的根与△的关系是解答此题的关键.19、(1)AC 与⊙O 相切,证明参见解析;(2). 【解析】试题分析:(1)由于OC ⊥AD ,那么∠OAD+∠AOC=90°,又∠BED=∠BAD ,且∠BED=∠C ,于是∠OAD=∠C ,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC 是⊙O 的切线;(2)连接BD ,AB 是直径,那么∠ADB=90°,在Rt △AOC 中,由于AC=8,∠C=∠BED ,cos ∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt △ABD 中,由于AB=12,∠OAD=∠BED ,cos ∠BED=,同样利用三角函数值,可求AD . 试题解析:(1)AC 与⊙O 相切.∵弧BD 是∠BED 与∠BAD 所对的弧,∴∠BAD=∠BED ,∵OC ⊥AD ,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB ⊥AC ,即AC 与⊙O 相切;(2)连接BD .∵AB 是⊙O 直径,∴∠ADB=90°,在Rt △AOC 中,∠CAO=90°,∵AC=8,∠ADB=90°,cos ∠C=cos ∠BED=,∴AO=6,∴AB=12,在Rt △ABD 中,∵cos ∠OAD=cos ∠BED=,∴AD=AB•cos ∠OAD=12×=.考点:1.切线的判定;2.解直角三角形.20、甲有钱752,乙有钱25.【解析】设甲有钱x,乙有钱y,根据相等关系:甲的钱数+乙钱数的一半=50,甲的钱数的三分之二+乙的钱数=50列出二元一次方程组求解即可.【详解】解:设甲有钱x,乙有钱y.由题意得:15022503x yx y⎧+=⎪⎪⎨⎪+=⎪⎩,解方程组得:75225xy⎧⎪⎪=⎨⎪⎪=⎩,答:甲有钱752,乙有钱25.【点睛】本题考查了二元一次方程组的应用,读懂题意正确的找出两个相等关系是解决此题的关键.21、(1)证明见解析;(2)△EAD是等腰三角形.证明见解析;(32010 13【解析】试题分析:(1)连接OG,则由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,从而可得∠KGE=∠AKH=∠EKG,这样即可得到KE=GE;(2)设∠FGB=α,由AB是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE可得∠EKG=90°-α,这样在△GKE中可得∠E=2α,由∠FGB=12∠ACH可得∠ACH=2α,这样可得∠E=∠ACH,由此即可得到CA∥EF;(3)如下图2,作NP⊥AC于P,由(2)可知∠ACH=∠E ,由此可得sinE=sin ∠ACH=35AH AC =,设AH=3a ,可得AC=5a ,CH=4a ,则tan ∠CAH=43CH AH =,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC ,从而可得CK=AC=5a ,由此可得HK=a ,tan ∠AKH=3AH HK=,AK=10a ,结合AK=10可得a=1,则AC=5;在四边形BGKH 中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG 可得∠ACG=∠AKH ,在Rt △APN 中,由tan ∠CAH=43PN AP =,可设PN=12b ,AP=9b ,由tan ∠ACG=PN CP=tan ∠AKH=3可得CP=4b ,由此可得AC=AP+CP=13b =5,则可得b=513,由此即可在Rt △CPN 中由勾股定理解出CN 的长. 试题解析:(1)如图1,连接OG .∵EF 切⊙O 于G ,∴OG ⊥EF ,∴∠AGO+∠AGE=90°,∵CD ⊥AB 于H ,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG ,∴∠AGO=∠OAG ,∴∠AGE=∠AKH ,∵∠EKG=∠AKH ,∴∠EKG=∠AGE ,∴KE=GE .(2)设∠FGB=α,∵AB 是直径,∴∠AGB=90°,∴∠AGE =∠EKG=90°﹣α,∴∠E=180°﹣∠AGE ﹣∠EKG=2α,∵∠FGB=12∠ACH , ∴∠ACH=2α,∴∠ACH=∠E ,∴CA ∥FE .(3)作NP ⊥AC 于P .∵∠ACH=∠E ,∴sin ∠E=sin ∠ACH=35AH AC =,设AH=3a ,AC=5a ,则4a =,tan ∠CAH=43CH AH =, ∵CA ∥FE ,∴∠CAK=∠AGE ,∵∠AGE=∠AKH ,∴∠CAK=∠AKH ,∴AC=CK=5a ,HK=CK ﹣CH=4a ,tan ∠AKH=AH HK =3,=,∵=∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH 中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG ,∵∠ACN=∠ABG ,∴∠AKH=∠ACN ,∴tan ∠AKH=tan ∠ACN=3,∵NP ⊥AC 于P ,∴∠APN=∠CPN=90°,在Rt △APN 中,tan ∠CAH=43PN AP =,设PN=12b ,则AP=9b ,在Rt △CPN 中,tan ∠ACN=PN CP =3, ∴CP=4b , ∴AC=AP+CP=13b ,∵AC=5,∴13b=5,∴b=513, ∴CN=22PN CP +=410b ⋅=201013.22、-11,2x -. 【解析】 先把分式除法转换成乘法进行约分化简,然后再找出分式的最小公分母通分进行化简求值,在代入求值时要保证每一个分式的分母不能为1【详解】解:原式=22121·1x x x x -+- -21x + =21(1)·1)(1)x x x x -+-( -21x + =121)1x x x x (--++ =()121)1x x x x x x --++( =-1x. 当x=-1或者x=1时分式没有意义 所以选择当x =2时,原式=12-. 【点睛】分式的化简求值是此题的考点,需要特别注意的是分式的分母不能为1.23、(1)证明见解析;(2)2.【解析】(1)由切线的性质可知∠DAB=90°,由直角所对的圆周为90°可知∠ACB=90°,根据同角的余角相等可知∠DAC=∠B,然后由等腰三角形的性质可知∠B=∠OCB,由对顶角的性质可知∠DCE=∠OCB,故此可知∠DAC=∠DCE;(2)题意可知AO=1,OD=3,DC=2,由勾股定理可知AD=22,由∠DAC=∠DCE,∠D=∠D可知△DEC∽△DCA,故此可得到DC2=DE•AD,故此可求得DE=2,于是可求得AE=2.【详解】解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB,∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=13,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD=22OD OA-=22.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA,∴DC DEAD DC=,即2222ED=.解得:DE=2,∴AE=AD﹣DE=2.24、公路的宽为20.5米.【解析】作CD⊥AE,设CD=x米,由∠CBD=45°知BD=CD=x,根据tan∠CAD=CDAD,可得x15+x=33,解之即可.【详解】解:如图,过点C作CD⊥AE于点D,设公路的宽CD=x米,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵∠CAE=30°,∴tan∠CAD=CDAD=33,即x15+x=33,解得:x=153+152≈20.5(米),答:公路的宽为20.5米.【点睛】本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.。

【3套试卷】中考数学免费试题及答案

【3套试卷】中考数学免费试题及答案

中考一模数学试卷及答案一、选择题(共10 题,每小题3分,共30分)1. 由5a=6b(a≠0,b≠0),可得比例式( )A.B.C.D.2.若△ABC∽△DEF,相似比为3∶2,则对应面积的比为( )A.3∶2 B.3∶5 C.4∶9 D.9∶43.如图是由几个大小相同的小立方块所搭成的几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )A.B.C.D.4.如图,下列条件中,可以判定△ACD和△ABC相似的是( )A.B.C.AC2=AD·AB D.CD2=AD·BD 5.如图,△ABC的顶点都是正方形网格中的格点,则cos∠ABC等于( )A.B.C.D.6.如图,沿AC方向修山路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=145°,BD=500米,∠BDE=55°,使A、C、E在一条直线上,那么点E与D的距离是( )A.500cos55°米B.500cos35°米C.500sin55°米D.500tan55°米7.已知反比例函数,则下列结论中不正确的是( )A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小8.小明和同学约好周末去公园游玩,他从学校出发,全程2.1千米,此时距他和同学的见面时间还有18分钟,已知他每分钟走90米,途中发现自己可能迟到,于是改骑共享单车,速度为每分钟210米,如果小明不迟到,至少骑车多少分钟?设骑车x分钟,则列出的不等式为( )A.210x+90(18-x)<2.1B.210x+90(18-x)≥2100C.210x+90(18-x)≤2100D.210x+90(18-x)≥2.19.如图所示,河堤横断面迎水坡AB的坡比是1∶,堤高BC=5 m,则坡面AB的长是( )A.10 m B.m C.15 m D.m10.已知二次函数的图象如图所示,则反比例函数与一次函数的图象可能是( )A.B.C.D.二、填空题(共6 题,每小题3分,共18分)11. 已知反比例函数的图像经过点(-3,-1),则k= .12.已知,将如图的三角板的直角顶点放置在直线AB上的点O处,使斜边CD∥AB.则∠α的余弦值为.13.如图,路灯距离地面8 m,身高1.6 m的小明站在距离灯的底部(点O)20 m的A处,则小明的影子AM的长为 m.14.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为.15.已知一个圆锥的三视图如图所示,则这个圆锥的侧面积为.16.如图,平行于x轴的直线与函数(k1>0,x>0),(k2>0,x>0)的图象分别交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1-k2的值为.三、解答题(共9 题,72分)17.(4分)计算:.18.(4分)如图已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2∶1.19.(4分)如图,在△ABC中,AD⊥BC于点D,AB=8,∠ABD=30°,∠CAD=45°,求BC的长.20.(6分)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气球内的气压大于140 kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01 m3)21.(8分)如图:直线y=x与反比例函数(k>0)的图象在第一象限内交于点A(2,m).(1)求m、k的值;(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式.22.(10 分)如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连接AG,作DE⊥AG于点E,BF⊥AG于点F,设.(1)求证:AE=BF;(2)连接BE,DF,设∠EDF=α,∠EBF=β.求证:23.(10 分)如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D.(1)求证:AC平分∠DAB;(2)若,求tan∠BDC的值.24.(12 分)已知:A(a,y1),B(2a,y2)是反比例函数(k>0)图象上的两点.(1)比较y1与y2的大小关系;(2)若A、B两点在一次函数第一象限的图象上(如图所示),分别过A、B两点作x轴的垂线,垂足分别为C、D,连接OA、OB,且,求a的值;(3)在(2)的条件下,如果3m=﹣4x+24,,求使得m>n的x的取值范围.25.(14 分)在平面直角坐标系中,点A(m,m+1)在反比例函数的图象上.(1)求点A的坐标;(2)若直角∠NAM绕点A旋转,射线AN分别交x轴、y轴于点B、N,射线AM交x轴于点M,连接MN.①当点B和点N分别在x轴的负半轴和y轴的正半轴时,若△BAM∽△MON,求点N的坐标;②在直角∠NAM绕点A旋转的过程中,∠AMN的大小是否会发生变化?请说明理由.答案:1-5 BDCCB6-10 ADBAC11.312.13.514. 915.16.817.解:原式.18.解:(1)如图所示,点C1的坐标是(2,﹣2);(2)如图所示.19.解:∵AD⊥BC于点D,∴∠ADB=∠ADC=90°.在Rt△ABD中,∵AB=8,∠ABD=30°,∴,.在Rt△ADC中,∵∠CAD=45°,∠ADC=90°,∴∠ACD=∠CAD=45°∴DC=AD=4,∴.20.解:(1)设,由题意知,所以k=96,故该函数的解析式为;(2)当P=140 kPa时,(m3).所以为了安全起见,气体的体积应不少于0.69 m3.21.解:(1)∵直线y=x经过点A(2,m),∴m=2,∴A(2,2),∵A在的图象上,∴k=4.(2)设B(0,n),由题意:,∴n=﹣2,∴B(0,﹣2),设AB所在直线的解析式为y=k′x+b,则有,∴,∴AB所在直线的解析式为y=2x﹣2.22.解:(1)∵四边形ABCD是正方形,∴∠BAF+∠EAD=90°,又∵DE⊥AG,∴∠EAD+∠ADE=90°,∴∠ADE=∠BAF,又∵BF⊥AG,∴∠DEA=∠AFB=90°,又∵AD=AB∴Rt△DAE≌Rt△ABF,∴AE=BF(2)易知Rt△BFG∽Rt△DEA,所以,在Rt△DEF和Rt△BEF中,,∴∴23.(1)证明:∵DC是⊙O的切线,∴OC⊥CD,∵AD⊥CD,∴AD∥CO,∴∠DAC=∠ACO,∵OA=OC,∴∠OAC=∠ACO,∴∠DAC=∠CAO,∴AC平分∠DAB.(2)解:设线段AD与⊙O相交于点M如图,连接BM、OC交于点N.∵AB是直径,∴∠AMB=90°,由(1)知AD∥OC,∴∠ONB=∠AMB=90°=∠CNB,由垂径定理可知MN=BN∵OC=OB,∴∠OCB=∠OBC,∴,设BN=4k,BC=5k,则CN=3k,∵∠CDM=∠DMN=∠DCN=90°,∴四边形DMNC是矩形,∴DM=CN=3k,MN=BN=4k,CD∥BM,∴∠CDB=∠DBM,∴.24.解:(1)∵A、B是反比例函数(k>0)图象上的两点,∴a≠0,当a>0时,A、B在第一象限,由a<2a可知,y1>y2,同理,a<0时,y1<y2;(2)∵A(a,y1)、B(2a,y2)在反比例函数(k>0)的图象上,∴,,∴y1=2y2.又∵点A(a,y1)、B(2a,y2)在一次函数的图象上,∴,,∴,∴b=4a,∵又∵∴∴,∴a2=4,∵a>0,∴a=2.(3)由(2)得,A(2,),B(4,),将A,B两点代入得解得∴一次函数的解析式为,反比例函数的解析式为:,A、B两点的横坐标分别为2、4,∵3m=﹣4x+24,,∴、,因此使得m>n的x的取值范围就是反比例函数的图象在一次函数图象下方的点中横坐标的取值范围,从图象可以看出2<x<4或x<0.25.解:(1)∵点A(m,m+1)在反比例函数的图象上.∴;解得m1=3,m2=-4∵m>0,∴m=3,∴点A的坐标是(3,4).(2)①如图,过点A作AC⊥y轴于C,作AD⊥x轴于D,则AC=3,AD=4,∠ACN=∠ADM=90°,设ON=x,则CN=4﹣x,∵△BAM∽△MON,∴∠ABM=∠NMO∴NB=NM,∵NO⊥BM,∴OB=OM=OA=5∵CA∥BO,∴△CAN∽△OBN,∴∴,解得∴点N的坐标为(0,);②在直角∠NAM绕点A旋转的过程中,∠AMN的大小不会发生变化.理由:当点B和点N分别在x轴的负半轴和y轴的正半轴时,∵∠CAD=∠NAM=90°,∴∠CAN=∠DAM,∴△CAN∽△DAM,∴∴∴∠AMN的大小不会发生变化.当点B和点N分别在x轴的非负半轴和y轴的非正半轴时,同理可证∠AMN的大小不会发生变化.中考第一次模拟考试数学试卷姓名:得分:日期:一、选择题(本大题共10 小题,共40 分)1、(4分) 点关于原点对称的点的坐标是()A. B. C. D.2、(4分) 下列事件中,属于随机事件的是()B.某篮球运动员投篮一次,命中.A.掷一枚质地均匀的正方体骰子,向上的一面点数小于7C.在只装了红球的袋子中摸到黑球D.在三张分别标有数字2,4,6,的卡片中摸两球,数字和是偶数3、(4分) 如图,点E在四边形ABCD的边BC的延长线上,则下列两个角是同位角的是()A.和B.C.D.4、(4分) 下列事件中,最适合采用全面调查的是()A.对某班全体学生出生日期的调查B.对全国中小学生节水意识的调查C.对某批次的灯泡使用寿命的调查.D.对厦门市初中学生每天阅读时间的调查5、(4分) 对于的图象,下列叙述正确的是()B.开口向下A.顶点坐标为C.当,y随x的增大而增大D.对称轴是直线6、(4分) 青山村种的水稻2010年平均每公顷产7200kg,设水稻每公顷产量的年平均增长率为x,则2012年平均每公顷比2011年增加的产量是()A. B. C. D.7、(4分) 如图,正六边形中,分别是的中点,绕正六边形的中心经逆时针旋转后与重合,则旋转角度是()A.60°B.90°C.120°D.180°8、(4分) 已知两个不同的一元二次方程的判别式互为相反数,下列判断正确的是()A.两个方程一定都有解B.两个方程一定没有解C.两个方程一定有公共解D.两个方程至少一个方程有解.9、(4分) 某创意工作室6位员工的月工资如图所示,因业务需要,现决定招聘一名新员工,若新员工的工资为元,则下列关于现在7位员工工资的平均数和方差的说法正确的是()A.平均数不变,方差变大B.平均数不变,方差变小C.平均数不变,方差不变D.平均数变小,方差不变10、(4分) 已知(其中为常数,且),乐老师在用描点法画其的图象时,列出如下表格,根据该表格,下列判断中不正确的是()A. B.一元二次方程没有实数根C.当时D.一元二次方程有一根比3大二、填空题(本大题共 6 小题,共24 分)11、(4分) 计算:=12、(4分) 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为13、(4分) 方程的根是14、(4分) 一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是15、(4分) 已知,计算16、(4分) 如图,在菱形中,分别是边的中点,于点P,,则的度数是三、解答题(本大题共9 小题,共86 分)17、(8分) (1)不等式组的解集.(2)先化简,再求值:其中18、(8分) 画出函数的图象19、(8分) 在两个不透明的袋子中分别装入一些相同的纸牌,甲袋内的4张牌分别标记数字1、2、3、4:乙袋内的3张牌分别标记数字2、3、4.从甲、乙两个袋子里分别随机摸出一张牌,求两张牌上的标数相同的概率.20、(8分) 如图,在,以为直径的分别交于点,点F在的延长线上,且.(1)求证:直线是的切线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年安徽省六安市霍邱县中考数学一模试卷
一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(4分)﹣8的立方根是()
A.﹣2 B.±2 C.2 D.﹣
2.(4分)某几何体的三视图如图,则该几何体是()
A.三棱柱B.长方体C.圆柱D.圆锥
3.(4分)已知点A(﹣2,y1).B(﹣1,y2)在反比例函数y=﹣上,则y1与y2的大小关系是()
A.y1>y2B.y1<y2C.y1≥y2D.无法比较
4.(4分)下列计算正确的是()
A.a+2a2=3a3B.(a3)2=a5C.a3?a2=a6 D.a6÷a2=a4
5.(4分)小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84分C.84.5分D.86分
6.(4分)甲、乙两人在操场上赛跑,他们赛跑的路程S(米)与时间t(分钟)之间的函数关系如图所示,则下列说法错误的是()
A.甲、乙两人进行1000米赛跑
B.甲先慢后快,乙先快后慢
C.比赛到2分钟时,甲、乙两人跑过的路程相等
D.甲先到达终点
7.(4分)九年级学生去距学校10km的博物馆参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.设骑车学生的速度为xkm/h,则所列方程正确的是()
A.=﹣B.=﹣20 C.=+D.=+20
8.(4分)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()
A.7 B.8 C.9 D.10
9.(4分)如图,已知正△ABC的边长为2,E、F、G分别是AB、BC、CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()
A.B.C.D.
10.(4分)如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA 最大时,PA的长等于()。

相关文档
最新文档