十字交叉法——溶液浓度的计算
浓度问题(十字交叉法的巧妙运用)

浓度问题(十指交叉法巧妙运用)如果题目中给出两个平行的情况A, B, 满足条件a, b ; 然后A和B按照某种条件混合在一起形成的情况C, 满足条件c. 而且可以表示成如下的表达式. 那么这个时候就可以用十字交叉法.判断式: A×a+B×b=(A+B)×c=C×c用十字交叉法表示:(一)基本知识点:1、溶液=溶质+溶剂;2、浓度=溶质/溶液;3、溶质=溶液*浓度;4、溶液=溶质/浓度;(二)例题与解析1. 甲容器中有浓度为4%的盐水250克,乙容器中有某种浓度的盐水若干克。
现从乙中取出750 克盐水,放人甲容器中混合成浓度为8%的盐水。
问乙容器中的盐水浓度约是多少?A.9.78%B.10.14%C.9.33%D.11.27%答案:C解析:方法一:设乙容器中盐水的浓度为x(250×4%+750*x)/(250+750)=8%x=9.33%方法二:设浓度为x2. 甲、乙两瓶酒精溶液分别重300克和120克;甲中含酒精120克,乙中含酒精90克。
问从两瓶中应各取出多少克才能兑成浓度为50%的酒精溶液140克?A 甲100克,乙 40克B 甲90克,乙50克C 甲110克,乙30克D 甲70克,乙70克答案:A解析:甲浓度为40%,乙浓度为75%,甲中取A,乙中取140-AA:(140-A)=5:2A=1003、一杯含盐15%的盐水200克,要使盐水含盐20%,应加盐()克。
A.14.5B.10C.12.5D.15解析:假设加盐x克,15%的盐水200克, 100%的盐x克, 混合成20%的200+x.满足:15%*200+100%*x=20%*(200+x),所以可以用十字交叉法.解出x=12.5克.说明:浓度问题,无论是稀释、浓缩还是配制,一定要转化为甲、乙两种溶液混合成第三种丙溶液,方可利用十字交叉法。
十字交叉法解浓度问题

十字交叉法解浓度问题十字交叉法是解决溶液浓度问题的一种简单有效的方法,通常用于计算不同浓度的液体或溶液的混合比例。
该方法基于比例关系,将给定的溶液容量、浓度和所需混合后的溶液浓度进行杂交,以找到所需的混合比例。
下面将介绍十字交叉法解浓度问题的具体步骤。
步骤一:确定所需的混合溶液浓度和容量首先需要确定目标混合溶液的浓度和容量。
这可以根据具体的实验要求或应用场景进行选择。
例如,如果需要制备100mL的20%浓度的溶液,那么这些信息需要在问题中明确给出。
步骤二:将浓度和容量写成比例式根据比例关系,将目标混合溶液的浓度和容量写成比例式,如下所示:目标溶液浓度/100 = X(所需体积)/与该浓度液体混合的体积例如,对于要制备100mL的20%溶液,可以写成:20/100 = X / (100 - X)其中,X代表所需体积,100-X代表与该浓度液体混合的体积。
步骤三:根据已知条件解出所需的体积将已知条件代入比例式中,解出所需的体积。
以制备100mL的20%溶液为例,可进行以下计算:20/100 = X / (100 - X)化简后得到X = 20mL通过这个比例式,可以得出制备20%浓度的溶液,需要取20mL的纯化液加入80mL的稀释液中。
步骤四:计算所需的纯化液体积根据已知条件和所需的体积,可以计算出所需的纯化液体积。
对于上面的例子,需要取20mL的纯化液体,所以所需的纯化液体积即为20mL。
步骤五:计算所需的稀释液体积最后,开始计算所需的稀释液体积。
根据上面的例子,所需的总体积为100mL,其中20mL是纯化液体,所以所需的稀释液体积为80mL。
通过上述五个步骤,就可以利用十字交叉法解决浓度问题。
需要注意的是,在计算过程中,必须确保所使用的所有单位都是相同的,并且需要对计算结果进行检查,确保其正确无误。
总结十字交叉法是解决浓度问题的一种简单而有效的方法,它可以用于计算不同浓度的液体或溶液的混合比例。
浓度十字交叉法课件

要点二
详细描述
选择合适的内标物可以提高方法的准确性。内标物应与被 测组分具有相似的物理化学性质,以便在相同的色谱条件 下进行分离和分析。同时,应适当提高内标物的浓度,以 增强其在混合物中的信号强度,减小误差。选择合适的取 样时间和增加取样数量也可以提高方法的准确性,因为它 们可以增加数据点的数量和代表性,从而减小实验误差。
06
浓度十字交叉法的发 展趋势与展望
在理论方面的研究进展
完善数学模型
随着研究的深入,不断发现和修 正浓度十字交叉法数学模型中的 漏洞和不足,提高模型的准确性
和可靠性。
扩展适用范围
目前浓度十字交叉法主要应用于混 合物分析,未来可能会将其应用于 更为复杂的多组分体系,如生物体 系、环境体系等。
探索新方法
浓度十字交叉法课 件
contents
目录
• 浓度十字交叉法概述 • 浓度十字交叉法计算步骤 • 浓度十字交叉法实例 • 浓度十字交叉法的扩展应用 • 浓度十字交叉法的局限性及改进方案 • 浓度十字交叉法的发展趋势与展望
01
浓度十字交叉法概述
定义与原理
定义
浓度十字交叉法是一种用于求解 两种或多种不同浓度混合后的比 例关系的方法。
。
解读结果
根据计算结果,可以得出混合物中各 组分的浓度比例,进而了解混合物的 性质和组成。
对于不同浓度的混合物,可以通过调 整各组分的浓度比例重新进行计算, 以获得更精确的结果。
03
浓度十字交叉法实例
混合气体浓度的计算
总结词
通过十字交叉法,我们可以轻松地计算混合气体中各组分的浓度。
详细描述
首先,我们需要知道混合气体中各组分的体积分数或质量分数,然后使用十字交 叉法来计算混合气体中各组分的浓度。
十字交叉法浓度问题原理

十字交叉法浓度问题原理在我们解决化学中有关浓度的问题时,有一种非常实用且高效的方法,那就是十字交叉法。
它以其简洁直观的特点,为我们在处理浓度混合相关的计算时提供了极大的便利。
首先,让我们来明确一下什么是浓度。
简单来说,浓度就是指溶液中溶质的含量。
通常用质量分数、物质的量浓度等来表示。
而当涉及到两种不同浓度的溶液混合时,十字交叉法就派上了用场。
比如说,我们有两种浓度不同的溶液A 和B,A 溶液的浓度为a%,B 溶液的浓度为 b%(这里假设 a > b),将它们混合后得到了浓度为c%的新溶液。
那么,我们就可以用十字交叉法来计算两种溶液在混合时的比例关系。
我们先画出一个十字:|浓度| a% | b% ||::|::|::||混合后浓度| c% ||然后在十字的横线上分别写上两种溶液的浓度与混合后浓度的差值:|浓度| a% | b% ||::|::|::||差值| a c | c b |接下来,我们就可以得到两种溶液的质量比或者物质的量比:A 溶液与B 溶液的比例=(c b) :(a c)为什么会这样呢?其实原理很简单。
我们以质量分数为例来解释一下。
假设 A 溶液的质量为 m₁,B 溶液的质量为 m₂。
那么 A 溶液中溶质的质量为 m₁ × a%,B 溶液中溶质的质量为 m₂ × b%。
混合后,新溶液中溶质的总质量为(m₁+ m₂) × c%。
因为混合前后溶质的质量是不变的,所以可以得到等式:m₁ × a% + m₂ × b% =(m₁+ m₂) × c%将其变形为:m₁ ×(a% c%)= m₂ ×(c% b%)进一步得到:m₁/ m₂=(c b) /(a c)这就是十字交叉法得出比例关系的原理。
再举个实际的例子来帮助大家更好地理解。
假设我们有 20%浓度的盐水 30 克,要与 40%浓度的盐水混合,得到 35%浓度的盐水,那么两种盐水的质量比是多少呢?按照十字交叉法:|::|::|::||混合后浓度| 35% |||差值| 15 | 5 |所以 20%盐水与 40%盐水的质量比为 5 : 15,也就是 1 : 3。
2019国家公务员考试行测技巧:十字交叉解决两种溶液混合的浓度问题

2019国家公务员考试行测技巧:十字交叉解决两种溶液混合的浓度问题众所周知,在行测考试中,浓度问题是一个高频考点,涉及到溶液的浓度问题主要有两个方向的考察,溶液的蒸发或稀释的问题、两种溶液混合问题。
这类题目算是数学运算这部分的简单题目,只要出现,是要求必须拿下的题目,当然需要同学们掌握这类题目的解题思想和解题方法。
解决这类问题的方法主要有方程法、特值法和十字交叉法。
今天,专家就详细解读一下如何利用十字交叉法来解决两种溶液混合的问题。
浓度=溶质的质量÷溶液的质量溶液的质量=溶剂的质量+溶质的质量两种浓度的溶液混合,混合后溶液的浓度介于这两种溶液的浓度之间。
例题1:一只猫每天吃由食品A和食品B搅拌成的食物300克,食品A的蛋白质含量为10%,食品B的蛋白质含量为15%。
如果该猫每天需要36克蛋白质,问食物中食品A的比重是百分之几( )。
A.35%B.40%C.60%D.50%答案:C中公解析:依照题目信息,运用十字交叉法解题:A、B两种食物的质量比为3:2,所以食物中食品A的比重是五分之三,因此选C。
例2:甲乙两种不同浓度的盐水混合后,新的盐水浓度为15%,已知甲盐水浓度为9%,质量为5千克,如果乙盐水的质量不超过10千克,则乙盐水浓度最低为( )?A.16%B.18%C.20%D.22%答案:B中公解析:乙盐水浓度越低,需要的乙盐水的质量就越多,即当乙盐水的质量恰好为10千克时。
因此2(x-15)=6,x=18,选择B。
例题3:甲乙两瓶盐酸溶液分别重400克和180克;甲中含盐酸160克,乙中含盐酸135克,问从两瓶中应各去除多少克才能兑成浓度为50%的盐酸溶液140克?A.120克、乙20克B.甲90克、乙50克C.甲110克、乙30克D.甲100克、乙40克答案:D中公解析:可采用十字交叉法。
甲溶液浓度为40%,乙溶液浓度为75%。
所以甲乙溶液用量之比为为5:2,又因为溶液共有140克,所以甲溶液用量100克,乙溶液用量100克。
数量关系高分技巧(3)—十字交叉法

十字交叉法【知识点介绍】十字交叉法是一种解决混合类问题的简便方法。
凡可按M 1·n 1+M 2·n 2=M ·n 计算的问题,均可按十字交叉法计算。
以两种不同浓度的同种溶液混合为例,我们先分析十字交叉法的原理:若将质量为A 、浓度为a 的溶液,与质量为B 、溶度为b(a >b)的同种溶液混合,得到浓度为c 的溶液,根据混合前后溶质的质量不变,可得A ×a +B ×b =(A+B)×r 化简可得: A (a -r )=B (r -b ),即ra b A --=r B ,用十字交叉法表示如下: ra b r rb a--,r a b A --=r B 十字交叉法在数量关系中的考查主要集中在以下两种题型:(1) 溶液混合,不同浓度的溶液混合,得到的混合浓度大小居中,十字交叉所得到的比例为混合溶液的质量之比或体积之比;(2) 平均数(或比重)混合,两组数据混合,得到的混合数据大小居中,十字交叉所得到的比例为两组数据的数量之比。
【例1】要将浓度分别为20%和5%的A 、B 两种食盐水混合配成浓度为15%的食盐水900克。
问5%的食盐水需要多少克?( )A.250B.285C.300D.325【技巧点拨】溶液混合,浓度十字交叉可得质量比。
【解析】浓度为20%的溶液A 与浓度为5%的溶液B 混合得浓度为15%,十字交叉法表示如下:5%10%15%5%20%,12A =B故浓度为5%的B 溶液的质量为30090031= ,选C 。
【例2】某班一次数学测试,全班平均91分,其中男生平均88分,女生平均93分,则女生人数是男生人数的多少倍?( )A.0.5B.1C.1.5D.2【技巧点拨】平均数混合,十字交叉可得人数比。
【解析】男生的平均分为88分,女生的平均分为93分,男女混合后总的平均分是91分,大小介于男生和女生之间,十字交叉法表示如下: 23918893,23=男女 解得女生数量是男生的1.5倍。
溶液浓度计算公式十字交叉法

溶液浓度计算公式十字交叉法一、十字交叉法原理。
1. 适用情况。
- 十字交叉法适用于混合两种不同浓度(或其他类似属性,如质量分数、物质的量浓度等)的溶液,求混合后溶液的浓度或者计算混合时两种溶液的用量比例等问题。
2. 推导过程(以质量分数为例)- 设两种溶液的质量分别为m_1、m_2,质量分数分别为ω_1、ω_2,混合后溶液的质量分数为ω。
- 根据混合前后溶质的质量不变,可得m_1ω_1 + m_2ω_2=(m_1 + m_2)ω。
- 整理可得(m_1)/(m_2)=(ω - ω_2)/(ω_1-ω)。
- 我们可以将这个比例关系用十字交叉法表示:- 把ω_1和ω_2写在左边上下位置,混合后的ω写在中间,然后交叉相减得到右边上下的数值,右边上下数值的比就等于m_1:m_2。
二、十字交叉法在溶液浓度计算中的应用。
1. 已知两种溶液浓度求混合浓度。
- 例:将质量分数为20%的NaCl溶液和质量分数为50%的NaCl溶液混合,若两种溶液的质量比为3:2,求混合后溶液的质量分数。
- 解:- 首先按照十字交叉法的形式列出:- begin{arra y}{ccc}20% 50% ω end{array}- 交叉相减:(50%-ω)和(ω - 20%)- 已知两种溶液质量比m_1:m_2 = 3:2,根据十字交叉法(m_1)/(m_2)=(50%-ω)/(ω - 20%)=(3)/(2)。
- 即2(50%-ω)=3(ω - 20%)。
- 展开得1 - 2ω=3ω - 0.6。
- 移项可得5ω = 1.6,解得ω = 32%。
2. 已知混合浓度和一种溶液浓度求另一种溶液浓度。
- 例:把质量分数为10%的NaOH溶液与另一种NaOH溶液混合,得到质量分数为20%的混合溶液,已知两种溶液的质量比为1:3,求另一种溶液的质量分数。
- 解:- 设另一种溶液的质量分数为ω。
- 列出十字交叉形式:- begin{array}{ccc}10% ω 20% end{array}- 交叉相减得(ω - 20%)和(20% - 10%)。
行测数学运算之十字交叉、浓度问题和牛吃草

一、十字交叉法十字交叉法是数算里面的一个重要方法,很多比例问题,都可以用十字交叉法来很快地解决,而在资料分析中,也能够派上很大用场,所以应该认真掌握它。
(一)原理介绍通过一个例题来说明原理。
例:某班学生的平均成绩是80分,其中男生的平均成绩是75,女生的平均成绩是85。
求该班男生和女生的比例。
方法一:男生一人,女生一人,总分160分,平均分80分。
男生和女生的比例是1:1。
方法二:假设男生有A,女生有B。
(A*75+B85)/(A+B)=80整理后A=B,因此男生和女生的比例是1:1。
方法三:男生:75 580女生:85 5男生:女生=1:1。
一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。
平均值为C。
求取值为A的个体与取值为B的个体的比例。
假设A有X,B有(1-X)。
AX+B(1-X)=CX=(C-B)/(A-B)1-X=(A-C)/(A-B)因此:X:(1-X)=(C-B):(A-C)上面的计算过程可以抽象为:X A C-BC1-X B A-C这就是所谓的十字相乘法。
十字相乘法使用时要注意几点:第一点:用来解决两者之间的比例关系问题。
第二点:得出的比例关系是基数的比例关系。
第三点:总均值放中央,对角线上,大数减小数,结果放对角线上。
(二)例题与解析1.某体育训练中心,教练员中男占90%,运动员中男占80%,在教练员和运动员中男占82%,教练员与运动员人数之比是A.2:5B.1:3C.1:4D.1:5答案:C分析:男教练:90%2%82%男运动员:80%8%男教练:男运动员=2%:8%=1:42.某公司职员25人,每季度共发放劳保费用15000元,已知每个男职必每季度发580元,每个女职员比每个男职员每季度多发50元,该公司男女职员之比是多少A.2∶1B.3∶2 C. 2∶3D.1∶2答案:B分析:职工平均工资15000/25=600男职工工资:58030600女职工工资:63020男职工:女职工=30:20=3:23.某城市现在有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十字交叉法的介绍
十字交叉法可用于溶液浓度的计算,例如溶液的稀释、浓缩或混合等计算题。
使用此法,使解题过程简便、快速、正确。
下面通过例题介绍十字交叉法的原理。
同一物质的甲、乙两溶液的百分比浓度分别为a%、b%(a%>b%),现用这两种溶液配制百分比浓度为c%的溶液。
问取这两种溶液的质量比应是多少?
同一物质的溶液,配制前后溶质的质量相等,利用这一原理可列式求解。
设甲、乙两溶液各取m1、m2克,两溶液混合后的溶液质量是(m1 m2)。
列式m
1a%m2b%=(m1 m2)c%把此式整理得:m1m2=c-ba-c,m1m2就是所取甲、乙两溶液的质量比。
为了便于记忆和运算,若用C浓代替a,C稀代替b,C混代替C,m浓代替m1,m
稀代替m2,把上式写成十字交叉法的一般形式,图示如下:
图示中m浓m稀就是所求的甲、乙两溶液的质量比。
这种运算方法,叫十字交叉法。
在运用十字交叉法进行计算时要注意,斜找差数,横看结果。
十字交叉法的应用
1.有关混合溶液的计算例1.现有20%和5%的两种盐酸溶液,若要配制600克15%的盐酸溶液,各需20%和5%的盐酸溶液多少克?
分析与解:本题是用两种已知浓度的溶液来配制所需浓度的溶液,看似是求溶液的质量,实质是先求出两种浓度溶液的质量比,然后问题就迎刃而解。
用十字交叉法
由图示可知,20%盐酸溶液与5%盐酸溶液的质量比应为2∶1
∴20%盐酸溶液的质量600ⅹ23=400克
5%盐酸溶液的质量600ⅹ13=200克2.有关改变溶剂质量的溶液浓度的计算
例2.把20%的氯化钠溶液100克,加水稀释成浓度为4%的溶液,问需加水多少克?
分析与解:本题是用水稀释改变溶液浓度的计算题,将水视为浓度为0%的溶液。
用十字交叉法由图示可知,20%氯化钠溶液与加入水的质量比应为m
浓∶m水=4∶16=1∶4∴需加水的质量4ⅹ100=400克例3.现有200克浓度为10%的硝酸钾溶液,若要使其浓度变为20%,则需蒸发掉多少克水?
分析与解:本题是蒸发水改变溶液浓度的计算题,将水视为浓度为0%的溶液。
用十字交叉法由图示可知,10%的硝酸钾溶液与蒸发水的质量比应为m浓m水
=-3015=-21(负号表示蒸发即减少的含义)
∴蒸发水的质量200ⅹ12=100克3.有关增加溶质的溶液浓度的计算
例4.现有200克浓度为10%的硝酸钾溶液,若要使其浓度变为20%,则需再溶解硝酸钾多少克?
分析与解:本题是增加溶质浓度翻倍的计算题,对于水溶液纯溶质的情况,将溶质的浓度视为100%。
用十字交叉法
由图示可知,增加溶质与10%的硝酸钾溶液的质量比应为1∶8
∴需再溶解硝酸钾的质量200ⅹ18=25克练一练:
试用两种方法,将100克浓度为10%的硝酸钠溶液,使其浓度变为20%。
(用十字交叉法计算)
参考答案:方法一增加溶质12.5克方法二蒸发溶剂50克
参考资料:高中化学。