海量数据存储论文.
大数据论文3000字范文(精选5篇)

大数据论文3000字范文(精选5篇)第一篇:大数据论文3000字当人们还在津津乐道云计算、物联网等主题时, “大数据”一词已逐渐成为IT网络通信领域热门词汇。
争夺大数据发展先机俨然成为世界各国高度重视的问题, 其中不乏IBM、EMC.甲骨文、微软等在内的巨头厂商的强势介入, 纷纷跑马圈地, 它们投入巨额资金争相抢占该领域的主动权、话语权。
大数据时代的来临, 除了推动现有的信息技术产业的创新, 其对我们生产生活的方式也将产生重大影响。
从个人视角来看, 不管是日常工作中遇到的海量邮件或是从网上获取的社交、购物、娱乐、学习、理财等信息, 还是生活中最常见的手机存储, 大数据已经渗透到我们日常生活的方方面面, 极大地方便了我们的生活;对企业而言, 互联网公司已开始采用大数据来冲击传统行业, 精准营销与大数据驱动的产品快速迭代, 促进企业商业模式创新;在社会公共服务方面, 教育、医疗、交通等行业在大数据的影响下, 出现了各种新的应用, 数据化、社交化的新媒体平台、智能交通与城市数字监管系统, 以及病历存储调用的医疗云等, 此外, 政府还可以通过大数据来高效完成信息采集, 这样可优化升级管理运营。
然而大数据在给我们展示前所未有的发展机遇的同时, 也给国家信息安全、信息技术、人才等方面带来了很大的挑战。
不久前, 斯诺登披露了美国国家安全局(NSA)一直进行信息监视活动、已收集数以百万计的全球人的信息数据的消息, 在全球范围内掀起轩然大波。
该事件对“大数据”的信息安全敲响了警钟。
大数据让大规模生产、分享和应用数据成为可能, 将信息存储和管理集中化, 我们在百度上面的记录, 无意识阅读的产品广告、旅游信息, 习惯去哪个商场进行采购等这些痕迹, 却不知所有的关系和活动在数据化之后都被一些组织或商家公司掌控, 这也使得我们一方面享受了“大数据”带来的诸多便利, 但另一方面无处不在的“第三只眼”却在时刻监控着我们的行动。
天津大学硕士学位论文

天津大学硕士学位论文虚拟天文台环境下的海量数据存储与访问技术研究Research on Mass Storage and Access Technology in Virtual Observatory学科专业:计算机应用技术研 究 生:李文指导教师:孙济洲 教授天津大学计算机科学与技术学院二零零七年六月独创性声明本人声明所呈交的学位论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得天津大学或其他教育机构的学位或证书而使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
学位论文作者签名:签字日期:年月日学位论文版权使用授权书本学位论文作者完全了解天津大学有关保留、使用学位论文的规定。
特授权天津大学可以将学位论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。
同意学校向国家有关部门或机构送交论文的复印件和磁盘。
(保密的学位论文在解密后适用本授权说明)学位论文作者签名:导师签名:签字日期:年月日签字日期:年月日中文摘要近年来,随着观测设备和观测技术的发展,天文数据呈现爆炸式的增长,而计算机网络技术的快速发展又为这些海量天文数据的共享提供了有力的技术支持,因此,将天文学和计算机技术融合在一起的“虚拟天文台”便应运而生,使得人们突破时间和空间的限制获得丰富的天文数据资源成为可能。
然而,在虚拟天文台环境下,如何对海量数据进行有效存储成为一个亟待解决的问题;同时,如何对海量数据进行快速有效的访问,也是关系到虚拟天文台服务能力的重要课题。
本文以中国虚拟天文台为背景,研究海量天文数据的存储和访问技术。
首先,对当前主要的存储技术进行综合分析和比较,结合虚拟天文台对海量数据的存储需求,设计了中国虚拟天文台的数据存储方案,并对该方案进行评价。
海量数据存储解决方案

海量数据存储解决方案引言随着互联网和各种技术的迅猛发展,我们生产、收集和处理的数据量正在不断增长。
海量数据的存储和管理成为许多企业和组织面临的重要挑战。
传统的存储方案往往无法满足海量数据的要求,因此我们需要寻找新的解决方案来解决这个问题。
本文将探讨一些海量数据存储的解决方案,并分析它们的优缺点。
1. 分布式存储系统分布式存储系统是一种将数据分散存储在多个节点上的解决方案。
这种方案可以通过增加节点来提供无限的存储容量,并且可以通过并行处理来提高数据访问和处理能力。
其中最著名的分布式存储系统是Apache Hadoop。
Hadoop使用Hadoop分布式文件系统(HDFS)作为其底层存储系统。
HDFS将数据划分为多个块,然后将这些块分散存储在不同的节点上。
这种分散存储的方式可以实现数据的冗余备份,提高了数据的可靠性。
此外,Hadoop还提供了MapReduce编程模型,可以方便地进行海量数据的处理和分析。
分布式存储系统的优点是可以线性扩展存储容量和处理能力,可以轻松地处理海量数据。
然而,它也存在一些挑战,比如对于小规模的数据存储来说,分布式存储系统可能过于复杂和昂贵。
2. 对象存储系统对象存储系统是一种将数据存储为对象的解决方案。
相比传统的文件系统,对象存储系统可以更好地处理海量数据,并提供更好的数据管理功能。
对象存储系统使用唯一的标识符来访问对象,而不是使用文件路径。
这种方式可以减少文件系统层次结构的复杂性,并提高数据的访问效率。
另外,对象存储系统还可以提供数据的元数据管理、数据版本管理、数据安全复制和数据检索等功能。
Amazon S3(Simple Storage Service)是最著名的对象存储系统之一。
S3通过将数据存储为对象并使用统一的命名空间来支持海量数据的存储和管理。
S3还提供了高可靠性、高可扩展性和低延迟的存储服务。
对象存储系统的优点是可以高效地处理海量数据,并提供丰富的数据管理功能。
[参考论文]海量小文件存储方法论文
![[参考论文]海量小文件存储方法论文](https://img.taocdn.com/s3/m/275bbb926429647d27284b73f242336c1eb93039.png)
海量小文件存储方法论文摘要:Hadoop目前还没有一个系统级的通用的解决HDFS小文件问题的方案。
第4章提到的Hadoop自带的解决方案各有优缺点,通用技术方案应用到不同环境时效果也不尽相同,针对具体应用场景提出的解决方案具有一定局限性,对其他应用系统具有借鉴意义但并不能搬用。
针对Hadoop中海量小文件存储优化的问题还值得进一步的深入研究。
1 引言Hadoop[1]是由Apache基金会研发的能够对海量数据进行分布式处理的基础框架,是海量数据存储与处理的理想平台。
然而由于Hadoop采用流式方式读写文件,对于大文件处理效率极高,但对小文件处理效果并不是很好。
当处理如气象数据这种海量小文件时,Hadoop的优势并不能展示出来,故需要对小文件的存储进行优化。
2 HDFS的系统架构HDFS是Hadoop的分布式文件系统,其具有高容错性的特点,设计用来部署在低廉硬件上,能够提供极高的数据吞吐量,适合那些有着超大数据集的应用程序[2],因而成为了云存储平台的代表性系统。
HDFS采用主从架构,由一个名称节点和多个数据节点组成。
名称节点是HDFS的主服务器,主要负责管理元数据和数据块、持久化元数据、处理请求及管理数据节点,数据节点主要负责数据块的读写、向名称节点报告状态及执行数据的流水线复制。
客户端通过与名称节点和数据节点的交互来访问整个文件系统。
3 HDFS处理海量小文件存在的问题HDFS设计用来对大文件进行流式存储,在处理小文件时会产生一些问题[3]。
小文件是指文件大小小于HDFS块大小(默认为64MB)的文件,大量的小文件会严重影响Hadoop的性能及其扩展性。
首先,海量小文件大量耗费名字节点的内存。
每个小文件作为一个块存储,海量数据块的元数据信息会占用大量内存,这样名称节点的内存容量会严重制约集群的扩展。
其次,海量小文件的存取效率低。
大量小文件写入HDFS时需频繁请求名称节点分配数据块,读取大量小文件时需频繁请求数据节点以获取文件,严重影响了名称节点和数据节点的I/O性能。
面向海量数据处理的数据压缩与存储技术研究

面向海量数据处理的数据压缩与存储技术研究随着互联网和数字化时代的到来,海量数据处理已成为当今社会不可或缺的重要任务。
海量数据的处理涉及到数据的压缩与存储技术,这是在处理大规模数据时必不可少的环节。
数据压缩技术是通过对数据进行压缩,以减少数据的存储空间和传输带宽的消耗。
海量数据处理需要高效的数据压缩算法,它能够在不显著损失数据质量的前提下,将数据压缩到更小的体积。
在压缩算法的选择上,可以考虑使用无损压缩算法或有损压缩算法。
无损压缩算法是在压缩的过程中保持数据的完整性和准确性,而有损压缩算法则在一定程度上牺牲了数据的精确性以换取更高的压缩比。
常见的无损压缩算法包括哈夫曼编码、算术编码和霍夫曼-离散余弦变换(Huffman-DCT)算法等。
这些算法适用于各种类型的数据,例如文本、图像、音频和视频等。
无损压缩算法在保持数据的完整性方面具有优势,但压缩率相对较低。
而有损压缩算法则能够实现更高的压缩率,但会在数据还原的过程中引入一定的失真。
对于特定类型的数据,可以使用更加专门的压缩算法。
例如,对于图像数据,JPEG(Joint Photographic Experts Group)和PNG(Portable Network Graphics)等压缩算法广泛应用于图像压缩领域。
而对于音频数据,MP3(MPEG Audio Layer III)和AAC(Advanced Audio Coding)等压缩算法常用于音频压缩和存储。
这些算法通过对数据的特征进行分析和利用,实现了在保持一定质量的前提下,将数据压缩到更小的体积。
除了数据压缩技术,海量数据处理还需要高效的数据存储技术。
数据存储技术涉及到数据的存储结构和存储介质的选择。
在存储结构方面,可以选择传统的关系型数据库或新兴的非关系型数据库。
关系型数据库适用于结构化数据的存储和查询,而非关系型数据库则适用于半结构化和非结构化数据的存储和处理。
非关系型数据库具有高扩展性、高性能和灵活的特点,能够满足海量数据处理的需求。
移动互联网中的海量数据存储和处理

移动互联网中的海量数据存储和处理随着移动互联网的快速发展,大量数据的产生和存储成为了互联网领域最为迫切的问题之一。
然而,面对海量数据的存储和处理,传统的数据处理方式显然已无法胜任,因此新的数据存储和处理技术被广泛应用。
本文将探讨移动互联网中的海量数据存储和处理的现状和未来发展趋势。
一、移动互联网中的数据生态在移动互联网时代,数据的生态已经发生了天翻地覆的变化。
用户的每一次行为,每一个点击、浏览都会产生数据,这些数据概括起来称为“大数据”。
大数据经过分析和挖掘,可以为企业、政府和个人带来无限商机和价值。
例如,企业可以通过大数据了解市场的需求和趋势,优化产品和服务;政府可以通过大数据分析,了解社会现状、制定政策,提高行政管理效率;个人可以通过大数据的反馈,获得个性化的服务和体验。
然而,海量数据的存储和处理成为了目前数据处理的最大问题。
在传统的数据处理方式中,数据是以结构化的形式保存在数据库中,这种方式可以很好地处理小量的数据。
但随着互联网的快速发展,非结构化的数据迅速增长,如图像、音频、视频等。
这些非结构化数据具有数据量大、传输速度慢、存储空间占用大等特点,迫使我们寻找新的数据存储和处理方式。
二、新型数据存储和处理技术面对海量数据和非结构化数据的挑战,新型数据存储和处理技术应运而生。
这些技术包括分布式文件系统、NoSQL数据库、云计算等,它们颠覆了传统的数据存储和处理方式,成为了新一代数据存储和处理的代表技术。
1.分布式文件系统传统的文件系统存在一些缺陷,如单点故障、存储容量限制,而分布式文件系统可以解决这些问题。
分布式文件系统将文件切分成若干个部分,同时将这些部分存储在多台服务器上,使得文件可以并行读取和写入,提高了数据的读写速度。
分布式文件系统优秀的开源实现有Hadoop分布式文件系统。
2.NoSQL数据库NoSQL数据库是一种非关系型数据库,其特点是擅长处理非结构化数据,扩展性好,性能高,具有强大的横向扩展能力。
海量数据存储方案

海量数据存储方案1. 引言随着互联网的迅速发展,海量数据的产生和存储成为一种常见的现象。
传统的存储方案已经无法满足大规模和高效存储的需求,因此,研究和探索新的海量数据存储方案成为了一个紧迫的任务。
本文将介绍几种目前常用的海量数据存储方案,并对它们进行比较和评估。
2. 基于关系数据库的存储方案关系数据库是一种经典的数据存储方案,它采用了表格结构来组织和存储数据。
在海量数据场景中,关系数据库面临着性能瓶颈和存储限制。
为了解决这些问题,一些优化技术被提出,如垂直划分和水平分块。
垂直划分将表格的列进行划分,通过将经常一起访问的列放在同一个表中来提高查询性能。
水平分块将表格的行进行划分,通过将数据分散到多个节点上来提高存储容量和查询性能。
尽管这些优化技术可以在一定程度上改善关系数据库的性能,但是它们仍然无法解决海量数据存储的问题。
3. 分布式文件系统存储方案分布式文件系统是另一种常用的海量数据存储方案。
它将大文件切分成较小的块,并将这些块分散到多个节点上进行存储。
这样做的好处是可以充分利用集群中各个节点的存储能力,提高存储容量和读写性能。
此外,分布式文件系统还具备高可用性和容错性,当某个节点发生故障时,系统可以自动将数据重新分布到其他节点上。
Hadoop分布式文件系统(HDFS)是一个典型的分布式文件系统,它被广泛应用于海量数据存储和处理领域。
HDFS采用了主从架构,由一个NameNode和多个DataNode组成。
NameNode负责管理整个文件系统的元数据,包括文件的块信息、副本位置等。
DataNode负责实际存储数据块。
HDFS的设计理念是以容忍硬件故障为前提的,通过数据复制和容错机制来保证数据的可靠性和可用性。
4. NoSQL数据库存储方案NoSQL(Not Only SQL)数据库是一类非关系型数据库,适用于存储海量数据的场景。
与关系数据库不同,NoSQL数据库不需要遵循严格的结构和约束,可以根据具体的应用需求来设计和调整数据模型。
海量信息资源存储与共享技术研究

的研究 ,取得了很多成果 。 目前海量信息存储技术 已经
成为I 领域 中发展最为迅速的热点之一 。 T
一
、
信 息存储 的基 本概 念
档应 用 ,可为数字 图书馆 和其它企业 存储 提供 有力保
障。虽然磁 带的速度 比硬盘和光盘要慢 ,但磁带的成本
所谓 信息就是有一定含义和特定价值 的数据。信息 可以沿空 间传递 ,我们称之为通讯 、传输等 。但同时它 也需要沿 时间传递 ,我们称之 为记忆或存储 。所 以信息
23 .磁盘阵列
磁盘阵列全称为廉价磁盘冗余阵列( eu dnA r R d n at r y a o ep nieD s s A I ) 指使用 两个或 两个 以 f n x e s i ,R D ,是 I v k 上 同类 型 、容 量 、接 口的磁 盘 ,在磁 盘控制器 的管理
使存储容量飞速增长 ,推动了海量信息存储系统的快速
中心 ” ,适 用于一个或有 限的几个服务器环境 ( 比如校
应用服务器
强s 数据服务器 ^:
图2N S 系结构 图 A 体
3 存储 区域网络 ( AN) . 3 s
园网和小企业1 。但是在D 中 ,服 务 d AS 时提 供其他 应用程序的运行 ,数据都通过服务器进行存储转发 ,严 重 占用 了服务器 的内存 和C U资源 ,并产生潜在 的I P / 0 瓶颈 ,所以当客户连接数增 多时,存储效率会变低 ,若 服务器 出现异常 ,更使数据不 可用 。另 ̄D 的扩展性 ' AS b
百甚 至上千张光盘组合起来使用。光盘海量存储 的主要 形式有光盘塔 、光盘库和光盘镜像服务器。这三种光盘
二 、海 量信 息存储 技 术
应用 需求 的牵 引推动 了信息存 储技 术 的进步 ,首 当其冲的就是存储介质技术的发展。存储介质是存储的 基 本载 体 ,主要包 括磁存储 介 质 ( 软磁 盘 、硬磁盘 、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海量数据存储
(-- --计算机学科前沿讲座论文
昆明理工大学信息院
计算机应用技术
2010/11
随着信息社会的发展,越来越多的信息被数据化,尤其是伴随着Internet的发展,数据呈爆炸式增长。
从存储服务的发展趋势来看,一方面,是对数据的存储量的需求越来越大,另一方面,是对数据的有效管理提出了更高的要求。
首先是存储容量的急剧膨胀,从而对于存储服务器提出了更大的需求;其次是数据持续时间的增加。
最后,对数据存储的管理提出了更高的要求。
数据的多样化、地理上的分散性、对重要数据的保护等等都对数据管理提出了更高的要求。
随着数字图书馆、电子商务、多媒体传输等用的不断发展,数据从GB、TB到PB量级海量急速增长。
存储产品已不再是附属于服务器的辅助设备,而成为互联网中最主要的花费所在。
海量存储技术已成为继计算机浪潮和互联网浪潮之后的第三次浪潮,磁盘阵列与网络存储成为先锋。
一、海量数据存储简介
海量存储的含义在于,其在数据存储中的容量增长是没有止境的。
因此,用户需要不断地扩张存储空间。
但是,存储容量的增长往往同存储性能并不成正比。
这也就造成了数据存储上的误区和障碍。
海量存储技术的概念已经不仅仅是单台的存储设备。
而多个存储设备的连接使得数据管理成为一大难题。
因此,统一平台的数据管理产品近年来受到了广大用户的欢迎。
这一类型产品能够整合不同平台的存储设备在一个单一的控制界面上,结合虚拟化软件对存储资源进行管理。
这样的产品无疑简化了用户的管理。
数据容量的增长是无限的,如果只是一味的添加存储设备,那么无疑会大幅增加存储成本。
因此,海量存储对于数据的精简也提出了要求。
同时,不同应用对于存储容量的需求也有所不同,而应用所要求的存储空间往往并不能得到充分利用,这也造成了浪费。
针对以上的问题,重复数据删除和自动精简配置两项技术在近年来受到了广泛的关注和追捧。
重复数据删除通过文件块级的比对,将重复的数据块删除而只留下单一实例。
这一做法使得冗余的存储空间得到释放,从客观上增加了存储容量。
二、企业在处理海量数据存储中存在的问题
目前企业存储面临几个问题,一是存储数据的成本在不断地增加,如何削减开支节约成本以保证高可用性;二是数据存储容量爆炸性增长且难以预估;三是越来越复杂的环境使得存储的数据无法管理。
企业信息架构如何适应现状去提供一个较为理想的解决方案,目前业界有几个发展方向。
1.存储虚拟化
对于存储面临的难题,业界采用的解决手段之一就是存储虚拟化。
虚拟存储的概念实际上在早期的计算机虚拟存储器中就已经很好地得以体现,常说的网络存储虚拟化只不过是在更大规模范围内体现
存储虚拟化的思想。
该技术通过聚合多个存储设备的空间,灵活部署存储空间的分配,从而实现现有存储空间高利用率,避免了不必要的设备开支。
存储虚拟化的好处显而易见,可实现存储系统的整合,提高存储空间的利用率,简化系统的管理,保护原有投资等。
越来越多的厂商正积极投身于存储虚拟化领域,比如数据复制、自动精简配置等技术也用到了虚拟化技术。
虚拟化并不是一个单独的产品,而是存储系统的一项基本功能。
它对于整合异构存储环境、降低系统整体拥有成本是十分有效的。
在存储系统的各个层面和不同应用领域都广泛使用虚拟化这个概念。
考虑整个存储层次大体分为应用、文件和块设备三个层次,相应的虚拟化技术也大致可以按这三个层次分类。
目前大部分设备提供商和服务提供商都在自己的产品中包含存储虚拟化技术,使得用户能够方便地使用。
2.容量扩展
目前而言,在发展趋势上,存储管理的重点已经从对存储资源的管理转变到对数据资源的管理。
随着存储系统规模的不断扩大,数据如何在存储系统中进行时空分布成为保证数据的存取性能、安全性和经济性的重要问题。
面对信息海量增长对存储扩容的需求,目前主流厂商均提出了各自的解决方案。
由于存储现状比较复杂,存储技术的发展业界还没有形成统一的认识,因此在应对存储容量增长的问题上,尚存在很大的提升空间。
技术是发展的,数据的世界也是在不断变化的过程中走向完美。
企业信息架构的“分”与“合”的情况并不绝对。
目前、出现了许多的融合技术,如 NAS与SAN的融合,统一存储网等等。
这些都将对企业信息架构产生不同的影响。
至于到底采用哪种技术更合适,取决于企业自身对数据的需求。
三、海量数据存储技术
为了支持大规模数据的存储、传输与处理,针对海量数据存储目前主要开展如下三个方向的研究:
1.虚拟存储技术
存储虚拟化的核心工作是物理存储设备到单一逻辑资源池的映射,通过虚拟化技术,为用户和应用程序提供了虚拟磁盘或虚拟卷,并且用户可以根据需求对它进行任意分割、合并、重新组合等操作,并分配给特定的主机或应用程序,为用户隐藏或屏蔽了具体的物理设备的各种物理特性。
存储虚拟化可以提高存储利用率,降低成本,简化存储管理,而基于网络的虚拟存储技术已成为一种趋势,它的开放性、扩展性、管理性等方面的优势将在数据大集中、异地容灾等应用中充分体现出来。
2.高性能I/O
集群由于其很高的性价比和良好的可扩展性,近年来在HPC领域得到了广泛的应用。
数据共享是集群系统中的一个基本需求。
当前经常使用的是网络文件系统NFS或者CIFS。
当一个计算任务在Linux 集群上运行时,计算节点首先通过NFS协议从存储系统中获取数据,然后进行计算处理,最后将计算结
果写入存储系统。
在这个过程中,计算任务的开始和结束阶段数据读写的I/O
负载非常大,而在计算过程中几乎没有任何负载。
当今的Linux集群系统处理能力越来越强,动辄达到几十甚至上百个TFLOPS,于是用于计算处理的时间越来越短。
但传统存储技术架构对带宽和I/O能力的提高却非常困难且成本高昂。
这造成了当原始数据量较大时,I/O读写所占的整体时间就相当可观,成为HPC集群系统的性能瓶颈。
I/O效率的改进,已经成为今天大多数Linux并行集群系统提高效率的首要任务。
3.网格存储系统
高能物理的数据需求除了容量特别大之外,还要求广泛的共享。
比如运行于BECPII上的新一代北京谱仪实验BESIII,未来五年内将累积数据5PB,分布在全球20多个研究单位将对其进行访问和分析。
因此,网格存储系统应该能够满足海量存储、全球分布、快速访问、统一命名的需求。
主要研究的内容包括:网格文件名字服务、存储资源管理、高性能的广域网数据传输、数据复制、透明的网格文件访问协议等。
四、海量数据处理时容易出现的问题分析
1.数据量过大,数据中什么情况都可能存在。
处理海量数据时,由于软件与硬上都具有很高的要求,
可能会造成系统崩溃和硬件损坏,将导致处理程序终止。
2.软硬件要求高,系统资源占用率高。
对海量的数据进行处理,除了好的方法,最重要的就是合理
使用工具,合理分配系统资源。
一般情况,如果处理的数据过TB级,小型机是要考虑的,普通的机子如果有好的方法可以考虑,不过也必须加大CPU和内存,就象面对着千军万马,光有勇气没有一兵一卒是很难取胜的。
3.要求很高的处理方法和技巧。
这也是本文的写作目的所在,好的处理方法是一位工程师长期工作经
验的积累,也是个人的经验的总结。
没有通用的处理方法,但有通用的原理和规则。
五、海量数据存储的处理方法
1.选用优秀的数据库工具
2.编写优良的程序代码
3.对海量数据进行分区操作
4.建立广泛的索引
5.建立缓存机制
6.加大虚拟内存
7.分批处理
8.使用临时表和中间表
9.优化查询SQL语句
10.使用文本格式进行处理
11.定制强大的清洗规则和出错处理机制
12.建立视图或者物化视图
13.避免使用32位机子(极端情况
14.考虑操作系统问题
15.使用数据仓库和多维数据库存储
16.使用采样数据,进行数据挖掘
17.海量数据关联存储
六、海量数据是发展前景
海量数据存储技术的发展前展,可以归结为以下几个方面:
高容量光存储技术的到来可以说改变了目前的存储格局,为原本暗淡的光存储带来了一线生机。
虽然光存储器的支持者们一直宣传该技术将成为下一代伟大的存储技术,但是即便在它得到广泛推广之后,其企业客户基础在整个市场上的份额仍然很小。
分布式存储与P2P存储:分布式存储概念提出较早,目前再次成为热点。
P2P存储可以看作分布式存储的一种,是一个用于对等网络的数据存储系统,它的目标是提供高效率的、鲁棒和负载平衡的文件存取功能。
数据网格:为了满足人们对高性能、大容量分布存储能力的要求所提出的概念,类似于计算网格,是有机的智能单元的组合。
智能存储系统:包括主动的信息采集,主动信息分、主动调整等。
存储服务质量QoS:应用环境越来越复杂,存储需求区别也越来越明显,这就需要为应用提供区分服务。
目前的研究以基于网络存储的QoS为主。
存储容灾:通过特定的容灾机制,能够在各种灾难损害发生后,最大限度地保障计算机信息系统不间断提供正常应用服务。