大量数据海量数据处理办法

合集下载

如何进行海量数据处理

如何进行海量数据处理

如何进行海量数据处理随着数字化时代的到来,海量数据已经成为当今社会其中一个最重要的资源。

无论是企业、政府还是个人,在处理海量数据上都面临着巨大的挑战。

本文将探讨如何进行海量数据处理的方法和技巧。

一、数据采集与存储在进行海量数据处理之前,首先需要进行数据的采集与存储。

数据采集可以通过各种方式进行,如传感器、网络爬虫、数据库查询等。

采集到的数据需要经过清洗、去重、标准化等处理,以确保数据的质量。

而海量数据的存储可以选择传统的关系型数据库,也可以采用分布式存储系统,如Hadoop、Spark等。

二、数据预处理与清洗数据预处理与清洗是海量数据处理的重要一步。

由于海量数据通常存在着噪声、缺失值、异常值等问题,需要对数据进行清洗和处理。

数据预处理可以包括数据清洗、缺失值填充、异常值处理、特征选择等操作。

通过预处理与清洗,可以提高后续数据分析和挖掘的准确性和可靠性。

三、数据分析与挖掘海量数据处理的核心是数据分析与挖掘。

数据分析与挖掘可以通过各种算法和模型实现,如聚类分析、分类与预测、关联规则挖掘等。

在海量数据处理中,需要选择合适的算法和模型,考虑到数据的规模和特点。

同时,为了提高计算效率,可以采用并行计算和分布式存储与计算的方式进行数据分析与挖掘。

四、可视化与应用海量数据处理不仅仅是为了得出结论,更重要的是将结论转化为实践。

在数据分析与挖掘的结果基础上,可以进行数据的可视化呈现和应用开发。

通过数据的可视化,可以更直观地了解数据的变化和趋势,为决策提供支持。

同时,通过应用开发,可以将数据应用到各种实际场景中,产生实际的效益和价值。

五、数据安全与隐私保护在海量数据处理过程中,数据安全与隐私保护是不可忽视的因素。

海量数据中包含大量的重要信息,如用户隐私、商业机密等。

因此,在进行海量数据处理时,需要采取一系列的数据安全与隐私保护措施,如数据加密、访问控制、身份认证等。

六、挑战与未来发展虽然海量数据处理带来了诸多机遇,但也面临着诸多挑战。

海量数据处理算法

海量数据处理算法

海量数据处理算法海量数据处理算法是一种针对大规模数据集的处理方式,它能够高效地处理包含成千上万甚至上亿条数据的情况。

随着互联网和大数据的发展,海量数据处理算法变得越来越重要,因为传统的算法已经无法满足处理这种规模的需求。

在下面,将介绍几种常用的海量数据处理算法。

一、分而治之算法(MapReduce)分而治之算法是海量数据处理的一种经典算法,最初由Google提出,后来得到了广泛应用。

该算法通过将大规模的数据集分解为多个小的数据块,然后对每个小数据块分别进行处理,并最后将结果进行合并。

这种并行计算模式能够极大地提高数据处理的效率。

分而治之算法的核心思想是将大规模的数据集拆分成若干个小的数据块,然后在每个数据块上执行相同的计算任务。

这样一来,可以将计算任务分发给多个计算节点并行处理,从而提高整体的计算速度。

最后,将每个计算节点的结果进行合并,得到最终的结果。

二、采样算法采样算法是一种快速处理大规模数据集的有效方法。

它通过从数据集中随机抽样一部分数据进行处理,然后根据样本数据的特征对整个数据集进行估计。

这种方法可以大大缩减计算的规模,并且在保证一定准确性的同时能够加快计算速度。

常见的采样算法包括随机采样、分层采样和聚类采样等。

其中,随机采样是最简单的一种方法,它通过简单随机地选择数据样本来进行计算。

分层采样则是按照数据集的其中一种特征将数据进行划分,然后在每个层上进行采样。

聚类采样则是通过对数据进行聚类,然后在每个簇上进行采样。

三、Bloom过滤器Bloom过滤器是一种数据结构,它可以高效地判断一些元素是否存在于一个集合中。

该算法通过使用位数组和多个哈希函数来实现。

在处理海量数据时,Bloom过滤器可以用来过滤掉一部分不必要的数据,从而减少计算和存储的开销。

Bloom过滤器的特点是具有高效的查询和插入性能,同时具有较小的内存占用。

然而,由于其设计原理的特殊性,Bloom过滤器不能提供完全准确的结果,它可能会出现一定的误判情况。

数据分析师如何有效处理海量数据

数据分析师如何有效处理海量数据

数据分析师如何有效处理海量数据在数字时代的今天,数据已经成为企业和组织发展的重要驱动力。

因此,数据分析师的职业需求和人才短缺情况也越来越受到关注。

数据分析师需要收集、处理和分析大量的数据,从中提取出有价值的信息,并建立有效的数据模型,为企业决策提供依据。

在面对海量数据的时候,数据分析师需要采取一系列有效的方法和工具,来处理和分析庞大的数据量。

下面将从几个方面来探索,数据分析师如何有效处理海量数据。

一、数据预处理数据处理是数据分析工作的首要步骤,它包括数据采集、数据清洗和数据转换等环节,也是数据分析的关键环节之一。

数据分析师需要通过数据预处理来剔除无用和冗余的数据,从而提高后面数据分析的准确性和精度。

在进行数据预处理的时候,数据分析师需要了解数据的来源、数据的质量、数据的缺失情况等,并进行合理的处理和转换。

数据清洗是非常重要的一环,它可以帮助数据分析师快速高效地建立数据模型,从而获取关键的信息。

数据清洗包括去重、剔除异常值、缺失值填充等处理,通过数据清洗可以达到准确、完整和一致的数据,为后面的数据分析奠定基础。

二、数据可视化数据可视化是数据分析师的又一个重要工作环节,通常采用直观的视觉图表和仪表盘等帮助人们快速了解数据的关系和趋势。

数据可视化可以帮助数据分析师更加直观、精准和有趣的呈现数据,便于对庞大的数据量进行有效的理解和分析。

但是,数据可视化的目的不仅限于传达数据本身,更重要的是要保证信息量、简洁性和易读性,并且关注受众的使用体验。

三、机器学习和人工智能技术随着数据量的快速增长,机器学习和人工智能技术正日益成为数据分析师的得力助手,例如自然语言处理、深度学习、神经网络等等。

这些技术可以帮助分析师更快速和准确地处理、分析、甚至预测大量数据,并为企业和组织提供高质量的决策支持。

同时,机器学习和人工智能技术可以大大减轻数据分析员的工作负担,提升数据分析的效率和准确性。

四、团队合作和交流数据分析工作通常是一个团队协作的过程,数据分析师需要及时和团队成员进行沟通和交流,以确保分析过程和分析结果的准确性和一致性。

海量数据的高效存储与处理方法总结

海量数据的高效存储与处理方法总结

海量数据的高效存储与处理方法总结随着科技的快速发展和互联网的普及,我们生活中产生的数据量呈现出爆炸性增长的趋势。

这些海量数据对于企业、科研机构以及个人来说,都是一种宝贵的财富。

然而,如何高效地存储和处理这些海量数据成为了亟待解决的难题。

本文将总结一些海量数据的高效存储与处理方法,希望能为读者提供有价值的参考和指导。

一、高效存储方法1. 分布式文件系统(DFS)分布式文件系统是针对海量数据存储问题提出的一种解决方案。

它将海量数据切分成多个小文件,并存储在不同的物理设备上。

通过这种方式,可以充分利用多台机器的存储能力,提高整体的存储效率。

分布式文件系统具有高可用性、高可靠性和高性能的特点,常用的分布式文件系统包括Hadoop Distributed File System (HDFS)和Google File System(GFS)等。

2. NoSQL数据库NoSQL数据库是非关系型数据库的一种,相对传统的关系型数据库具有更好的可扩展性和高性能。

它们适用于存储和处理海量数据,能够实现数据的快速读写和高并发访问。

常见的NoSQL数据库包括MongoDB、Cassandra和Redis等,它们采用键值对、文档存储或列族存储等方式,提供了灵活的数据模型和丰富的查询功能。

3. 数据压缩技术海量数据的存储离不开对数据进行压缩的技术支持。

数据压缩可以减少存储空间的占用,提高存储效率。

目前,常用的数据压缩算法包括Lempel-Ziv-Welch(LZW)算法、Gzip和Snappy等。

这些算法具有压缩率高、压缩速度快的优点,可以实现对海量数据的高效存储。

二、高效处理方法1. 并行计算并行计算是一种常用的处理海量数据的方法。

它通过将任务分解成多个子任务,并分配给不同的处理器或计算节点进行并行计算,从而加快数据处理的速度。

常见的并行计算框架包括MapReduce、Spark和MPI等。

它们能够将数据分布式地处理在各个计算节点上,充分利用计算资源,提高数据处理的效率。

大量数据海量数据处理办法

大量数据海量数据处理办法

大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。

下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。

下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。

1.Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集基本原理及要点:对于原理来说很简单,位数组+k个独立hash函数。

将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。

同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。

所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。

还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。

当hash函数个数k=(ln2)*(m/n)时错误率最小。

在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。

但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该> =nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。

举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。

这样k大概是8个。

注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。

通常单个元素的长度都是有很多bit的。

所以使用bloom filter内存上通常都是节省的。

扩展:Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。

处理大数据的普遍方法

处理大数据的普遍方法

处理大数据的普遍方法
处理大数据的普遍方法有以下几种:
1.分布式计算:将大任务分解成若干小任务,每个任务在不同的机器上运行,最终将结果合并起来。

这种方法可以充分利用计算资源,提高数据处理效率。

2.数据库管理系统(DBMS):使用关系型数据库,例如MySQL、Oracle等,它们具有存储和管理大量数据的能力,并提供了丰富的查询语句,方便对数据进行查询、统计和分析。

3.数据仓库:提供了一个中央存储区,可以抽取来自多个系统的数据,并可以用于处理大数据量、复杂查询和分析。

例如,Teradata、Vertica等都是典型的数据仓库。

4.流处理:将数据传输到一个处理管道,数据会被逐个处理和处理。

这种方法可以快速处理实时数据,并能够及时作出响应。

代表性的流式计算引擎有Storm、Flink等。

5.图形处理:用于处理具有复杂相关性的数据,例如社交网络图谱等。

代表性的图形处理框架有GraphX、Giraph等。

6.聚类分析:按照数据对象的相似度,把数据对象划分聚集簇,簇内对象尽量相似,簇间对象尽量相异。

发现任意形状的簇、处理高维数据、具有处理噪声的能力以及聚类结果可解释、易使用是聚类分析的目标。

7.分类和预测:分类是一种有监督的学习过程,通过对已知的训练函数集表现出来的特性,获得每个类别的描述或属性来构造相应的
分类器。

预测是利用数据挖掘工具建立连续值函数模型,对已有数据进行研究得出结论。

从技术上可分为定性预测和定量预测。

这些方法并非全部,具体使用哪种方法取决于具体的数据情况和需求。

海量数据处理方法

海量数据处理方法

海量数据处理方法随着互联网的迅猛发展,海量数据的产生和积累已经成为了一种常态。

如何高效地处理海量数据成为了一个非常重要的问题。

针对海量数据的处理,有以下几种常见的方法:1.分布式计算:分布式计算是指将一个大规模的计算任务分解为多个小任务,并在多个计算节点上同时进行计算。

每个计算节点都能独立地处理一部分数据,然后将计算结果进行合并得到最终结果。

分布式计算能够充分利用多台计算机的计算能力,加快数据处理的速度。

2. MapReduce:MapReduce(映射-归约)是一种分布式计算模型,广泛应用于海量数据处理。

其核心思想是将数据处理任务划分为两个阶段:映射和归约。

映射阶段将输入数据分割成若干片段,并在多个计算节点上同时进行处理。

归约阶段将映射阶段得到的中间结果进行合并得到最终结果。

MapReduce能够自动处理节点故障、数据分片和任务调度等问题,提高数据处理的可靠性和效率。

3. 数据压缩:对于海量数据的处理,数据压缩是一个重要的技术手段。

通过数据压缩能够降低数据的存储和传输成本,并提高数据处理的速度。

常见的数据压缩算法有LZO、GZIP、Snappy等。

数据压缩也能够减少磁盘IO,提高磁盘读写的效率。

4.数据分片:对于海量数据的处理,常常需要将数据分割成若干个小块进行处理。

数据分片可以有效地利用多台计算机的计算能力,并降低单个任务的复杂度。

数据分片可以根据数据的键、哈希函数等进行划分,保证每个分片之间的数据量均匀。

5.增量处理:海量数据处理往往需要对数据进行实时的处理,而不是一次性的处理。

增量处理是指对新到达的数据进行即时处理,而不需要重新处理整个数据集。

增量处理能够减少处理时间,并节省计算资源。

6.数据预处理:对于海量数据的处理,常常需要进行一些预处理,如数据清洗、去重、排序等。

数据预处理的目的是为了提高数据质量和减少后续处理的复杂度。

通过数据预处理能够减少冗余数据和噪声数据,提高后续处理的效果。

大数据处理管理和分析海量数据的方法

大数据处理管理和分析海量数据的方法

大数据处理管理和分析海量数据的方法随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会中重要的数据资源。

海量的数据源涉及到数据的获取、存储、处理和分析等诸多方面,本文将探讨大数据处理管理和分析海量数据的方法。

一、数据的获取和存储大数据的处理管理和分析首先需要从各种数据源中获取数据,并将其存储在适合的数据仓库中。

数据的获取方式包括传感器、数据库、互联网等多种途径,可以通过数据抓取、数据爬虫等技术手段进行实现。

而数据的存储可以选择关系型数据库、非关系型数据库、分布式文件系统等存储方式,以满足数据的快速检索和高效管理。

二、数据的清洗和预处理获取到的原始数据往往存在着各种问题,例如数据的缺失、错误、重复等,因此需要进行数据的清洗和预处理工作。

数据清洗主要包括对数据进行去重、填补缺失值、处理异常值等操作,以提高数据的质量和准确性。

数据预处理则包括数据的归一化、特征选择、降维等操作,以便更好地进行后续的数据分析工作。

三、数据的处理和分析在完成数据的清洗和预处理之后,便可以进行数据的处理和分析工作。

数据的处理可以采用分布式计算、并行计算等技术手段,以提高计算效率和处理速度。

常用的大数据处理框架有Hadoop、Spark等,它们可以实现数据的分布式存储和分布式处理,满足大规模数据的处理需求。

数据的分析则可以采用机器学习、数据挖掘、统计分析等方法,以发现数据背后的规律、趋势和模式。

四、数据的可视化和快速查询大数据处理和管理的最终目标是能够将数据转化为有用的信息,并通过可视化手段展示出来,以帮助决策者更好地理解和分析数据。

数据可视化可以采用图表、地图、仪表盘等方式,直观地展示数据的分布、关系和趋势,使得决策者能够更加快速地洞察数据背后的价值。

同时,对于大数据的快速查询和检索也是十分重要的,可以借助搜索引擎、索引技术等手段,提高数据的查询效率和用户体验。

综上所述,大数据处理管理和分析海量数据的方法包括数据的获取和存储、数据的清洗和预处理、数据的处理和分析、数据的可视化和快速查询等环节。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大数据量的问题是很多面试笔试中经常出现的问题,比如baidu google 腾讯这样的一些涉及到海量数据的公司经常会问到。

下面的方法是我对海量数据的处理方法进行了一个一般性的总结,当然这些方法可能并不能完全覆盖所有的问题,但是这样的一些方法也基本可以处理绝大多数遇到的问题。

下面的一些问题基本直接来源于公司的面试笔试题目,方法不一定最优,如果你有更好的处理方法,欢迎与我讨论。

1.Bloom filter 适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集基本原理及要点:对于原理来说很简单,位数组+k个独立hash函数。

将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。

同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。

所以一个简单的改进就是counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。

还有一个比较重要的问题,如何根据输入元素个数n,确定位数组m的大小及hash函数个数。

当hash函数个数k=(ln2)*(m/n)时错误率最小。

在错误率不大于E的情况下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。

但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应该> =nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。

举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。

这样k大概是8个。

注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。

通常单个元素的长度都是有很多bit的。

所以使用bloom filter内存上通常都是节省的。

扩展:Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。

Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。

Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。

SBF采用counter中的最小值来近似表示元素的出现频率。

问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。

如果是三个乃至n个文件呢?根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。

现在可用的是340亿,相差并不多,这样可能会使出错率上升些。

另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。

2.Hashing 适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存基本原理及要点: hash函数选择,针对字符串,整数,排列,具体相应的hash方法。

碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,ope ned addressing。

扩展: d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。

2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。

在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。

这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。

如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key 存储在左边的T1子表中,2-left也由此而来。

在查找一个key时,必须进行两次hash,同时查找两个位置。

问题实例: 1).海量日志数据,提取出某日访问百度次数最多的那个IP。

IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。

3.bit-map 适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下基本原理及要点:使用bit 数组来表示某些元素是否存在,比如8位电话号码扩展:bloom filter 可以看做是对bit-map的扩展问题实例: 1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。

2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。

或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。

4.堆适用范围:海量数据前n大,并且n比较小,堆可以放入内存基本原理及要点:最大堆求前n小,最小堆求前n大。

方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元素。

这样最后得到的n个元素就是最小的n个。

适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。

扩展:双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。

问题实例: 1)100w个数中找最大的前100个数。

用一个100个元素大小的最小堆即可。

5.双层桶划分适用范围:第k大,中位数,不重复或重复的数字基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。

可以通过多次缩小,双层只是一个例子。

扩展:问题实例: 1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。

也就是说只要有足够的磁盘空间,就可以很方便的解决。

2).5亿个int找它们的中位数。

这个例子比上面那个更明显。

首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。

然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。

即可以先将int64分成2^24个区域,然后确定区域的第几大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。

6.数据库索引适用范围:大数据量的增删改查基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。

扩展:问题实例:7.倒排索引(Inverted index) 适用范围:搜索引擎,关键字查询基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。

以英文为例,下面是要被索引的文本: T0 = "it is what it is" T1 = "what is it" T2 = "it is a banana" 我们就能得到下面的反向文件索引:"a": {2} "banana": {2} "is": {0, 1, 2} "it": {0, 1, 2} "what": {0, 1} 检索的条件"what", "is" 和 "it" 将对应集合的交集。

正向索引开发出来用来存储每个文档的单词的列表。

正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。

在正向索引中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。

也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很容易看到这个反向的关系。

扩展:问题实例:文档检索系统,查询那些文件包含了某单词,比如常见的学术论文的关键字搜索。

8.外排序适用范围:大数据的排序,去重基本原理及要点:外排序的归并方法,置换选择败者树原理,最优归并树扩展:问题实例:1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。

返回频数最高的100个词。

这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1m 做hash有些不够,所以可以用来排序。

内存可以当输入缓冲区使用。

9.trie树适用范围:数据量大,重复多,但是数据种类小可以放入内存基本原理及要点:实现方式,节点孩子的表示方式扩展:压缩实现。

问题实例: 1).有10个文件,每个文件1G,每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。

要你按照query的频度排序。

2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。

请问怎么设计和实现?3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。

10.分布式处理mapreduce 适用范围:数据量大,但是数据种类小可以放入内存基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。

扩展:问题实例: 1).The canonical example application of MapReduce is a process to count the appeara nces of each different word in a set of documents: void map(String name, String document): // name: document name // document: document contents for each word w in document: EmitIntermediate(w, 1); void reduce(String word, Iterator partialCounts): // key: a word // values: a list of aggregated partial counts int result = 0; for each v in partialCounts:result += ParseInt(v); Emit(result); Here, each document is split in words, and each word is counted initially with a "1" v alue by the Map function, using the word as the result key. The framework puts together all t he pairs with the same key and feeds them to the same call to Reduce, thus this function just needs to sum all of its input values to find the total appearances of that word. 2).海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。

相关文档
最新文档