列不等式及不等式性质

合集下载

不等式的性质、解不等式

不等式的性质、解不等式

不等式的基本性质、解不等式【基础知识】一、不等式的概念及基本性质注意:①不等式的基本性质,没有减法和除法。

如果遇到减法和除法,可以转化乘加法 和乘法,如:求a b -的范围可以转化成求()a b +-的范围,求a b 的范围可以转化成求1a b⨯的范围。

②方程和不等式的两边不能随便乘除,必须先研究这个数的性质,再乘除。

三、分式不等式和高次不等式 1、分式不等式的解法 把分式不等式通过移项、通分、因式分解等化成()0()f xg x ≥的形式→化成不等式组()0()()0g x f x g x ≠⎧⎨≥⎩→解不等式组得解集。

温馨提示:解分式不等式一定要考虑定义域。

2、高次整式不等式的解法(序轴标根法)先把高次不等式分解因式化成123()()()()0n x a x a x a x a ---->的形式(x 的系数必须为正)→标记方程的实根(注意空心和实心之分)→穿针引线,从右往左,从上往下穿(奇穿偶不穿)→写出不等式的解集。

实际上,序轴标根法适用于所有的整式不等式,根据它可以很快地写出整式不等式的解集。

四、绝对值不等式 1、解绝对值不等式 方法一:公式法 解只含有一个绝对值形如()ax b c +><的不等式,一般直接用公式x a x a x a >⇔><-或 x a a x a <⇔-<<,注意集合的关系和集合的运算,集合的运算主要利用数轴。

方法二:零点讨论法 解含有两个绝对值形如()x a x b c +++><的不等式,常用零点讨论法和数形结合法。

注意小分类求交大综合求并。

方法三:平方法 如果绝对值的不等式的两边都是非负数,如:3x >,可以用平方法。

2、绝对值三角不等式a b a b a b -≤±≤+绝对值三角不等式的运用主要体现在直接利用绝对值三角不等式证明不等式和求函数的最值。

【例题精讲】例1 已知不等式 的解集为 ,求 、 的值。

不等式的性质及解法

不等式的性质及解法

不等式的性质及解法不等式是数学中的一种重要的数值关系表示形式,与等式相比,不等式更能反映数值大小之间的差异。

在实际问题中,我们经常会遇到需要确定数值范围的情况,而不等式的性质和解法则帮助我们进行准确的数值分析和解决问题。

一、不等式的基本性质1. 传递性:如果 a<b,b<c,则有 a<c。

这一性质表明不等式的关系可以在数轴上进行传递,简化了分析比较的步骤。

2. 加减性:如果 a<b,则有 a±c<b±c。

对于不等式两边同时加减同一个数,不等式的关系保持不变。

3. 乘除性:如果 a<b 并且 c>0,则有 ac<bc;如果 a<b 并且 c<0,则有ac>bc。

这一性质需要注意,当乘以负数时,不等式的关系需要取反。

4. 对称性:如果a<b,则有b>a。

不等式两边的大小关系可以互换。

二、一元不等式的解法1. 加减法解法:通过加减法将不等式转化为更简单的形式。

例如:对于不等式 2x+3>7,我们可以先减去3,得到 2x>4,再除以2,得到x>2,即解集为 x>2。

2. 乘除法解法:通过乘除法将不等式转化为更简单的形式。

同样以不等式 2x+3>7 为例,我们可以先减去3,得到 2x>4,再除以2,得到x>2,即解集为 x>2。

3. 移项解法:利用不等式的基本性质,将所有项移到同一边,得到一个结果。

例如:对于不等式 3(x-2)>4x-7,我们可以先将右边的项移动到左边,得到 3x-6>4x-7,然后将 x 的系数移到一侧,得到 3x-4x>-7+6,化简得到 -x>-1,再乘以 -1,注意需要反转不等式的关系,得到x<1,即解集为 x<1。

4. 系数法解法:当不等式中存在系数时,我们可以通过判断系数的正负来确定解的范围。

例如:对于不等式 2x-3>0,我们观察到系数2>0,说明 x 的取值范围为正数,即解集为 x>3/2。

不等式的性质和证明

不等式的性质和证明

四、不等式1. 不等式的性质和证明知识网络不等式的性质和证明结构简图画龙点晴 概念不等式:用不等号把两个数学式子连结而得到的式子叫做不等式。

同向不等式:不等号相同的两个或几个不等式叫做同向不等式。

异向不等式:不等号相反的两个不等式叫做异向不等式。

绝对不等式:不等式中,对于字母所能取的一切允许值,不等式都成立,这样的不等式叫做绝对不等式。

矛盾不等式:不等式中,对于字母所能取的一切允许值,不等式都不成立,这样的不等式叫做矛盾不等式。

条件不等式:不等式中,对于字母所能取的某项允许值不等式能成立,而对于字母所能取的另外一些允许值不等式不能成立,这燕的不等式叫做条件不等式。

两实数大小的比较: 0>-⇔>b a b a ; 0=-⇔=b a b a ; 0<-⇔<b a b a . 求差比较的步骤:(1) 作差: 有的可直接作差,有的需转化才可作差;(2) 变形: 变形的目的是判断差的符号,为了便于判断符号,进行分解因式或配方等变形,有时还要根据字母取值范围进行讨论以判断差的符号;(3) 判断差的符号。

(4) 结论。

[活用实例][例1] 设0>a 且1≠a ,比较)1(log 3+a a 与)1(log 2+a a 的大小.[题解] )1()1()1(223-=+-+a a a a ,当10<<a 时1123+<+a a ∴)1(log 3+a a >)1(log 2+a a 当1>a 时1123+>+a a ∴)1(log 3+a a >)1(log 2+a a ∴总有)1(log 3+a a >)1(log 2+a a .[例2]已知0 < x < 1, 0 < a < 1,试比较|)1(log | |)1(log |x x a a +-和的大小。

[题解1][][])1(log )1(log )1(log )1(log |)1(log | |)1(log |22x x x x x x a a a a a a +---+-=+--xx x aa +--=11l o g )1(l o g 2∵0 < 1 - x 2 < 1, 1110<+-<x x∴011log )1(log 2>+--xx x a a ∴|)1(log | |)1(log |x x a a +>-[题解2]2111111log 11log )1(log )1(log )1(log )1(log x x x x x x x x x x x a a -+=-=--=-=+-++++)1(l o g 121x x --=+∵0 < 1 - x 2 < 1, 1 + x > 1, ∴0)1(log 21>--+x x ∴1)1(log 121>--+x x ∴|)1(log | |)1(log |x x a a +>-[题解3]∵0 < x < 1, ∴0 < 1 - x < 1, 1 < 1 + x < 2,∴0)1(log ,0)1(log <+>-x x a a∴左 - 右 = )1(log )1(log )1(log 2x x x a a a -=++-∵0 < 1 - x 2 < 1, 且0 < a < 1 ∴0)1(log 2>-x a .∴|)1(log | |)1(log |x x a a +>-定理不等式的基本性质定理1:如果b a >,那么a b <;如果a b <,那么b a >(对称性) 定理2:如果b a >,c b > 那么c a >(传递性)定理3:如果b a >,那么c b c a +>+ (加法单调性)反之亦然 定理4:如果b a >且0>c , 那么bc ac >;如果b a >且0<c 那么bc ac < (乘法单调性)推论1 如果0>>b a 且0>>d c ,那么bd ac >(相乘法则) (补充)如果0>>b a 且d c <<0,那么dbc a >(相除法则)推论2 如果0>>b a , 那么nn b a > )1(>∈n N n 且 定理5:如果0>>b a ,那么nn b a >)1(>∈n N n 且[活用实例][例3]若0,0<<>>d c b a 求证:db c a ->-ππααsin sin log log . [题解] ∵1sin 0<<α π>1 ∴0log sin <πα,又∵0,0>->->>d c b a ∴d b c a ->->0, ∴db c a -<-11 , ∴原式成立. [例4]已知2<a ≤4, -4≤b<-2, 求a+b, a-b 和ab 的取值范围. [题解] 2<a ≤4, -4≤b<-2, ∴-2<a+b<2.又-4≤b<-2, ∴2<-b ≤4, ∴4<a+(-b)≤8, 即4<a+-b ≤8. 4<⋅a (-b) ≤16, 即 4<-ab ≤16, ∴-16≤ab<-4. [例5]已知-1≤a+b ≤1, 1≤a-b ≤3, 求3a-b 的取值范围. [题解] 设3a-b=m (a+b)+n(a-b), ∴3a-b= (m+n)a+ (m-n)b比较系数,得⎩⎨⎧-=-=+13n m n m ∴⎩⎨⎧==21n m .∴3a-b= (a+b)+2 (a-b)-1≤a+b ≤1, 1≤a-b ≤3, ∴1≤(a+b)+2 (a-b) ≤7, ∴1≤3a-b ≤7. 均值定理定理1:如果R b a ∈,,那么ab b a 222≥+(当且仅当b a =时取“=”) 推论:如果+∈R b a ,,那么ab ba ≥+2(当且仅当b a =时取“=”) 定理2: 如果+∈R c b a ,,,那么abc c b a 3333≥++(当且仅当c b a ==时取“=”) 推论:如果+∈R c b a ,,,那么33abc c b a ≥++(当且仅当b a ==c 时取“=”) 算术平均数与几何平均数:如果+∈R a a a n ,,,21 ,且1>n ,那么na a a n+++ 21叫做这n 个正数的算术平均数,n n a a a 21叫做这n 个正数的几何平均数。

《不等式及其性质》 知识清单

《不等式及其性质》 知识清单

《不等式及其性质》知识清单一、不等式的定义用不等号(大于>、小于<、大于等于≥、小于等于≤)连接两个数或代数表达式的式子,叫做不等式。

例如:3 < 5,x + 2 > 1,y 1 ≤ 0 等都是不等式。

不等式反映了两个量之间的大小关系或者范围。

二、不等式的分类1、一元一次不等式含有一个未知数,并且未知数的次数是 1 的不等式,如 2x < 6 。

2、一元二次不等式含有一个未知数,并且未知数的最高次数是 2 的不等式,例如 x²3x + 2 > 0 。

3、简单的分式不等式形如 f(x)/g(x) > 0 或 f(x)/g(x) < 0 (其中 f(x) 、g(x) 是整式且g(x) ≠ 0 )的不等式。

4、绝对值不等式含有绝对值符号的不等式,比如|x 1| < 2 。

三、不等式的性质1、对称性如果 a > b ,那么 b < a ;如果 b < a ,那么 a > b 。

例如:5 > 3 ,则 3 < 5 。

2、传递性如果 a > b 且 b > c ,那么 a > c 。

比如:若 7 > 5 且 5 > 3 ,则 7 > 3 。

3、加法性质如果 a > b ,那么 a + c > b + c 。

举例:因为 8 > 5 ,所以 8 + 2 > 5 + 2 ,即 10 > 7 。

4、乘法性质如果 a > b 且 c > 0 ,那么 ac > bc ;如果 a > b 且 c < 0 ,那么ac < bc 。

例如:当 3 > 1 且 2 > 0 时,3×2 > 1×2 ,即 6 > 2 ;当 3 > 1 且-2 < 0 时,3×(-2) < 1×(-2) ,即-6 <-2 。

5、同向可加性如果 a > b 且 c > d ,那么 a + c > b + d 。

比如:已知 5 > 3 ,2 > 1 ,则 5 + 2 > 3 + 1 ,即 7 > 4 。

不等式的性质与不等式证明

不等式的性质与不等式证明
等式性质,如比较法、构造法等。
经济中的不等式问题
总结词
经济中的不等式问题涉及到资源的分配和优化,需要运用不等式性质和数学模型来解决。
详细描述
在经济中,不等式问题经常出现在生产计划、资源配置、市场分析等领域。例如,在生产计划中,比较不同生产 方案的成本和效益;在资源配置中,比较不同投资项目的回报率和风险;在市场分析中,比较不同产品的市场份 额和销售量。解决这类问题需要运用不等式性质和数学模型,如线性规划、整数规划等。
物理中的不等式问题
总结词
物理中的不等式问题涉及到物理量的比较和推理,需要运用物理原理和不等式性质来解 决。
详细描述
在物理中,不等式问题经常出现在力学、热学、电磁学等领域。例如,在力学中,比较 不同物体的速度、加速度和力的大小;在热学中,比较不同温度、压力和热量的大小; 在电磁学中,比较不同电场、磁场和电流的大小。解决这类问题需要运用物理原理和不
01
02
03
代数恒等式
利用代数恒等式进行证明, 如平方差公式、完全平方 公式等。
代数不等式
通过代数运算和变换,将 不等式转化为更易于证明 的形式。
放缩法
通过放缩不等式的两边, 使不等式更容易证明。
几何证明方法
面积法
利用几何图形的面积关系 证明不等式,如三角形面 积与边长关系。
体积法
利用几何体的体积关系证 明不等式,如球体体积与 半径关系。
函数图像法
利用函数图像的性质和变 化趋势证明不等式。
反证法
Hale Waihona Puke 反证法的定义通过假设所要证明的不等式不成立, 然后推导出矛盾,从而证明不等式成 立。
反证法的步骤
反证法的应用
在难以直接证明不等式时,可以考虑 使用反证法。

不等式的基本性质与解法

不等式的基本性质与解法

不等式的基本性质与解法不等式是数学中常见的一种数学关系,它描述了两个数之间的大小关系。

在解决实际问题中,经常需要研究不等式的基本性质和解法。

本文将介绍不等式的基本性质以及解决不等式的方法,并且给出一些例子来说明。

一、不等式的基本性质1. 加减性性质:对于两个不等式,如果它们的左右两边分别相加或相减,那么它们的不等关系不变。

例如:对于不等式 2x < 6 和 3x > 9,我们可以将两个不等式的左右两边分别相加得到 2x + 3x < 6 + 9,即 5x < 15。

不等式的不等关系保持不变。

2. 乘除性性质:对于不等式,如果两边都乘以一个正数,则不等关系保持不变;如果两边都乘以一个负数,则不等关系发生改变。

例如:对于不等式 2x < 6,如果两边同时乘以一个正数 3,我们得到 3 * 2x < 3 * 6,即 6x < 18,不等关系保持不变。

但如果两边同时乘以一个负数 -3,我们得到 -3 * 2x > -3 * 6,即 -6x > -18,不等关系发生改变。

3. 反号性质:对于不等式,如果两边同时取负号,不等关系发生改变。

例如:对于不等式 2x < 6,如果两边同时取负号,我们得到 -2x > -6,不等关系发生改变。

4. 绝对值性质:对于不等式,如果绝对值符号"|" 出现在不等式中,我们需要分别讨论绝对值大于零和绝对值小于零的情况。

例如:对于不等式|2x - 4| < 6,我们可以将其分为两个部分来讨论。

当 2x - 4 > 0 时,不等式简化为 2x - 4 < 6,解得 x < 5;当 2x - 4 < 0 时,不等式简化为 -(2x - 4) < 6,解得 x > -1。

二、不等式的解法1. 图像法:对于一些简单的一元不等式,我们可以使用图像法来解决。

将不等式转化为图像表示,通过观察图像来确定不等式的解集。

不等式与不等式的性质

不等式与不等式的性质
培养学生逻辑思维和推理能力
学习不等式与不等式的性质,有助于培养学生的逻辑思维和推理能力 ,对于提高学生的数学素养具有积极意义。
不等式与不等式性质的教学与学习建议
掌握基础概念
对于初学者来说,首先需要掌握不等式的基本概念和性 质,例如不等式的定义、不等式的性质、不等式的证明 等。
实践应用
通过解决实际问题,加深对不等式性质的理解。例如, 通过解决实际生活中的一些不等关系问题,可以帮助学 生更好地理解不等式的应用。
系统梳理
对于已经掌握了一定基础的学生,可以系统梳理不等式 与不等式的性质,形成知识网络,以便更好地理解和应 用。
不等式与不等式性质的未来发展与挑战
深入研究不等式性质
目前,对于一些复杂的不等式和不等式组,其性质的探究仍然是一个开放的问题。未来, 可以进一步深入研究不等式的各种性质以及它们之间的相互关系。
探索不等式在其他领域的应用
随着科学技术的发展,未来可以进一步探索不等式在其他领域的应用,例如在人工智能、 大数据分析、金融等领域。
发展不等式教学方法
针对不同学生的特点和需求,未来可以进一步发展和创新不等式的教学方法,以便更好地 满足学生的学习需求和提高教学效果。
THANK YOU.
总结词
不等式的对称性是指当两个不等式的变量互换时,不等式不改变方向。
详细描述
设x和y是不等式中的两个变量,如果x>y时,不等式成立,那么当y>x时,不 等式依然成立。这是由于不等式的性质决定的,因为不等式在变量互换时不 改变方向。
不等式的性质2:传递性
总结词
不等式的传递性是指当两个不等式同时成立时,它们的和、差、积也满足不等关 系。
化学反应
在化学反应中,反应物的浓度和温度等因素对反应速率有着重要的影响。不等式可以用来 建立反应速率与这些因素之间的关系,为化学反应的研究和控制提供依据。

不等式的性质和解法

不等式的性质和解法

不等式的性质和解法一、不等式的性质1.不等式的定义:表示两个数之间的大小关系,用“>”、“<”、“≥”、“≤”等符号表示。

2.不等式的基本性质:(1)传递性:如果a>b且b>c,那么a>c。

(2)同向相加:如果a>b且c>d,那么a+c>b+d。

(3)同向相减:如果a>b,那么a-c>b-c。

(4)乘除性质:如果a>b且c>0,那么ac>bc;如果a>b且c<0,那么ac<bc。

二、不等式的解法1.解不等式的基本步骤:(1)去分母:将不等式两边同乘以分母的最小正整数,使分母消失。

(2)去括号:将不等式两边同乘以括号内的正数,或者将不等式两边同除以括号内的负数,使括号内的符号改变。

(3)移项:将不等式中的常数项移到一边,将含有未知数的项移到另一边。

(4)合并同类项:将不等式两边同类项合并。

(5)化简:将不等式化简到最简形式。

2.解一元一次不等式:(1)ax+b>c(a≠0):移项得ax>c-b,再除以a得x>(c-b)/a。

(2)ax+b≤c(a≠0):移项得ax≤c-b,再除以a得x≤(c-b)/a。

3.解一元二次不等式:(1)ax2+bx+c>0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。

(2)ax2+bx+c≤0(a>0):先求出方程ax2+bx+c=0的解,然后根据a的符号确定不等式的解集。

4.不等式的组:(1)解不等式组的步骤:先解每个不等式,再根据不等式的解集确定不等式组的解集。

(2)不等式组解集的表示方法:用区间表示,例如:[x1, x2]。

三、不等式的应用1.实际问题中的不等式:例如,距离、温度、速度等问题。

2.不等式在生活中的应用:例如,购物、制定计划、比较大小等问题。

3.不等式在其他学科中的应用:例如,在物理学中描述物体的运动状态,在经济学中描述市场的供求关系等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

13.a与b两数和的平方不小于这
两个数积的2倍; 14. 不是负数 15. x的2倍与5的和大于或等于 1;
5a
16.在某校次举行的环保知识竞
赛中,共有20道选择题. 评分办法是:每答对1题得5分, 答错1题扣1分, 不答则既不扣分也不给分,若已 知小明只有1题未答,且至少答对 了x道题,成绩不低于80分。
2 若a>b,且c>0,ac>bc, a/c>b/c 如2x>8,则有x>4 (1/2)x<-8,则有x<-16 (a/3)>(b/3),则a>b

3 若a>b,且c<0,ac<bc, a/c<b/c 例如 ⑴若-x>3,则x<-3 ⑵若2x<-6,则x<-3 ⑶若-(1/2)m<-4,则m>8 ⑷若-4x≤-8,则x≥2
三、探究下列不等关系
1.已知4<8,
则(4+2)与(8+2)的大
小关系如何? 2.已知4<8, 则(4- 2)与(8 - 2)的 大小关系如何?
3.已知4<8,
则4×2与8×2的大小关系如
何? 4.已知4<8, 则4÷2与8÷2的大小关系如 何?
5若将2改为(
- 3), 请探究以上4个问题的结论, 你有什么以现? 6若将4改为( - 4), 8改为( - 8),你的发现 有什么改变吗?

4 若a>b,则有b<a(对称性) 例如:⑴-3>-10 则-10<-3 ⑵-5> x 则有x<-5 ⑶-4<x,则有x>-4

4 若a<b,又b<c,则a<c (传递性) 例如:∠1<∠2,∠2<∠3, 则有∠1<∠3;(不等式的传递性) 再如:若x<y且y<z, 则有 x<z (不等式的传递性)
二、根据下列文字列不等 式
6.x除以2的商加上2y,和至多为
15的倒数; 7.a的算术平方根是非负数; 8.a的20%与a的和不大于a的2 倍与1的差; 9.x的绝对值的相反数是非正数; 10.m与n的立方和不小于m与n 的和的平方;
11.数x在2~9之间; 12.a是不大于0的数;
一、辨别下列哪些是不等式


1
2 3 4 5
33 1 3
x2
5a 2 6
x y 3x 1


6
7 8 9 10
x 2x 1 3x 3 10 y
2

x 0
2


x2 y3
x5
1.x与1 的和是正数; 2.a与b两数的和的平方不大于9; 3.y的2倍与1 的和至少是7; 4.x的1/3与x的2倍的和是非正 数; 5.C与4的和的30%不小于—2;


请你类比等式的基本性质,想一想,归纳一下 不等式的基本性质.
不等式的基本性质
1若a>b,则a+c>b+c(可加性) 若a>b,则a
- c>b - c(可加性) 例如⑴x-2>3,则x-2+2>3+2 即x>5 ⑵x+5<-1则x+5-5<-1-5, 即x<-6 ⑶a-b>0,则a>
相关文档
最新文档