基于海量数据的数据分析方案设计
海量数据分析处理的十个方法

海量数据分析处理的⼗个⽅法本⽂将简单总结下⼀些处理海量数据问题的常见⽅法。
当然这些⽅法可能并不能完全覆盖所有的问题,但是这样的⼀些⽅法也基本可以处理绝⼤多数遇到的问题。
下⾯的⼀些问题基本直接来源于公司的⾯试笔试题⽬,⽅法不⼀定最优,如果你有更好的处理⽅法,欢迎讨论。
⼀、Bloom filter适⽤范围:可以⽤来实现数据字典,进⾏数据的判重,或者集合求交集基本原理及要点:对于原理来说很简单,位数组+k个独⽴hash函数。
将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。
同时也不⽀持删除⼀个已经插⼊的关键字,因为该关键字对应的位会牵动到其他的关键字。
所以⼀个简单的改进就是 counting Bloom filter,⽤⼀个counter数组代替位数组,就可以⽀持删除了。
还有⼀个⽐较重要的问题,如何根据输⼊元素个数n,确定位数组m的⼤⼩及hash函数个数。
当hash函数个数k=(ln2)*(m/n)时错误率最⼩。
在错误率不⼤于E的情况下,m⾄少要等于n*lg(1/E)才能表⽰任意n个元素的集合。
但m还应该更⼤些,因为还要保证bit数组⾥⾄少⼀半为0,则m应该>=nlg(1/E)*lge ⼤概就是nlg(1/E)1.44倍(lg表⽰以2为底的对数)。
举个例⼦我们假设错误率为0.01,则此时m应⼤概是n的13倍。
这样k⼤概是8个。
注意这⾥m与n的单位不同,m是bit为单位,⽽n则是以元素个数为单位(准确的说是不同元素的个数)。
通常单个元素的长度都是有很多bit 的。
所以使⽤bloom filter内存上通常都是节省的。
扩展:Bloom filter将集合中的元素映射到位数组中,⽤k(k为哈希函数个数)个映射位是否全1表⽰元素在不在这个集合中。
Counting bloom filter(CBF)将位数组中的每⼀位扩展为⼀个counter,从⽽⽀持了元素的删除操作。
基于数据挖掘的在线数据分析系统的设计

基于数据挖掘的在线数据分析系统的设计一、系统概述在线数据分析系统是指能够实时获取和分析海量数据的系统,它能够帮助用户进行数据探索、模式研究和业务决策。
而基于数据挖掘的在线数据分析系统,则是在原有系统的基础上,通过应用数据挖掘技术实现更加精确的数据分析和模式挖掘。
这种系统不仅能够对历史数据进行深入分析,还可以通过实时数据流进行智能分析和实时预测,为用户提供更加可靠的数据支持和决策依据。
二、系统架构1. 数据采集和处理:系统需要能够实时获取各种类型的数据,包括结构化数据、半结构化数据和非结构化数据。
在数据处理方面,需要考虑如何进行数据清洗、数据预处理和特征提取等工作,以便为后续的数据挖掘建模做好准备。
2. 数据存储和管理:系统需要建立高效的数据存储和管理模块,能够支持海量数据的存储和快速查询。
同时要考虑数据的安全性和隐私保护问题,确保用户数据不被泄露和滥用。
3. 数据分析和挖掘:基于数据挖掘的在线数据分析系统的核心功能是数据分析和模式挖掘。
需要建立数据挖掘模型库,包括分类、聚类、关联规则挖掘、异常检测等模型,能够灵活应对各种数据分析需求。
4. 数据可视化和展示:系统需要提供友好的用户界面,能够直观展现数据分析的结果和模型挖掘的过程,帮助用户快速理解和利用数据。
5. 实时预测和决策支持:除了对历史数据进行分析,系统还需要实现实时数据流的智能分析和预测,能够对业务做出及时的决策支持。
基于以上考虑,一个完整的基于数据挖掘的在线数据分析系统应该包括数据采集模块、数据处理模块、数据存储模块、数据分析和挖掘模块、数据可视化和展示模块以及实时预测和决策支持模块。
三、系统功能基于数据挖掘的在线数据分析系统应该具备以下一些重要功能:四、系统设计在设计基于数据挖掘的在线数据分析系统时,需要对系统的各个模块进行详细的设计。
以下是几个重要模块的设计思路:1. 数据采集和处理模块:该模块需要设计成能够接入多个数据源的统一接口,包括数据库、文件、网络接口等。
海量数据分析方法

海量数据分析方法随着信息技术的飞速发展和互联网的普及,海量数据已经成为当今社会不可忽视的存在。
海量数据的涌现,给各行各业带来了前所未有的机遇和挑战。
如何高效地从海量数据中提取有价值的信息,成为了数据分析领域亟需解决的问题。
本文将介绍一些常用的海量数据分析方法。
1. 分布式计算框架海量数据的处理对计算资源的需求巨大,传统的单机计算方式已经无法满足需求。
分布式计算框架的出现,为海量数据的处理提供了有效的解决方案。
常见的分布式计算框架有Hadoop、Spark等。
这些框架通过将数据分割成多个小块,分配到不同的计算节点进行并行计算,大大提高了数据处理的效率。
2. 数据预处理海量数据往往包含大量的噪声和冗余信息,直接对原始数据进行分析往往结果不准确。
因此,数据预处理是海量数据分析的必要环节。
数据预处理可以包括数据清洗、数据集成、数据变换等操作,目的是提高数据质量,减少分析时带来的误差。
3. 基于机器学习的数据挖掘方法机器学习是处理海量数据的重要工具之一。
通过机器学习算法的训练和学习,可以从海量数据中发现隐藏的规律和模式。
常用的机器学习算法包括决策树、支持向量机、神经网络等。
这些算法可以用来进行分类、聚类、回归等任务,帮助我们理解和利用海量数据。
4. 基于统计分析的大数据方法统计分析是海量数据分析中常用的方法之一。
通过对海量数据进行统计分析,可以揭示数据中的趋势和规律。
常用的统计分析方法包括描述统计分析、假设检验、相关分析、时间序列分析等。
通过这些方法,我们可以对海量数据进行深入的理解和分析。
5. 文本挖掘海量数据中往往包含大量的文本信息,如社交媒体数据、新闻数据等。
文本挖掘技术可以帮助我们从海量文本中提取有用的信息。
文本挖掘包括文本分类、情感分析、主题建模等任务,可以帮助我们理解和利用海量文本数据。
6. 可视化分析海量数据分析往往产生大量的结果和洞察,如何将这些结果直观地展示出来,对于决策和分析具有重要意义。
基于海量数据自动计算装载、分配的方法与装置

基于海量数据自动计算装载、分配的方法与装置摘要:随着移动互联网的快速发展,以及电信行业自身业务的不断增长,企业数据存量已达到pb级,海量数据模式对存储系统的性能及可靠性提出了更高层次的要求。
当存储数据增加到一定规模时,会导致系统中某一个或多个存储设备性能降低、i/o响应时间较长、无法满足海量数据的存储需求。
提供一种基于海量数据的数据分配方法、装置的方案,能够有效解决现有技术中无法根据数据的重要程度及当前存储设备的性能进行自动分级存储等问题,从而降低存储设备i/o响应时间,提升设备存储利用率。
关键词:异构数据分级存储海量数据存储业务存储优先级中图分类号:tp311.13 文献标识码:a 文章编号:1007-3973(2013)007-078-021 引言随着移动互联网的快速发展,智能终端的普及,以及物联网、云计算等新兴产业的兴起,海量数据成为当前最显著的特征。
预测数据显示,到2015年,每秒钟将有100万分钟的视频内容跨网络传输;从2010年到2015年,全球移动数据流量将增长26倍。
面对海量数据来袭,目前业界仍采用根据数据业务情况事先规划存储的方式,即为分属于不同业务的数据事先分配不同的存储设备,数据生成后直接按照事先分配的存储设备进行存储。
传统方式进行海量数据的存储时,一般需要单独部署数据主控服务器来进行(所述数据主控服务器中预先存储了事先规划的数据存储规则),当系统中的数据增加到一定规模,导致系统中某一个或多个存储设备中存储了大量的数据从而导致相应的存储设备性能降低、i/o读写时间延长,无法满足数据存储需求时,需要由系统规划人员根据当前业务数据及存储设备的实际情况以人工方式对各存储设备的参数、性能、容量等进行调整或者由系统规划人员根据自身经验以及系统当前实际情况,重新为该系统制定相应的数据存储规则。
本文基于海量数据的数据分配方法、装置及系统,根据确定的该待存储数据的数据优先级,确定具备与该待存储数据的数据优先级相匹配的设备性能优先级的在线存储设备,这种方案将有效解决现有技术中存在无法根据数据重要性以及存储设备性能进行自动划分和存储等问题。
基于大数据分析的商业智能系统设计

基于大数据分析的商业智能系统设计一、引言商业智能系统是指通过收集、分析、挖掘大量数据,为企业决策提供支持和指导的系统,目前在企业管理领域得到广泛应用。
而大数据技术的发展,为商业智能系统的实现提供了更为先进和高效的手段。
本文将以基于大数据分析的商业智能系统设计为主题,详细介绍商业智能系统的相关概念、技术和实现方法。
二、商业智能系统概述商业智能系统是指通过对企业数据的分析,帮助企业决策者更好地了解企业内部、外部的经营环境和趋势,并能够根据以往的经验和数据模型,提供针对性的建议和决策支持。
商业智能系统的基本组成包括数据仓库、数据分析、数据挖掘和数据可视化四个部分。
其中,数据仓库负责存储企业内外部的各类数据,并对数据进行整合;数据分析通过提取数据中的关键信息,为企业提供决策支持;数据挖掘则是对大量数据进行挖掘和预测,为企业提供新的商业机会;数据可视化则通过图表等形式让数据更具可读性和可操作性,方便企业实现快速决策。
三、大数据技术在商业智能系统中的应用随着大数据技术的发展和应用,商业智能系统的数据源已经从内部数据扩展到包括社交媒体、传感器、传统的商业数据、交通运输和制造领域等各种类型的数据。
商业智能系统的设计需要结合大数据技术的应用,才能更好地完成数据的收集、分析、挖掘和可视化。
1. 大数据收集大数据收集是商业智能系统设计中的关键环节,涉及到如何从海量数据中提炼出有价值的信息。
传统的商业智能系统主要使用ETL(抽取、转换、加载)技术来进行数据收集和管理,但面对大数据规模的数据,这种方法显得过于繁琐、耗时和成本高昂。
因此,基于大数据的商业智能系统设计需要使用更为先进和高效的技术,如Hadoop、Spark等分布式计算、存储技术和流式处理技术等。
2. 大数据分析大数据分析是商业智能系统设计中最重要的环节之一。
它可以通过分析用户的行为、预测趋势、比较不同数据集等方式来帮助管理员更好地了解企业运营和趋势。
实际上,大数据分析是一个相当复杂的过程,需要结合多种技术和方法,如数据挖掘、机器学习、统计分析等,进行分类和预测分析。
综采工作面海量数据挖掘分析平台设计

综采工作面海量数据挖掘分析平台设计王宏伟1, 杨焜1,2, 付翔1,2, 李进1,3, 贾思锋1,2(1. 太原理工大学 山西省煤矿智能装备工程研究中心,山西 太原 030024;2. 太原理工大学 矿业工程学院,山西 太原 030024;3. 太原理工大学 机械与运载工程学院,山西 太原 030024)摘要:当前综采工作面海量数据采集的实时性和完整性差、异常数据清洗耗时大、数据挖掘时延大,导致综采数据利用率低,无法辅助管理层实时下发决策指令。
针对上述问题,设计了一种综采工作面海量数据挖掘分析平台。
该平台由数据源层、数据采集存储层、数据挖掘层和前端应用层组成。
数据源层由工作面各类硬件设备提供原始数据;数据采集存储层使用OPC UA 网关实时采集井下传感器监测信息,再通过MQTT 协议和RESTful 接口将数据存入InfluxDB 存储引擎;数据挖掘层利用Hive 数据引擎和Yarn 资源管理器筛选数据采集过程中受工作现场干扰形成的异常数据,解决因网络延时导致的数据局部采集顺序紊乱问题,并利用Spark 分布式挖掘引擎挖掘工作面设备群海量工况数据的潜在价值,提高数据挖掘模型的运行速度;前端应用层利用可视化组件与后端数据库关联,再通过AJAX 技术与后端数据实时交互,实现模型挖掘结果和各类监测数据的可视化展示。
测试结果表明,该平台能够充分保证数据采集的实时性与完整性,清洗效率较单机MySQL 查询引擎提升5倍,挖掘效率较单机Python 挖掘引擎提升4倍。
关键词:综采工作面;海量数据;数据挖掘;数据采集;数据存储;数据清洗;数据可视化中图分类号:TD67 文献标志码:AMassive data mining and analysis platform design for fully mechanized working faceWANG Hongwei 1, YANG Kun 1,2, FU Xiang 1,2, LI Jin 1,3, JIA Sifeng 1,2(1. Center of Shanxi Engineering Research for Coal Mine Intelligent Equipment, Taiyuan University of Technology,Taiyuan 030024, China ; 2. College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024,China ; 3. College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China)Abstract : The current real-time and integrity of massive data acquisition in fully mechanized working faces are poor. The abnormal data cleaning takes a long time. The data mining delays are large. This leads to low utilization rate of fully mechanized working data and incapability to assist management in issuing decision-making instructions in real-time. In order to solve the above problems, a massive data mining and analysis platform for fully mechanized working faces is designed. The platform consists of a data source layer, a data acquisition and storage layer, a data mining layer, and a front-end application layer. The data source layer is provided with raw data by various hardware devices on the working surface. The data acquisition and storage layer uses the OPC UA gateway to collect real-time monitoring information from underground sensors, and then stores the data in the InfluxDB storage engine through the MQTT protocol and RESTful interface. The data收稿日期:2023-03-20;修回日期:2023-05-21;责任编辑:盛男。
基于数据分析的大数据处理系统设计与实现

基于数据分析的大数据处理系统设计与实现随着现代科技的不断发展,数据已经成为企业发展不可或缺的一项重要资源。
而大数据处理系统的设计和实现对于企业来说,是一个非常关键的挑战。
为了更好地应对这种挑战,越来越多的企业开始采用基于数据分析的大数据处理系统,以实现更高效、更准确、更自动化的处理能力。
基于数据分析的大数据处理系统设计和实现的过程,包括了以下几个步骤:数据收集和存储:首先,我们需要收集并存储海量数据。
这个过程可能涉及到大量的网络爬虫和数据抓取技术,以及各种类型的数据库和云存储技术,例如Hadoop、Spark、Cassandra等。
数据清洗和预处理:一般来说,我们收集到的数据不会完全干净和规范,需要进行数据清洗和预处理。
这里面的工作涉及到文本分析、自然语言处理、机器学习等技术,以及数据清洗和去重技术,例如OpenRefine、Dedupe等。
数据分析和挖掘:这是整个系统最核心的部分,也是整个系统所追求的价值所在。
在这个部分里面,我们需要选择或构建适合我们业务的数据分析和挖掘算法,例如分类、聚类、回归、关联规则挖掘等。
同时,我们需要使用工具或语言来实现这些算法,例如Python的Scikit-learn、R、MATLAB等。
可视化和报告:最后,我们需要将数据分析和挖掘的结果进行可视化和报告。
这个过程需要使用各种类型的可视化工具和框架,例如Tableau、D3、Bokeh、ggplot2等,以及报告撰写技能。
如果要设计和实现一个高效、可靠、灵活的基于数据分析的大数据处理系统,下面几点是需要注意的:数据安全:大规模数据的收集、存储和传输涉及到很多不同的安全风险,例如黑客攻击、身份盗窃、数据泄露等。
因此,我们需要采取各种安全措施来保护数据的安全性和完整性,例如数据加密、防火墙、备份和恢复等技术。
数据质量:海量数据的质量可能不会很高,因为这些数据可能包含有错误、重复、缺失或不完整的信息。
为了保证数据质量,我们需要采取各种技术和方法来进行数据清洗和预处理,例如数据去重、格式化、标准化和归一化等。
使用MySQL进行海量数据存储与查询的设计方案

使用MySQL进行海量数据存储与查询的设计方案导语在当今数字化时代,海量数据的存储和查询是各个行业普遍面临的挑战。
MySQL作为一款成熟的关系型数据库管理系统,被广泛应用于各个领域。
本文将探讨如何使用MySQL进行海量数据的存储与查询,以及相应的设计方案。
一、背景介绍随着互联网的飞速发展和各种传感器技术的普及,海量数据的产生呈指数级增长。
这些数据包括但不限于用户信息、交易记录、日志数据等。
如何高效地存储和查询这些海量数据成为了企业和组织所面临的重要问题。
二、MySQL的特点和优势MySQL作为一款开源的关系型数据库管理系统,具有以下特点和优势:1. 高度可靠性:MySQL有多种备份和恢复机制,能够确保数据的稳定性和可靠性。
2. 可扩展性:MySQL支持分布式部署,可以通过添加更多的数据库节点来扩展存储容量和处理能力。
3. 高性能:MySQL通过优化索引、查询计划和缓存机制,实现高效的数据查询和处理。
4. 灵活性:MySQL支持多种数据类型,同时也提供了丰富的扩展功能和插件。
三、海量数据存储方案1. 分区表:将数据按照一定规则分成若干个区域,每个区域对应一个表。
可以按照时间、地理位置等维度进行分区,提高数据的存储效率和查询速度。
2. 分库分表:将数据划分到多个数据库实例和表中,每个数据库实例和表只负责存储部分数据。
可以根据业务需求和数据特点进行垂直分表(按照功能模块)和水平分表(按照数据行)。
3. 数据压缩:对于海量数据,可以采用压缩算法来减小数据占用的存储空间。
MySQL提供了多种压缩引擎和算法,可以根据实际需求选择适合的压缩方式。
四、海量数据查询方案1. 存储过程和触发器:通过使用存储过程和触发器,可以将复杂的查询逻辑封装起来,提高查询效率和代码可维护性。
2. 分布式查询:如果单台MySQL服务器无法满足查询需求,可以使用分布式查询技术,将查询请求分发到多个MySQL节点上进行并行处理。
3. 数据分析引擎:除了MySQL本身的查询功能,还可以结合其他数据分析引擎如Apache Hadoop、Spark等进行数据处理和分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于海量数据的数据分析方案设计data analysis program design based on mass data摘要:随着互联网,移动互联网和物联网的发展,谁也无法否认,我们来到了一个海量数据的时代。
随着数据积累的越来越多,现在许多行业大多面临基于海量数据的分析问题,该文从基于海量数据挖掘的分析方法出发,利用河南省2005到2009年交通事故的数据,设计了一个数据分析方案。
关键词:海量数据,数据挖掘,回归模型,方案Abstract: with the development of Internet, mobile Internet and development of Internet of things, nobody can deny that we come to a massive data era. As data accumulate more and more, many industries are facing problems based on large amounts of data analysis . This paper ibased on the analysis of mass data mining method of Henan province from 2005 to 2009, using the data of traffic accidents, designes a data analysis program.Key words: mass data, data mining, regression model, scheme一、引言随着信息技术的发展,人们积累的数据越来越多。
事实上,数据本身是没有意义的,只有用以进行分析处理才真正起到作用。
因此,可以说激增的数据背后更重要的是隐含的信息,人们希望能够对这些数据进行更高层次的分析,以便更好地利用这些数据。
海量数据是发展趋势,对数据分析和挖掘也越来越重要,从海量数据中提取有用信息重要而紧迫,这便要求处理要准确,精度要高,而且处理时间要短,得到有价值信息要快,所以,对海量数据的研究很有前途,也很值得进行广泛深入的研究。
在实际的工作环境下,许多人会遇到海量数据这个复杂而艰巨的问题,它的主要难点有以下几个方面:数据量过大,数据中什么情况都可能存在;软硬件要求高,系统资源占用过高;要求很高的处理方法和技巧。
基于海量数据的数据挖掘正在逐步兴起,面对着超海量的数据,一般的挖掘软件或算法往往采用数据抽样的方式进行处理,这样的误差不会很高,大大提高了处理效率和处理的成功率。
数据挖掘是指从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取出隐含在其中的、可信、新颖、人们事先不知道的、但又是潜在有用的模式的高级处理过程。
数据挖掘是由统计学、人工智能、数据库、可视化技术等多个领域相融合而形成的一个交叉学科。
除了进行关系和规则的描述之外,数据挖掘的一个很重要的任务是分析。
根据在过去和现在的数据中寻找到的规律建模,这样的模式有时候也可以认为是以时间为关键属性的关联知识。
一个数据挖掘系统可以自动在大型数据库中寻找预测性信息,以往需要进行大量手工分析的问题如今可以迅速直接由数据本身得出结论。
一个典型的例子是数据挖掘在交通事故中的应用,交通事故数据挖掘应用分析的主要作用有:可以分析出影响交通安全的诸因素及其影响的轻重程度,预测交通事故的发展趋势;发现和识别事故高发区域、交叉口和路段;可以分析交通事故成因、特征、规律及交通安全工作中的薄弱环节,明确交通安全管理工作的重点和对策等。
一般情况下,分析的基本数据是时间序列数据,也就是按照时间先后存放在数据库中的数据。
时间序列预测法可用于短期、中期和长期预测。
根据对资料分析方法的不同,又可分为:简单序时平均数法、加权序时平均数法、移动平均法、加权移动平均法、趋势预测法、指数平滑法、季节性趋势预测法、市场寿命周期预测法等。
由于大量的时间序列是非平稳的,其特征参数和数据分布随着时间的推移而发生变化,因此,仅仅通过对某段历史数据的训练,建立单一的神经网络模型,还无法完成准确的建模任务。
为此,人们提出了基于统计学和基于精确性的再训练方法,当发现现存模型不再适用于当前数据时,对模型重新训练,获得新的权重参数,建立新的模型。
也可以根据问题规模的不同采用并行算法的计算优势进行分析。
二数据挖掘分析的过程(一)问题定义一个行业或者机构面临的数据挖掘需求总是多种多样的,在问题形成之前甚至需要多次研究问题本身,再由问题提炼出模型。
这样,一个数据挖掘的使用者最先也是最重要的就是熟悉背景知识,弄清需求,要想充分发挥数据挖掘的价值,必须对目标要有一个清晰明确的定义,即决定到底想干什么。
(二)获取数据资源,建立数据挖掘库要进行数据挖掘必须收集到要挖掘的数据资源。
更多情况下,这些数据资源分布在不同的数据源里,因为大部分情况下需要预处理,修改这些数据,而且常会遇到采用外部数据的情况,所以应该尽量将其收集到一个数据库或者数据仓库中。
(三)分析和调整数据分析数据就是数据深入研究其规律的过程,从数据集中找出规律和趋势,可以采用聚类分类关联规则发现等具体的分析技术,最终要达到的目的就是搞清楚多因素相互影响的复杂关系,最后发现因素之间的相关性。
调整数据是基于以上数据分析的过程和结论,在对数据状态和趋势有了进一步了解的基础上进行数据调整,这时对问题要进一步明确化、量化,针对问题的需求对数据进行增删,按照对整个数据挖掘过程的新认识组合或生成一个新的变量,以体现对状态的准确描述。
(四)模型化这是数据挖掘的核心环节,在经过以上步骤的处理和分析后,问题进一步明确数据结构和内容进一步根据需求进行了调整,就可以建立数据挖掘模型。
在预测过程中,一般是用神经网络、决策树、数理统计、时间序列分析等方法来建立模型。
三、数据模型的建立和分析(一)收集数据在全国道路交通事故情况中选取2005--2009年河南省交通事故情况进行分析;其中X1为事故起数,X2为死伤人数,X3为受伤人数,Y为直接财产损失。
(二)分析方法简介回归分析是实际工作中应用最广泛的统计方法之一,概括的讲,回归分析是描述两个或两个以上变量间关系的一种统计方法。
在实际工作中回归分析的应用范围很广,回归分析可以求出自变量与因变量之间的经验公式,所以,只要需要定量分析多变量之间相关关系时都是必不可少的。
尤其在现在流行的数据挖掘技术中,回归分析也是必不可少的。
通过对已知训练数据进行回归分析得出经验公式,利用经验公式就可以在已知自变量的情况下预测因变量的取值。
(三)分析从图二可以看出,直接财产损失和事故起数、死亡及受伤人数都有关系;图2 直接财产损失与事故起数、死亡人数和受伤人数的相关折线图(一)简单相关分析从简单相关系数(表二)可以看出,在不考虑相互影响的情况下,河南省交通事故直接财产损失与全年交通事故总数、死亡人数和受伤人数均成正向高度相关,这说明上述三个因素都是直接财产损失的重要因素,其重要次序依次为事故起数,死亡人数和受伤人数。
表1 交通事故直接损失与影响因素之间的简单相关系数因变量Y与自变量X1,X2,X3是直接的关系,因此,在进行多元线性回归的时候将X1,X2,X3直接纳入模型。
(二)回归分析表2:变量进入情况表3:模型拟合度检验表二所示的是对模型拟合度的检验结果。
对于多元线性回归模型,一般应采用其调整的决定系数来判断,在本例中,其值为0.921,说明其拟合程度是可以接受的。
表4:方差分析表表三所示是模型检验结果,这是一个标准的方差分析表,回归模型的Sig.值为0.178,说明该模型有显著的统计意义。
3,建立模型表5:回归分析结果由未标准化的回归系数可知,拟合结果为Y=9348.558X1--14099.449X2--2888.165X3,四、结论数据挖掘经常会在行业中得到应用,主要是根据历史情况进行建模,统计一直是分析的一个基本工具。
在海量数据的前提下可以直接应用在数据挖掘的过程中,讨论了数据挖掘预测中的处理模式设计,然后就交通安全事故的相关分析进行了讨论,就模型的选择、评价和应用都进行了深入的讨论。
面对日益严峻的道路交通安全形势,交通管理部门应该越来越重视对交通事故数据的收集和分析工作。
在分析道路交通事故现状的基础上,应用数据挖掘技术,可以更为完善的处理复杂、稀疏、多维、不全的数据,从而做出更为科学的决策。
因而,应用数据挖掘技术分析预防道路交通事故,对于保障人们的人身安全,减少国家的经济损失有着积极作用。
相信数据挖掘技术在海量数据预测中的应用会为道路交通事故分析预防工作提出新的思维方式。
参考文献:【1】王一夫,陈松桥,陈安的海量数据预测模型设计及案例分析【z】,/view/043906d6360cba1aa811da49.html【2】李武选,郭岩红,李源,李军的2004年某县交通事故数据挖掘分析【J】。
长安大学学报,2009,11(1):49-54。
【3】吴昊,李军国的基于关联规则理论的道路交通事故数据挖掘模型【D】,百度文库。
【4】杨进倩, 孔令人, 夏毓荣的数据挖掘技术在道路交通事故分析和预防中的作用【D】,百度文库。
【5】赵卫亚,彭寿康,朱晋的计量经济学书【M】。
机械工业出版社,2009.【6】数据挖掘技术综述【Z】,百度文库。
【7】中国历年交通事故死亡人数官方统计【Z】,/10/0709/10/6B53JH6B000816HJ.htm本次课程设计的体会:此次课程设计由我们组四名成员共同完成,大家分工合作,齐心协力,很顺利的完成本次作业。
在此次课程设计中,我们深感合作的重要性,同时也遇到了一些问题:第一:在书写英文摘要时,要注意语法和专业词汇的翻译。
第二,在进行数据分析时,未将数据类型设置为数值型,因此在将变量移入时,显示“列表框不允许字符串类型”,移入失败。