《圆》第4节 弧长和扇形面积导学案1 (2)

合集下载

人教版初三数学上册弧长与扇形面积导学案

人教版初三数学上册弧长与扇形面积导学案

《圆》第四节弧长和扇形面积导学案1【知识与技能】1、理解并掌握弧长及扇形面积的计算公式2、会利用弧长、扇形面积计算公式计算简单组合图形的周长【过程与方法】1、认识扇形,会计算弧长和扇形的面积2、通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获得新知识的能力【情感、态度与价值观】1、通过对弧长及扇形的面积公式的推导,理解整体和局部2、通过图形的转化,体会转化在数学解题中的妙用【重点】弧长和扇形面积公式,准确计算弧长和扇形的面积【难点】运用弧长和扇形的面积公式计算比较复杂图形的面积学习过程:一、自主学习(一)复习巩固1、小学里学习过圆周长的计算公式、圆面积计算公式,那公式分别是什么?2、我们知道,弧长是它所对应的圆周长的一部分,扇形面积是它所对应的圆面积的一部分,那么弧长、扇形面积应怎样计算呢?(二)自主探究1、如图,某传送带的一个转动轮的半径为10cm1)转动轮转一周,传送带上的物品A被传送多少厘米?2)转动轮转1°,传送带上的物品A被传送多少厘米?3)转动轮转n°,传送带上的物品A被传送多少厘米?BBABB2、制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,即的长(结果精确到0.1mm).3、上面求的是110°的圆心角所对的弧长,若圆心角为n ︒,如何计算它所对的弧长呢? 请同学们计算半径为3cm ,圆心角分别为180︒、90︒、45︒、1︒、n ︒所对的弧长。

因此弧长的计算公式为l =__________________________4、如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形问:右图中扇形有几个?同求弧长的思维一样,要求扇形的面积,应思考圆心角为1︒的扇形面积是面积的几分之几?进而求出圆心角n 的扇形面积 如果设圆心角是n °的扇形面积为S ,圆的半径为r ,那么扇形的面积为S = ___ . 因此扇形面积的计算公式:S =———————— 或 S =——————————(三)、归纳总结:1、 叫扇形2、弧长的计算公式是 扇形面积的计算公式是(四)自我尝试:已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。

24.4.1弧长及扇形面积公式导学案

24.4.1弧长及扇形面积公式导学案

24.4弧长一、明确目标:1.经历探索弧长计算公式的过程;2.掌握弧长计算公式,并会应用公式解决问题.学习重点会用公式解决问题.学习难点探索弧长计算公式;用公式解决实际问题.二、自主学习:在田径二百米跑比赛中,每位运动员的起跑位置相同吗?____每位运动员弯路的展直长度相同吗?___________三、合作解疑:1.弧长公式的推导:①半径为R的圆,周长是_____________;②圆的周长可以看作是_______度的圆心角所对的弧;③1°圆心角所对弧长是_____________;④n°圆心角所对的弧长是1°圆心角所对的弧长的多少倍?n°的圆心角所对的弧长为l,则l=________________.(这就是弧长公式,请记住);2.针对训练:②已知弧所对的圆心角为900,半径是4,则弧长为__________②(随州市中考)已知一条弧的半径为9,弧长为8π,那么这条弧所对的圆心角为____。

③750的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是________cm.3.典例分析:制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l (单位:mm,精确到1mm,π取3.14) 针对训练:有一段弯道是圆弧形的,道长是12m,弧所对的圆心角是810,求这段圆弧的半径(精确到0.1m,π取3.14)。

四、检测:A组1.已知扇形的圆心角为150o,半径为6,则扇形的弧长是()A. 3πB.4πC.5πD.6π2.(枣庄中考)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是( )A. B. C. D.3.(泰安中考)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC 若∠ABC=120°, OC=3,则的长为()A.πB.2πC.3πD.5π4.如图同心圆中,大圆半径OA、OB交小圆与C、D,且OC∶OA=1∶2,则弧CD与弧AB长度之比为()(A)1∶1 (B)1∶2 (C)2∶1 (D)1∶45.制作弯形管道需要先按中心线计算“展直长度”再下料。

人教版-数学-九年级上册- 弧长和扇形面积(2) 导学案1

人教版-数学-九年级上册- 弧长和扇形面积(2) 导学案1
5、一个圆锥的侧面积是底面积的2倍,则此圆锥的高与底面直径的比为____
6、圆锥的底面半径为4, 母线长为24,则侧面展开图中扇形的圆心角为_____
7.圆锥的母线长为13 cm,底面半径为5 cm,则此圆锥的高是( )
A6cmB8cmC10cmD12cm
8.圆锥的底面直径是80cm,母线长90cm,求它的侧面展开图的圆心角和圆锥的全面积。
4.圆锥底面半径为9cm,母线长36cm,则圆锥侧面展开图的圆心角为。
5.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为1200,求该圆锥的侧面积和全面积。
B组
1.在半径为50cm的圆形铁皮上剪去一块扇形铁皮,用剩余部分制作成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,则剪去的扇形的圆心角度数为( )
2.同学们都知道,两点之间线段最短。如果这两个点在一个曲面上,两点之间的最短距离该如何来解呢?
一课一得
2.如图2,沿圆锥的一条母线将它剪开并展平,可以看到,圆锥的侧面展开图是一个,这个扇形的半径是圆锥的,扇形的弧长是圆锥底面圆的。若设圆锥底面圆的半径是r,圆锥母线长是l,则扇形的半径是,扇形的弧长是,所以扇形的面积==,即圆锥的侧面积=,所以圆锥的全面积=。
(利用你手中的扇形纸片体会一下吧。)
平行训练
A 2280B1440C720D 360
2.已知一个圆锥与一个圆柱的底面半径都为3米,高都为4米,它们两者的侧面积相差多少,侧面积的比值是多少?
合作探究
1.Rt△ABC中,∠C=900,AC=3,BC=4,把它分别沿三边所在的直线旋转一周,所得几何体的形状相同吗?表面积一样吗?发挥你的聪明才智,小组分工合作,可以分别求它的一种情况,比较所得结果,去探求问题的答案吧!

《24.4 弧长和扇形面积》教案、导学案

《24.4 弧长和扇形面积》教案、导学案

《24.4 弧长和扇形面积》教案【教学目标】1.经历弧长和扇形面积公式的探求过程.2.会利用弧长和扇形面积的计算公式进行计算.【教学过程】一、情境导入在我们日常生活中,弧形随处可见,大到星体运行轨道,小到水管弯管,操场跑道,高速立交的环形入口等等,你有没有想过,这些弧形的长度怎么计算呢?二、合作探究探究点一:弧长【类型一】求弧长在半径为1cm的圆中,圆心角为120°的扇形的弧长是________cm.解析:根据弧长公式l=nπr180,这里r=1,n=120,将相关数据代入弧长公式求解.即l=120·π·1180=23π.方法总结:半径为r的圆中,n°的圆心角所对的弧长为l=nπR180,要求出弧长关键弄清公式中各项字母的含义.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO.若∠A =30°,则劣弧BC ︵的长为________cm.解析:连接OB 、OC ,∵AB 是⊙O 的切线,∴AB ⊥BO .∵∠A =30°,∴∠AOB =60°.∵BC ∥AO ,∴∠OBC =∠AOB =60°.在等腰△OBC 中,∠BOC =180°-2∠OBC =180°-2×60°=60°.∴BC ︵的长为60×π×6180=2π.方法总结:根据弧长公式l =n πR 180,求弧长应先确定圆弧所在圆的半径R 和它所对的圆心角n 的大小.【类型二】利用弧长求半径或圆心角(1)已知扇形的圆心角为45°,弧长等于π2,则该扇形的半径是________; (2)如果一个扇形的半径是1,弧长是π3,那么此扇形的圆心角的大小为________.解析:(1)若设扇形的半径为R ,则根据题意,得45×π×R 180=π2,解得R =2.(2)根据弧长公式得n ×π×1180=π3,解得n =60,故扇形圆心角的大小为60°.方法总结:逆用弧长的计算公式可求出相应扇形的圆心角和半径. 【类型三】求动点运行的弧形轨迹如图,Rt △ABC 的边BC 位于直线l 上,AC =3,∠ACB =90°,∠A =30°.若Rt △ABC 由现在的位置向右无滑动地翻转,当点A 第3次落在直线l 上时,点A 所经过的路线的长为________(结果用含π的式子表示).解析:点A 所经过的路线的长为三个半径为2,圆心角为120°的扇形弧长与两个半径为3,圆心角为90°的扇形弧长之和,即l =3×120π×2180+2×90π×3180=4π+3π.故填(4+3)π.方法总结:此类翻转求路线长的问题,通过归纳探究出这个点经过的路线情况,并以此推断整个运动途径,从而利用弧长公式求出运动的路线长.探究点二:扇形面积 【类型一】求扇形面积一个扇形的圆心角为120°,半径为3,则这个扇形的面积为________.(结果保留π)解析:把圆心角和半径代入扇形面积公式S =n πr 2360=120×32π360=3π.方法总结:公式中涉及三个字母,只要知道其中两个,就可以求出第三个.扇形面积还有另外一种求法S =12lr ,其中l 是弧长,r 是半径.【类型二】求运动形成的扇形面积如图,把一个斜边长为2且含有30°角的直角三角板ABC 绕直角顶点C顺时针旋转90°到△A 1B 1C ,则在旋转过程中这个三角板扫过图形的面积是( )A .π B. 3 C.3π4+32 D.11π12+34解析:在Rt △ABC 中,∵∠A =30°,∴BC =12AB =1,由于这个三角板扫过的图形为扇形BCB 1和扇形ACA 1,∴S 扇形BCB 1=90·π·12360=π4,S 扇形ACA 1=90·π·(3)2360=3π4,∴S 总=π4+3π4=π.故选A.【类型三】求阴影部分的面积如图,半径为1cm 、圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( )A .πcm 2 B.23πcm 2C.12cm 2D.23cm 2 解析:设两个半圆的交点为C ,连接OC ,AB ,根据题意可知点C 是半圆OA ︵,OB ︵的中点,所以BC ︵=OC ︵=AC ︵,所以BC =OC =AC ,即四个弓形的面积都相等,所以图中阴影部分的面积等于Rt △AOB 的面积,又OA =OB =1cm ,即图中阴影部分的面积为12cm 2,故选C.方法总结:求图形面积的方法一般有两种:规则图形直接使用面积公式计算;不规则图形则进行割补,拼成规则图形再进行计算.三、板书设计【教学反思】教学过程中,强调学生应熟记相关公式并灵活运用,特别是求阴影部分的面积时,要灵活割补法、转换法等.《24.4 弧长和扇形面积(第1课时)》教案【教学内容】1.n °的圆心角所对的弧长L=180n Rπ 2.扇形的概念;3.圆心角为n °的扇形面积是S 扇形=2360n R π;4.应用以上内容解决一些具体题目. 【教学目标】了解扇形的概念,理解n•°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长L=2180n R π和扇形面积S 扇=2360n R π的计算公式,并应用这些公式解决一些题目.【重难点、关键】1.重点:n °的圆心角所对的弧长L=180n Rπ,扇形面积S 扇=2360n R π及其它们的应用.2.难点:两个公式的应用.3.关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程. 【教具、学具准备】小黑板、圆规、直尺、量角器、纸板. 【教学过程】 一、复习引入(老师口问,学生口答)请同学们回答下列问题.1.圆的周长公式是什么? 2.圆的面积公式是什么? 3.什么叫弧长?老师点评:(1)圆的周长C=2πR (2)圆的面积S 图=πR 2(3)弧长就是圆的一部分. 二、探索新知(小黑板)请同学们独立完成下题:设圆的半径为R ,则: 1.圆的周长可以看作______度的圆心角所对的弧. 2.1°的圆心角所对的弧长是_______. 3.2°的圆心角所对的弧长是_______. 4.4°的圆心角所对的弧长是_______. ……5.n °的圆心角所对的弧长是_______.(老师点评)根据同学们的解题过程,我们可得到: n °的圆心角所对的弧长为360n Rπ 例1制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即AB 的长(结果精确到0.1mm )分析:要求AB 的弧长,圆心角知,半径知,只要代入弧长公式即可. 解:R=40mm ,n=110 ∴AB 的长=180n R π=11040180π⨯≈76.8(mm ) 因此,管道的展直长度约为76.8mm .问题:(学生分组讨论)在一块空旷的草地上有一根柱子,柱子上拴着一条长5m•的绳子,绳子的另一端拴着一头牛,如图所示:(1)这头牛吃草的最大活动区域有多大?(2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域有多大?学生提问后,老师点评:(1)这头牛吃草的最大活动区域是一个以A(柱子)为圆心,5m为半径的圆的面积.(2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域应该是n°圆心角的两个半径的n°圆心角所对的弧所围成的圆的一部分的图形,如图:像这样,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.(小黑板),请同学们结合圆心面积S=πR2的公式,独立完成下题:1.该图的面积可以看作是_______度的圆心角所对的扇形的面积.2.设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______.3.设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______.4.设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______.……5.设圆半径为R,n°的圆心角所对的扇形面积S扇形=_______.老师检察学生练习情况并点评1.360 2.S扇形=1360πR2 3.S扇形=2360πR2 4.S扇形=25360Rπ5.S扇形=2360n Rπ因此:在半径为R的圆中,圆心角n°的扇形例2.如图,已知扇形AOB的半径为10,∠AOB=60°,求AB的长(•结果精确到0.1)和扇形AOB的面积结果精确到0.1)分析:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足.解:AB 的长=60180π×10=103π≈10.5 S 扇形=60360π×102=1006π≈52.3 因此,AB 的长为25.1cm ,扇形AOB 的面积为150.7cm 2. 三、巩固练习 课本P122练习. 四、应用拓展例3.(1)操作与证明:如图所示,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O 处,并将纸板绕O 点旋转,求证:正方形ABCD 的边被纸板覆盖部分的总长度为定值a .(2)尝试与思考:如图a 、b 所示,•将一块半径足够长的扇形纸板的圆心角放在边长为a 的正三角形或边长为a 的正五边形的中心点处,并将纸板绕O 旋转,,当扇形纸板的圆心角为________时,正三角形边被纸覆盖部分的总长度为定值a ;当扇形纸板的圆心角为_______时,正五边形的边长被纸板覆盖部分的总长度也为定值a .(a) (b)(3)探究与引申:一般地,将一块半径足够长的扇形纸板的圆心放在边长ECB O为a 的正n 边形的中心O 点处,若将纸板绕O 点旋转,当扇形纸板的圆心角为_______时,正n 边形的边被纸板覆盖部分的总长度为定值a ,这时正n•边形被纸板所覆盖部分的面积是否也为定值?若为定值,写出它与正n 边形面积S 之间的关系(不需证明);若不是定值,请说明理由.解:(1)如图所示,不妨设扇形纸板的两边与正方形的边AB 、AD•分别交于点M 、N ,连结OA 、OD .∵四边形ABCD 是正方形∴OA=OD ,∠AOD=90°,∠MAO=∠NDO , 又∠MON=90°,∠AOM=∠DON ∴△AMO ≌△DNO ∴AM=DN∴AM+AN=DN+AN=AD=a特别地,当点M 与点A (点B )重合时,点N 必与点D (点A )重合,此时AM+AN 仍为定值a .故总有正方形的边被纸板覆盖部分的总长度为定值a . (2)120°;70° (3)360n ︒;正n 边形被纸板覆盖部分的面积是定值,这个定值是Sn. 五、归纳小结(学生小结,老师点评) 本节课应掌握:1.n °的圆心角所对的弧长L=180n Rπ 2.扇形的概念.3.圆心角为n °的扇形面积是S 扇形=2360n R π4.运用以上内容,解决具体问题. 六、布置作业1.教材P124 复习巩固1、2、3 P125 综合运用5、6、7. 2.选用课时作业设计.第一课时作业设计一、 选择题1.已知扇形的圆心角为120°,半径为6,则扇形的弧长是( ). A .3π B .4π C .5π D .6π2.如图1所示,把边长为2的正方形ABCD 的一边放在定直线L 上,按顺时针方向绕点D 旋转到如图的位置,则点B 运动到点B ′所经过的路线长度为( )A .1B .πCD π(1) (2) (3)3.如图2所示,实数部分是半径为9m 的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( )A .12πmB .18πmC .20πmD .24πm 二、填空题 1.如果一条弧长等于4πR ,它的半径是R ,那么这条弧所对的圆心角度数为______,• 当圆心角增加30°时,这条弧长增加________.2.如图3所示,OA=30B ,则AD 的长是BC 的长的_____倍. 三、综合提高题1.已知如图所示,AB 所在圆的半径为R ,AB 的长为3πR ,⊙O ′和OA 、OB 分别相切于点C 、E ,且与⊙O 内切于点D ,求⊙O ′的周长.2.如图,若⊙O 的周长为20πcm ,⊙A 、⊙B 的周长都是4πcm ,⊙A 在⊙O•内沿⊙O 滚动,⊙B 在⊙O 外沿⊙O 滚动,⊙B 转动6周回到原来的位置,而⊙A 只需转动4周即可,你能说出其中的道理吗?3.如图所示,在计算机白色屏幕上,有一矩形着色画刷ABCD ,AB=1,AD=3,将画刷以B 为中心,按顺时针转动A ′B ′C ′D ′位置(A ′点转在对角线BD 上),求屏幕被着色的面积.答案:一、1.B 2.D 3.D 二、1.45°16πR 2.3 三、1.连结OD 、O ′C ,则O ′在OD 上 由AB l =3πR ,解得:∠AOB=60°, 由Rt △OO ′C•解得⊙O ′的半径r=13R ,所以⊙O ′的周长为2πr=23πR .2.⊙O 、⊙A 、⊙B 的周长分别为20πcm ,4πcm ,4πcm , 可求出它的半径分别为10cm 、•2cm 、2cm , 所以OA=8cm ,OB=12cm ,因为圆滚动的距离实际等于其圆心经过的距离, 所以⊙A 滚动回原位置经过距离为2π×8=16π=4π×4, 而⊙B 滚动回原位置经过距离为2π×12=24π=4π×6. 因此,与原题意相符. 3.设屏幕被着色面积为S ,则S=S △ABD +S 扇形BDD`+S △BC`D`=S 矩形ABCD +S 扇形BDD`, 连结BD ′,在Rt△A′BD′中,A′B=1,A′D′∴BD′=BD=2,∠DBD′=60°,∴S=16π·22+1+23π.《24.4.1 弧长和扇形面积》教案R.布置作业:A组:P122页练习:1,2,P124页习题24.4:1.(1)、(2),2,6,7.B组:P122页练习:1,2,P 124页习题24.4:2,3,5,6.学生课下独立完成.教师对学生的作业在批改后及时反馈.B组补充作业:已知:如图,矩形ABCD中,AB=1cm,BC=2cm,以B为圆心,BC为半径作14圆弧交AD于F,交BA延长线于E,求扇形BCE被矩形所截剩余部分的面积.让学生逐渐的学会总结。

弧长和扇形的面积导学案

弧长和扇形的面积导学案

O B AO B AA BO A B O A BO 图 124.4 弧长和扇形的面积 第1课时 弧长和扇形的面积(1)学习目标:1、认识扇形,会计算弧长和扇形的面积。

2、通过弧长和扇形面积的发现与推导,培养运用已有知识探究问题获得新知的能力。

3、通过用弧长及扇形面积公式解决实际问题,体验数学与人类生活的密切联系,激发学习数学的兴趣。

重点:经历探索弧长及扇形面积计算公式的过程;了解弧长及扇形面积计算公式;会用公式解决问题.难点:运用弧长和扇形的面积公式计算比较复杂图形的面积。

课前预习1:1.圆的周长公式是 。

2.圆的面积公式是 。

3.什么叫弧长? 。

4.扇形的面积是S ,它的半径是r ,这个扇形的弧长是_____________ 5.扇形面积的计算公式为S=______________或S=______________6.一段长为2的弧所在的圆半径是3cm ,则此扇形的圆心角为_________,扇形的面积为_________。

7.已知圆弧的半径为50厘米,圆心角为60°,此圆弧的长度为_____。

课前预习2: 一、创境激趣如图1是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗?(取3.14)我们容易看出这段铁轨是圆周长的41,所以铁轨的长度l ≈(米). 二、自主探究1、发现弧长和扇形的面积的公式(1)弧长公式的推导。

问题:如下图,你能计算出各圆心角对的弧长分别是圆周长的几分子之几吗?180° 下图圆心角分别为180°、90°、45°、1°、n °探索:①圆心角是180°,占整个周角的21,因此它所对的弧长圆周长的_____________;②圆心角是90°,占整个周角的41,因此它所对的弧长圆周长的_____________;③圆心角是45°,占整个周角的_______,因此它所对的弧长圆周长的____________; ④圆心角是1°,占整个周角的________,因此它所对的弧长圆周长的____________; ⑤圆心角是n °,占整个周角的______ ,因此它所对的弧长圆周长的____________; (这里关键是1°圆心角所对的弧长是多少?进而求出n °的圆心角所对的弧长。

九年级数学:24.4 弧长和扇形面积(1) 导学案

九年级数学:24.4 弧长和扇形面积(1) 导学案

24.4 弧长和扇形面积(1)授课时间:2020.11.05 审核人: 学习目标:1. 了解扇形的概念,复习圆的周长、圆的面积公式.2. 探索n °的圆心角所对的弧长l =n πR 180和扇形面积S 扇形=n πR 2360的计算公式,并应用这些公式解决相关问题.重点:n °的圆心角所对的弧长l =n πR180,扇形面积S 扇形=n πR 2360及它们的应用.难点:两个公式的应用.一、自学指导.自学:阅读教材P 111~112,完成学案。

二、提出问题:制造弯形管道时,经常要先按中心线计算“展直长度”(图中虚线组成的长度),再下料, 这就涉及到计算弧长的问题.如何求弧AB 的长?三、合作探究:活动一、1. 你还记得圆周长的计算公式吗?2. 圆的周长可以看作是多少度的圆心角所对的弧长?3. 1°的圆心角所对的弧长是多少?4. n °的圆心角所对的弧长呢? 展示归纳:1、弧长公式:2、你能根据上面的弧长公式,算出本节开头的弧长吗?R·n °1°O活动二、1、由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做 .2、 你还记得圆面积公式吗?3、 圆面积可以看作是多少度的圆心角所对的扇形的面积?4、 1°的圆心角所对的扇形面积是多少?5、 n °的圆心角所对的扇形面积呢?四、应用展示:例1 如图,水平放置的圆柱形排水管道的截面半径是0.6m ,其中水面高0.3m , 求截面上有水部分的面积(精确到0.01m 2)。

五、练习、巩固:1.有一段弯道是圆弧形的,道长是12m ,弧所对的圆心角是81°, 求这段圆弧的半径R (精确到0.1m )。

2.已知⊙O 的半径OA =6,∠AOB =90°,则∠AOB 所对的弧长AB ︵的长是 _。

3.一个扇形所在圆的半径为3 cm ,扇形的圆心角为120°,则扇形的面积为_ 。

人教版九年级数学上册 24.4 弧长和扇形的面积 精品导学案2 新人教版

人教版九年级数学上册 24.4 弧长和扇形的面积 精品导学案2 新人教版

弧长和扇形的面积课题: 24.4 弧长和扇形的面积(2)序号:学习目标:1、知识与技能(1)了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题.(2)通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题.2、过程与方法复习弧长和扇形面积的计算公式,提高运用知识和技能解决问题的能力,发展应用意识3、情感.态度与价值观:学生在应用数学知识解答问题的活动中获取成功的体验,建立学习的信心。

学习重点:利用弧长和扇形面积公式计算圆锥的侧面展开图学习难点:利用弧长和扇形面积公式计算圆锥的侧面展开图导学过程一.课前预习:阅读课本P112---114页的有关内容,完成《导学》教材导读中的问题及自主测评。

. 二.课堂导学:1.情境导入.阅读《导学案》102页的问题导学2. 出示任务自主学习阅读112-114页内容解决下列问题(1)什么是圆锥的母线?(2)圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积?若圆锥的母线长为l,底面圆的半径为r,则圆锥的侧面积可表示为,圆锥的全面积为。

(3)圆柱的侧面展开图是什么图形?若圆柱底面圆的半径为r,圆柱的高为h,则圆柱的侧面积可表示为,全面积可表示为。

3. 合作探究《导学》难点探究和展题设计三、展示与反馈:检查预习情况,解决学生疑惑四、课堂小结:1. 什么是圆锥的母线?2. 圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积?五、达标检测:1.教材114页3练习1-2题2. 完成102页《导学案》.自主测评1—4题课后作业:1.必做题:教材114页;2.习题24.4 第5-10题板书设计:24.4弧长和扇形的面积(2)1.什么是圆锥的母线?2. 圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆锥的全面积?课后反思:通过本节课的学习,教学反思在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。

《圆》第四节弧长和扇形面积导学案(新)

《圆》第四节弧长和扇形面积导学案(新)

弧长和扇形面积导学案(一)弧长的计算公式为l=__________________________1、已知圆的半径为10cm,半圆的弧长为( )2、已知圆的半径为9cm ,60°圆心角所对的弧长为( )3、已知半径为3,则弧长为π的弧所对的圆心角为_______4、已知圆心角为150°,所对的弧长为20π,则圆的半径为_______。

例2、如图所示,△ABC内接于⊙O,⊙O的半径R=3cm,若∠B=45°,则弧AC的长是______练习、如图,把Rt△ABC的斜边放在直线l上,按顺时针方向转动一次,使它转到A BC''∆的位置。

若BC=1,∠A=30°。

求点A运动到A′位置时,点A经过的路线长。

(二)扇形面积的计算公式:S=————————或S=——————————1、已知扇形的圆心角为120°,半径为2,则这个扇形的面积,S扇=________ .2、如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中∠AOB为120°,OC长为8cm,CA长为12cm,则贴纸部分的面积为_______(三)、弓形:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形(如下面三幅图).(二)2小题图变式:如图、水平放置的圆柱形排水管道的截面半径是0.6cm,其中水面高0.9cm,求截面上有水部分的面积。

(精确到0.01cm)。

例1、已知扇形的半径为3cm,扇形的弧长为πcm,则该扇形的面积是______cm2,练习1、某扇形的周长是28cm,面积为49平方厘米,则这个扇形的半径是______练习2、如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则S阴影=_______练习3、(1)如图,AB⊥BC,AB=BC=2cm,弧OA与弧AC关于点O中心对称,则AB、BC、弧OA与弧AC所围成的图形的面积是________(2)如图,直径AB为6的半圆O,绕A点逆时针旋转60°,此时点B到了点B’,则图中S阴影______3、如图,⊙A, ⊙B, ⊙C两两不相交,且半径都是1cm,则图中的三个扇形的面积之和为多少?弧长的和为多少?2、如图,⊙A、⊙B、⊙C、⊙D相互外离,它们的半径都是1,顺次连接四个圆心得到四边形ABCD,则图形中四个扇形(空白部分)的面积之和是___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆》第四节弧长和扇形面积导学案1
主编人:主审人:
班级:学号:姓名:
学习目标:
【知识与技能】
1、理解并掌握弧长及扇形面积的计算公式
2、会利用弧长、扇形面积计算公式计算简单组合图形的周长
【过程与方法】
1、认识扇形,会计算弧长和扇形的面积
2、通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获得新知识的能力
【情感、态度与价值观】
1、通过对弧长及扇形的面积公式的推导,理解整体和局部
2、通过图形的转化,体会转化在数学解题中的妙用
【重点】
弧长和扇形面积公式,准确计算弧长和扇形的面积
【难点】
运用弧长和扇形的面积公式计算比较复杂图形的面积
学习过程:
一、自主学习
(一)复习巩固
1、小学里学习过圆周长的计算公式、圆面积计算公式,那公式分别是什么?
2、我们知道,弧长是它所对应的圆周长的一部分,扇形面积是它所对应的圆面积的一
部分,那么弧长、扇形面积应怎样计算呢?
(二)自主探究
1、如图,某传送带的一个转动轮的半径为10cm
1)转动轮转一周,传送带上的物品A被传送多少厘米?
2)转动轮转1°,传送带上的物品A被传送多少厘米?
3)转动轮转n°,传送带上的物品A被传送多少厘米?
B
B
A
B
B
2、制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道
的展直长度,即的长(结果精确到0.1mm).
3、上面求的是110°的圆心角所对的弧长,若圆心角为n ︒,如何计算它所对的弧长呢? 请同学们计算半径为3c m ,圆心角分别为180︒、90︒、45︒、1︒、n ︒所对的弧长。

因此弧长的计算公式为
l =__________________________
4、如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形
问:右图中扇形有几个?同求弧长的思维一样,要求扇形的面积,应思考圆心角为1︒的扇形面积是面积的几分之几?进而求出圆心角n 的扇形面积 如果设圆心角是n °的扇形面积为S ,圆的半径为r ,
那么扇形的面积为S = ___ .
因此扇形面积的计算公式:
S =———————— 或 S =——————————
P (三)、归纳总结:
1、 叫扇形
2、弧长的计算公式是 扇形面积的计算公式是
(四)自我尝试:
已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。

二、教师点拔
1、本节学习有数学知识有弧长计算公式 和扇形 面积公式
2、与圆有关的阴影面积计算问题有时化零为整,有时化整为零,转化的方法是用割补法,为此常添加适当的辅助线。

三、课堂检测
1、如果扇形的圆心角是230°,那么这个扇形的面积等于这个扇形所在圆的面积的____________;
2、扇形的面积是它所在圆的面积的
3
2,这个扇形的圆心角的度数是_________°.
3、扇形的面积是S ,它的半径是r ,这个扇形的弧长是_____________
四、课外训练
1、如图,PA 、PB 切⊙O 于A 、B ,求阴影部分周长和面积。

2、如图,⊙A 、⊙B 、⊙C 、⊙D 相互外离,它们的半径是1,顺次连结四个圆心得到四边形ABCD ,则图中四个扇形的面积和是多少?
A
E
B
3、一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B 点从开始至结束所走过的路径长度是多少?
4、圆心角为60°的扇形的半径为10厘米,求这个扇形的面积和周长.
5、已知如图,在以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,C 为切点。

设弦AB 的长为d ,圆环面积S 与d 之间有怎样的数量关系?
6、如图,正三角形ABC 的边长为2,分别以A 、B 、C 为圆心,1为半径画弧,与△ABC 的内切圆O 围成的图形为图中阴影部分。

求S 阴影。

7、如图,扇形OAB 的圆心角是90°,分别以OA 、OB 为直径在扇形内作半圆,则12S S 、 两部分图形面积的大小关系是什么?。

相关文档
最新文档