24.4.1弧长和扇形的面积导学案
(导学案)24.4.1弧长和扇形的面积

24.4.1 弧长和扇形面积(第1课时)【学习目标】1、了解扇形的概念,理解n•°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.2、通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长L=2180n Rπ和扇形面积S扇=2360n Rπ的计算公式,并应用这些公式解决一些题目.【学习过程】一、温故知新:1.圆的周长公式是。
2.圆的面积公式是。
3.什么叫弧长?二、自主学习:自学教材P120----P121,思考下列内容:1、圆的周长可以看作______度的圆心角所对的弧.1°的圆心角所对的弧长是_______。
2°的圆心角所对的弧长是_______。
4°的圆心角所对的弧长是_______。
……n°的圆心角所对的弧长是_______。
2、什么叫扇形?3、圆的面积可以看作度圆心角所对的扇形的面积;设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______。
设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______。
设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______。
……设圆的半径为R,n°的圆心角所对的扇形面积S扇形=_______。
4、比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?三、典型例题:例1、(教材121页例1)例2:如图,已知扇形AOB的半径为10,∠AOB=60°,求A B的长(•结果精确到0.1)和扇形AOB的面积结果精确到0.1)四、巩固练习:1、教材122页练习第1题,2、教材122页练习第2题,3、习题24.4第1题填空。
(答案写在教材上)五、总结反思:【达标检测】1、已知扇形的圆心角为120°,半径为6,则扇形的弧长是( ). A .3π B .4π C .5π D .6π2、如图所示,把边长为2的正方形ABCD 的一边放在定直线L 上,按顺时针方向绕点D 旋转到如图的位置,则点B 运动到点B ′所经过的路线长度为( ) A .1 B .π CDπ(第2题图) (第3题图) (第4题图)3、如图所示,OA=30B ,则A D 的长是B C 的长的_____倍.4、如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB ∠为120,OC 长为8cm ,CA 长为12cm ,则阴影部分的面积为 。
24.4.1弧长及扇形面积公式导学案

24.4弧长一、明确目标:1.经历探索弧长计算公式的过程;2.掌握弧长计算公式,并会应用公式解决问题.学习重点会用公式解决问题.学习难点探索弧长计算公式;用公式解决实际问题.二、自主学习:在田径二百米跑比赛中,每位运动员的起跑位置相同吗?____每位运动员弯路的展直长度相同吗?___________三、合作解疑:1.弧长公式的推导:①半径为R的圆,周长是_____________;②圆的周长可以看作是_______度的圆心角所对的弧;③1°圆心角所对弧长是_____________;④n°圆心角所对的弧长是1°圆心角所对的弧长的多少倍?n°的圆心角所对的弧长为l,则l=________________.(这就是弧长公式,请记住);2.针对训练:②已知弧所对的圆心角为900,半径是4,则弧长为__________②(随州市中考)已知一条弧的半径为9,弧长为8π,那么这条弧所对的圆心角为____。
③750的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是________cm.3.典例分析:制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度l (单位:mm,精确到1mm,π取3.14) 针对训练:有一段弯道是圆弧形的,道长是12m,弧所对的圆心角是810,求这段圆弧的半径(精确到0.1m,π取3.14)。
四、检测:A组1.已知扇形的圆心角为150o,半径为6,则扇形的弧长是()A. 3πB.4πC.5πD.6π2.(枣庄中考)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是( )A. B. C. D.3.(泰安中考)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC 若∠ABC=120°, OC=3,则的长为()A.πB.2πC.3πD.5π4.如图同心圆中,大圆半径OA、OB交小圆与C、D,且OC∶OA=1∶2,则弧CD与弧AB长度之比为()(A)1∶1 (B)1∶2 (C)2∶1 (D)1∶45.制作弯形管道需要先按中心线计算“展直长度”再下料。
人教版九年级数学上册《24.4.1弧长和扇形面积》导学案

数学九年级上<24.4弧长和扇形面积>导学案【学习目标】知识与技能:1、掌握弧长和扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算;过程与方法:通过弧长和扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力;情感与态度:在弧长和扇形面积公式的推导和例题教学过程中,渗透“从特殊到一般,再由一般到特殊”的辩证思想.学习重点:弧长,扇形面积公式的导出及应用.学习难点:弧长,扇形面积公式的灵活应用.一、探究活动1:(前置性作业)已知⊙O半径为R,求圆心角n°的弧长温馨提示:圆周长C=2πR;则1°圆心角所对弧长= ;n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;所以n°圆心角所对弧长= .探究活动2:已知⊙O半径为R,求圆心角n°的扇形面积温馨提示:圆面积S=πR2;圆心角为1°的扇形的面积= ;圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;所以圆心角为n°的扇形的面积=.探究活动3:扇形的面积公式与弧长公式有联系吗?请结合弧长公式和扇形的面积公式推导S扇形= l R新知盘点:预习质疑:二、合作探究:㈠交流展示㈡学以致用1.在半径为1cm 的圆中,120°的圆心角所对的弧长是___________。
2.在⊙O 中,如果120°的圆心角所对的弧长是ccm 34,则⊙O 的半径是___________。
3.⊙O 的半径为3cm ,弧长为2πcm 的弧所对圆心角度数是___________;9.如图80504,正方形边长为a ,弧的半径为a ,阴影部分面积为( )。
A 、(π-1)a 2B 、(π2 -1)a 2C 、12( π-1) a 2D 、14(π-12) a 24.如图,⊙O 的半径为10cm 。
(1)如果∠AOB=120°,求弧AB 的长及扇形AOB 的面积;(2)已知弧BC=25cm ,求∠COB 的度数。
弧长和扇形面积导学案.doc

《24.4弧长和扇形面积》导学案教学历程:一、创设情境制造弯形管道时,经常要先按中心线计算“展直长度”(图中虚线的长度),再下料,这就涉及到计算弧长的问题.(单位:mm,精确到1mm)如何求AB 的长呢?二、探究新知(1)1.你还记得圆周长的计算公式吗?2.圆的周长可以看作是多少度的圆心角所对的弧长?3.1°的圆心角所对弧长是多少?2。
的圆心角所对的弧长呢?n的圆心角呢?明晰:若设。
半径为R, n。
的圆心角所对的弧长为1,贝皿=哩180 温馨提示:°I _ mtR(1)在应用弧长公式180 ,进行计算时,要注意公式中n的意义.n表示1。
圆心角的倍数,它不带单位。
(2)题目中若没有写明精确度,可用“丸”表示弧长。
(3)在弧长公长中,已知1、n、R中的任意两个量,都可以求出第三个量。
你学会了吗?你能根据孤长公式计算出本节开头的孤长吗?三、小小行家看“门道"有一段弯道是圆弧形的,道长是12m,弧所对的圆心角是81°、,求这段圆弧的半径Ro (精确到0. Im)四、探究新知(2)知识点1、什么是扇形?由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形O1. (口答)下列各图中,哪些图形是扇形?为知识点2、如何求圆半径为R,圆心角为n。
的扇形面积呢?1.你还记得圆面积公式吗?2.圆面积可以看作是多少度的圆心角所对的扇形的面积?3.1°的圆心角所对的扇形面积是多少?2°的圆心角呢?n的圆心角呢?明晰:扇形面积公式s —〃• 7lR2或s = ;IR360 2五、我自信我能行例、如图,水平放置的一个圆柱形排水管道的横截面半径为0.6m, 其中水高0. 3cm,求截面上有水部分的面积(结果精确到0.01cm2).C(第1题)六、爱拼才会赢变式:如图、水平放置的圆柱形排水管道的截面半径是0.6cm, 其中水面高0.9cm,求截面上有水部分的面积。
(精确到0.01cm2)七、点击中考(2013,武汉)如图,。
《24.4 弧长和扇形面积》教案、导学案

《24.4 弧长和扇形面积》教案【教学目标】1.经历弧长和扇形面积公式的探求过程.2.会利用弧长和扇形面积的计算公式进行计算.【教学过程】一、情境导入在我们日常生活中,弧形随处可见,大到星体运行轨道,小到水管弯管,操场跑道,高速立交的环形入口等等,你有没有想过,这些弧形的长度怎么计算呢?二、合作探究探究点一:弧长【类型一】求弧长在半径为1cm的圆中,圆心角为120°的扇形的弧长是________cm.解析:根据弧长公式l=nπr180,这里r=1,n=120,将相关数据代入弧长公式求解.即l=120·π·1180=23π.方法总结:半径为r的圆中,n°的圆心角所对的弧长为l=nπR180,要求出弧长关键弄清公式中各项字母的含义.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO.若∠A =30°,则劣弧BC ︵的长为________cm.解析:连接OB 、OC ,∵AB 是⊙O 的切线,∴AB ⊥BO .∵∠A =30°,∴∠AOB =60°.∵BC ∥AO ,∴∠OBC =∠AOB =60°.在等腰△OBC 中,∠BOC =180°-2∠OBC =180°-2×60°=60°.∴BC ︵的长为60×π×6180=2π.方法总结:根据弧长公式l =n πR 180,求弧长应先确定圆弧所在圆的半径R 和它所对的圆心角n 的大小.【类型二】利用弧长求半径或圆心角(1)已知扇形的圆心角为45°,弧长等于π2,则该扇形的半径是________; (2)如果一个扇形的半径是1,弧长是π3,那么此扇形的圆心角的大小为________.解析:(1)若设扇形的半径为R ,则根据题意,得45×π×R 180=π2,解得R =2.(2)根据弧长公式得n ×π×1180=π3,解得n =60,故扇形圆心角的大小为60°.方法总结:逆用弧长的计算公式可求出相应扇形的圆心角和半径. 【类型三】求动点运行的弧形轨迹如图,Rt △ABC 的边BC 位于直线l 上,AC =3,∠ACB =90°,∠A =30°.若Rt △ABC 由现在的位置向右无滑动地翻转,当点A 第3次落在直线l 上时,点A 所经过的路线的长为________(结果用含π的式子表示).解析:点A 所经过的路线的长为三个半径为2,圆心角为120°的扇形弧长与两个半径为3,圆心角为90°的扇形弧长之和,即l =3×120π×2180+2×90π×3180=4π+3π.故填(4+3)π.方法总结:此类翻转求路线长的问题,通过归纳探究出这个点经过的路线情况,并以此推断整个运动途径,从而利用弧长公式求出运动的路线长.探究点二:扇形面积 【类型一】求扇形面积一个扇形的圆心角为120°,半径为3,则这个扇形的面积为________.(结果保留π)解析:把圆心角和半径代入扇形面积公式S =n πr 2360=120×32π360=3π.方法总结:公式中涉及三个字母,只要知道其中两个,就可以求出第三个.扇形面积还有另外一种求法S =12lr ,其中l 是弧长,r 是半径.【类型二】求运动形成的扇形面积如图,把一个斜边长为2且含有30°角的直角三角板ABC 绕直角顶点C顺时针旋转90°到△A 1B 1C ,则在旋转过程中这个三角板扫过图形的面积是( )A .π B. 3 C.3π4+32 D.11π12+34解析:在Rt △ABC 中,∵∠A =30°,∴BC =12AB =1,由于这个三角板扫过的图形为扇形BCB 1和扇形ACA 1,∴S 扇形BCB 1=90·π·12360=π4,S 扇形ACA 1=90·π·(3)2360=3π4,∴S 总=π4+3π4=π.故选A.【类型三】求阴影部分的面积如图,半径为1cm 、圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( )A .πcm 2 B.23πcm 2C.12cm 2D.23cm 2 解析:设两个半圆的交点为C ,连接OC ,AB ,根据题意可知点C 是半圆OA ︵,OB ︵的中点,所以BC ︵=OC ︵=AC ︵,所以BC =OC =AC ,即四个弓形的面积都相等,所以图中阴影部分的面积等于Rt △AOB 的面积,又OA =OB =1cm ,即图中阴影部分的面积为12cm 2,故选C.方法总结:求图形面积的方法一般有两种:规则图形直接使用面积公式计算;不规则图形则进行割补,拼成规则图形再进行计算.三、板书设计【教学反思】教学过程中,强调学生应熟记相关公式并灵活运用,特别是求阴影部分的面积时,要灵活割补法、转换法等.《24.4 弧长和扇形面积(第1课时)》教案【教学内容】1.n °的圆心角所对的弧长L=180n Rπ 2.扇形的概念;3.圆心角为n °的扇形面积是S 扇形=2360n R π;4.应用以上内容解决一些具体题目. 【教学目标】了解扇形的概念,理解n•°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长L=2180n R π和扇形面积S 扇=2360n R π的计算公式,并应用这些公式解决一些题目.【重难点、关键】1.重点:n °的圆心角所对的弧长L=180n Rπ,扇形面积S 扇=2360n R π及其它们的应用.2.难点:两个公式的应用.3.关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程. 【教具、学具准备】小黑板、圆规、直尺、量角器、纸板. 【教学过程】 一、复习引入(老师口问,学生口答)请同学们回答下列问题.1.圆的周长公式是什么? 2.圆的面积公式是什么? 3.什么叫弧长?老师点评:(1)圆的周长C=2πR (2)圆的面积S 图=πR 2(3)弧长就是圆的一部分. 二、探索新知(小黑板)请同学们独立完成下题:设圆的半径为R ,则: 1.圆的周长可以看作______度的圆心角所对的弧. 2.1°的圆心角所对的弧长是_______. 3.2°的圆心角所对的弧长是_______. 4.4°的圆心角所对的弧长是_______. ……5.n °的圆心角所对的弧长是_______.(老师点评)根据同学们的解题过程,我们可得到: n °的圆心角所对的弧长为360n Rπ 例1制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即AB 的长(结果精确到0.1mm )分析:要求AB 的弧长,圆心角知,半径知,只要代入弧长公式即可. 解:R=40mm ,n=110 ∴AB 的长=180n R π=11040180π⨯≈76.8(mm ) 因此,管道的展直长度约为76.8mm .问题:(学生分组讨论)在一块空旷的草地上有一根柱子,柱子上拴着一条长5m•的绳子,绳子的另一端拴着一头牛,如图所示:(1)这头牛吃草的最大活动区域有多大?(2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域有多大?学生提问后,老师点评:(1)这头牛吃草的最大活动区域是一个以A(柱子)为圆心,5m为半径的圆的面积.(2)如果这头牛只能绕柱子转过n°角,那么它的最大活动区域应该是n°圆心角的两个半径的n°圆心角所对的弧所围成的圆的一部分的图形,如图:像这样,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.(小黑板),请同学们结合圆心面积S=πR2的公式,独立完成下题:1.该图的面积可以看作是_______度的圆心角所对的扇形的面积.2.设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______.3.设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______.4.设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______.……5.设圆半径为R,n°的圆心角所对的扇形面积S扇形=_______.老师检察学生练习情况并点评1.360 2.S扇形=1360πR2 3.S扇形=2360πR2 4.S扇形=25360Rπ5.S扇形=2360n Rπ因此:在半径为R的圆中,圆心角n°的扇形例2.如图,已知扇形AOB的半径为10,∠AOB=60°,求AB的长(•结果精确到0.1)和扇形AOB的面积结果精确到0.1)分析:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足.解:AB 的长=60180π×10=103π≈10.5 S 扇形=60360π×102=1006π≈52.3 因此,AB 的长为25.1cm ,扇形AOB 的面积为150.7cm 2. 三、巩固练习 课本P122练习. 四、应用拓展例3.(1)操作与证明:如图所示,O 是边长为a 的正方形ABCD 的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O 处,并将纸板绕O 点旋转,求证:正方形ABCD 的边被纸板覆盖部分的总长度为定值a .(2)尝试与思考:如图a 、b 所示,•将一块半径足够长的扇形纸板的圆心角放在边长为a 的正三角形或边长为a 的正五边形的中心点处,并将纸板绕O 旋转,,当扇形纸板的圆心角为________时,正三角形边被纸覆盖部分的总长度为定值a ;当扇形纸板的圆心角为_______时,正五边形的边长被纸板覆盖部分的总长度也为定值a .(a) (b)(3)探究与引申:一般地,将一块半径足够长的扇形纸板的圆心放在边长ECB O为a 的正n 边形的中心O 点处,若将纸板绕O 点旋转,当扇形纸板的圆心角为_______时,正n 边形的边被纸板覆盖部分的总长度为定值a ,这时正n•边形被纸板所覆盖部分的面积是否也为定值?若为定值,写出它与正n 边形面积S 之间的关系(不需证明);若不是定值,请说明理由.解:(1)如图所示,不妨设扇形纸板的两边与正方形的边AB 、AD•分别交于点M 、N ,连结OA 、OD .∵四边形ABCD 是正方形∴OA=OD ,∠AOD=90°,∠MAO=∠NDO , 又∠MON=90°,∠AOM=∠DON ∴△AMO ≌△DNO ∴AM=DN∴AM+AN=DN+AN=AD=a特别地,当点M 与点A (点B )重合时,点N 必与点D (点A )重合,此时AM+AN 仍为定值a .故总有正方形的边被纸板覆盖部分的总长度为定值a . (2)120°;70° (3)360n ︒;正n 边形被纸板覆盖部分的面积是定值,这个定值是Sn. 五、归纳小结(学生小结,老师点评) 本节课应掌握:1.n °的圆心角所对的弧长L=180n Rπ 2.扇形的概念.3.圆心角为n °的扇形面积是S 扇形=2360n R π4.运用以上内容,解决具体问题. 六、布置作业1.教材P124 复习巩固1、2、3 P125 综合运用5、6、7. 2.选用课时作业设计.第一课时作业设计一、 选择题1.已知扇形的圆心角为120°,半径为6,则扇形的弧长是( ). A .3π B .4π C .5π D .6π2.如图1所示,把边长为2的正方形ABCD 的一边放在定直线L 上,按顺时针方向绕点D 旋转到如图的位置,则点B 运动到点B ′所经过的路线长度为( )A .1B .πCD π(1) (2) (3)3.如图2所示,实数部分是半径为9m 的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( )A .12πmB .18πmC .20πmD .24πm 二、填空题 1.如果一条弧长等于4πR ,它的半径是R ,那么这条弧所对的圆心角度数为______,• 当圆心角增加30°时,这条弧长增加________.2.如图3所示,OA=30B ,则AD 的长是BC 的长的_____倍. 三、综合提高题1.已知如图所示,AB 所在圆的半径为R ,AB 的长为3πR ,⊙O ′和OA 、OB 分别相切于点C 、E ,且与⊙O 内切于点D ,求⊙O ′的周长.2.如图,若⊙O 的周长为20πcm ,⊙A 、⊙B 的周长都是4πcm ,⊙A 在⊙O•内沿⊙O 滚动,⊙B 在⊙O 外沿⊙O 滚动,⊙B 转动6周回到原来的位置,而⊙A 只需转动4周即可,你能说出其中的道理吗?3.如图所示,在计算机白色屏幕上,有一矩形着色画刷ABCD ,AB=1,AD=3,将画刷以B 为中心,按顺时针转动A ′B ′C ′D ′位置(A ′点转在对角线BD 上),求屏幕被着色的面积.答案:一、1.B 2.D 3.D 二、1.45°16πR 2.3 三、1.连结OD 、O ′C ,则O ′在OD 上 由AB l =3πR ,解得:∠AOB=60°, 由Rt △OO ′C•解得⊙O ′的半径r=13R ,所以⊙O ′的周长为2πr=23πR .2.⊙O 、⊙A 、⊙B 的周长分别为20πcm ,4πcm ,4πcm , 可求出它的半径分别为10cm 、•2cm 、2cm , 所以OA=8cm ,OB=12cm ,因为圆滚动的距离实际等于其圆心经过的距离, 所以⊙A 滚动回原位置经过距离为2π×8=16π=4π×4, 而⊙B 滚动回原位置经过距离为2π×12=24π=4π×6. 因此,与原题意相符. 3.设屏幕被着色面积为S ,则S=S △ABD +S 扇形BDD`+S △BC`D`=S 矩形ABCD +S 扇形BDD`, 连结BD ′,在Rt△A′BD′中,A′B=1,A′D′∴BD′=BD=2,∠DBD′=60°,∴S=16π·22+1+23π.《24.4.1 弧长和扇形面积》教案R.布置作业:A组:P122页练习:1,2,P124页习题24.4:1.(1)、(2),2,6,7.B组:P122页练习:1,2,P 124页习题24.4:2,3,5,6.学生课下独立完成.教师对学生的作业在批改后及时反馈.B组补充作业:已知:如图,矩形ABCD中,AB=1cm,BC=2cm,以B为圆心,BC为半径作14圆弧交AD于F,交BA延长线于E,求扇形BCE被矩形所截剩余部分的面积.让学生逐渐的学会总结。
弧长和扇形的面积导学案

O B AO B AA BO A B O A BO 图 124.4 弧长和扇形的面积 第1课时 弧长和扇形的面积(1)学习目标:1、认识扇形,会计算弧长和扇形的面积。
2、通过弧长和扇形面积的发现与推导,培养运用已有知识探究问题获得新知的能力。
3、通过用弧长及扇形面积公式解决实际问题,体验数学与人类生活的密切联系,激发学习数学的兴趣。
重点:经历探索弧长及扇形面积计算公式的过程;了解弧长及扇形面积计算公式;会用公式解决问题.难点:运用弧长和扇形的面积公式计算比较复杂图形的面积。
课前预习1:1.圆的周长公式是 。
2.圆的面积公式是 。
3.什么叫弧长? 。
4.扇形的面积是S ,它的半径是r ,这个扇形的弧长是_____________ 5.扇形面积的计算公式为S=______________或S=______________6.一段长为2的弧所在的圆半径是3cm ,则此扇形的圆心角为_________,扇形的面积为_________。
7.已知圆弧的半径为50厘米,圆心角为60°,此圆弧的长度为_____。
课前预习2: 一、创境激趣如图1是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗?(取3.14)我们容易看出这段铁轨是圆周长的41,所以铁轨的长度l ≈(米). 二、自主探究1、发现弧长和扇形的面积的公式(1)弧长公式的推导。
问题:如下图,你能计算出各圆心角对的弧长分别是圆周长的几分子之几吗?180° 下图圆心角分别为180°、90°、45°、1°、n °探索:①圆心角是180°,占整个周角的21,因此它所对的弧长圆周长的_____________;②圆心角是90°,占整个周角的41,因此它所对的弧长圆周长的_____________;③圆心角是45°,占整个周角的_______,因此它所对的弧长圆周长的____________; ④圆心角是1°,占整个周角的________,因此它所对的弧长圆周长的____________; ⑤圆心角是n °,占整个周角的______ ,因此它所对的弧长圆周长的____________; (这里关键是1°圆心角所对的弧长是多少?进而求出n °的圆心角所对的弧长。
九年级数学:24.4 弧长和扇形面积(1) 导学案

24.4 弧长和扇形面积(1)授课时间:2020.11.05 审核人: 学习目标:1. 了解扇形的概念,复习圆的周长、圆的面积公式.2. 探索n °的圆心角所对的弧长l =n πR 180和扇形面积S 扇形=n πR 2360的计算公式,并应用这些公式解决相关问题.重点:n °的圆心角所对的弧长l =n πR180,扇形面积S 扇形=n πR 2360及它们的应用.难点:两个公式的应用.一、自学指导.自学:阅读教材P 111~112,完成学案。
二、提出问题:制造弯形管道时,经常要先按中心线计算“展直长度”(图中虚线组成的长度),再下料, 这就涉及到计算弧长的问题.如何求弧AB 的长?三、合作探究:活动一、1. 你还记得圆周长的计算公式吗?2. 圆的周长可以看作是多少度的圆心角所对的弧长?3. 1°的圆心角所对的弧长是多少?4. n °的圆心角所对的弧长呢? 展示归纳:1、弧长公式:2、你能根据上面的弧长公式,算出本节开头的弧长吗?R·n °1°O活动二、1、由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做 .2、 你还记得圆面积公式吗?3、 圆面积可以看作是多少度的圆心角所对的扇形的面积?4、 1°的圆心角所对的扇形面积是多少?5、 n °的圆心角所对的扇形面积呢?四、应用展示:例1 如图,水平放置的圆柱形排水管道的截面半径是0.6m ,其中水面高0.3m , 求截面上有水部分的面积(精确到0.01m 2)。
五、练习、巩固:1.有一段弯道是圆弧形的,道长是12m ,弧所对的圆心角是81°, 求这段圆弧的半径R (精确到0.1m )。
2.已知⊙O 的半径OA =6,∠AOB =90°,则∠AOB 所对的弧长AB ︵的长是 _。
3.一个扇形所在圆的半径为3 cm ,扇形的圆心角为120°,则扇形的面积为_ 。
24.4.1弧长和扇形的面积导学案

24.4.1弧长和扇形的面积导学案学习历程:探究1 弧长的计算1、半径为3cm的圆的周长:。
请你写出圆的周长计算公式:;2、圆的半径为3cm,那么,1°的圆心角所对的弧长是3、若在半径为R的圆中, 1°的圆心角所对的弧长是2°的圆心角所对的弧长是3°的圆心角所对的弧长是n°的圆心角所对的弧长是4、计算弧长的公式:。
体会公式:在你得到的半径为R的圆中,n°圆心角所对的弧长计算公式中,n的意义是什么?哪些量决定了弧长?5、新知应用(1)、在半径为24的圆中,60°的圆心角所对的弧长l= ;(2)、75°的圆心角所对的弧长是2.5π,则此弧所在圆的半径为.探究 2 扇形面积的计算1、认识概念:是扇形.2、半径为3的圆的面积。
写出半径为R的圆的面积公式3、(1)、若将360°的圆心角分成360等份,这360条半径将圆分割成个小扇形,每个小扇形的圆心角为(2)、如果圆的半径为R,那么,圆心角1°的扇形面积等于;圆心角2°的扇形面积等于;圆心角3°的扇形面积等于圆心角n°的扇形面积等于;4、计算扇形面积的公式:体会公式:在你得到的半径为R 的圆中,n °圆心角所对的扇形面积计算公式中,n 的意义是什么?哪些量决定了扇形面积?5、新知应用(1)、若扇形的圆心角n 为50°,半径为R=1,则这个扇形的面积,S 扇= ;(2)、若扇形的圆心角n 为60°, 面积为π32,则这个扇形的半径R= ; (3)、若扇形的半径R=3, S 扇形=3π,则这个扇形的圆心角n 的度数 ; 探究 3 扇形的面积与弧长的关系1、如果扇形的半径为R ,圆心角为n °.那么,扇形的弧长是 扇形面积是 ;由此,得到扇形面积计算公式: S 扇形= .2、新知应用:若扇形的半径R=2㎝,弧长π34=l ㎝,则这个扇形的面积,S 扇= ; 小结:你这节课有什么有什么收获?达标测试: 共3题, 正确 题,达标率1、一条弧所对的圆心角为120°,半径为3,那么这条弧长为 .(结果用π表示)2.圆心角为120°的扇形的半径为5cm ,它的面积为 .3、已知⌒CD 的长为20πcm ,半径为2cm ,那么扇形COD 的面积是 .能力提升:如图,⊙A 、 ⊙B 、 ⊙C 、 ⊙D 两两不相交,且半径都是2cm ,求图中阴影部分的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.4.1弧长和扇形的面积导学案
【学习目标】1.掌握弧长计算公式,并会应用公式解决问题
2.掌握扇形面积计算公式,并会应用公式解决问题
【重 点】n °的圆心角所对的弧长L=180
n R
π,扇形面积S 扇=2360n R π及其它们的应用.
【难 点】两个公式的应用. 【自主预习】
问题1 弧长的计算
1、半径为3cm 的圆的周长: 。
请你写出圆的周长计算公式: ;
2、圆的半径为3cm ,那么,1°的圆心角所对的弧长是 。
3、若在半径为R 的圆中, 1°的圆心角所对的弧长是 ;2°的圆心角所对的弧长是 ;3°的圆心角所对的弧长是 ;n °的圆心角所对的弧长是 。
4、计算弧长的公式: 。
体会公式:在你得到的半径为R 的圆中,n °圆心角所对的弧长计算公式中,n 的意义是什么? 哪些量决定了弧长?
问题 2 扇形面积的计算
1、理解概念: 是扇形.
2、半径为3的圆的面积 。
写出半径为R 的圆的面积公式 。
3、(1)、若将360°的圆心角分成360等份,这360条半径将圆分割成 个小扇形,每个小扇形的圆心角为 。
(2)、如果圆的半径为R ,那么,圆心角1°的扇形面积等于 ;圆心角2°的扇形面积等于 ;圆心角3°的扇形面积等于 ;圆心角n°的扇形面积等于 。
4、计算扇形面积的公式:
体会公式:在你得到的半径为R 的圆中,n °圆心角所对的扇形面积计算公式中,n 的意义是什么?哪些量决定了扇形面积?
问题 3 扇形的面积与弧长的关系
1、如果扇形的半径为R ,圆心角为n °.那么,扇形的弧长是 扇形面积是 ;
由此,得到扇形面积计算公式: S = . 【合作探究】
探究点一 (1)、在半径为24的圆中,60°的圆心角所对的弧长l= 。
(2)、75°的圆心角所对的弧长是2.5π,则此弧所在圆的半径为 . (3)、已知扇形的圆心角为120°,半径为6,则扇形的弧长是( ). A .3π B .4π C .5π D .6π (4)、如图1所示,把边长为2的正方形ABCD 的一边放在定直线L 上,按顺时针方向绕点D 旋转到如
图的位置,则点B 运动到点B ′所经过的路线长度为( )
A .1
B .π
C .2
D .2π
(5)、如图2所示,实数部分是半径为9m 的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个
圆的圆心,则游泳池的周长为( )
A .12πm
B .18πm
C .20πm
D .24πm
探究点二
(1)、若扇形的圆心角n 为50°,半径为R=1,则这个扇形的面积,S 扇= ; (2)、若扇形的圆心角n 为60°, 面积为π32,则这个扇形的半径R= ;
(3)、若扇形的半径R=3, S =3π,则这个扇形的圆心角n 的度数 ; (4)、如图,AB 是半圆的直径,AB =2R ,C 、D 为半圆的三等分点,求阴影部分的面积。
探究点三
(1)、若扇形的半径R=2㎝,弧长π3
4=l ㎝,则这个扇形的面积,S = ;
(2)、如图,两个同心圆被两条半径截得的弧AB 的长为6π cm ,弧CD 的长为10π cm ,AC =12cm ,求阴影部分ABDC 的面积。
【小结与反思】
你这节课有什么有什么收获?
(1)n 。
的圆心角所对的弧长是 (2)扇形的概念.
(3)圆心角为n 。
的扇形面积是 (4)使用以上内容,解决具体问题. 【达标测试】
1. 扇形的弧长是12лcm ,其圆心角是90°,则扇形的半径是 cm ,扇形的面积是 cm 2
. 2. 扇形的半径是一个圆的半径的3倍,且扇形面积等于圆面积,则扇形的圆心角是 。
3. 已知扇形面积是12cm 2
,半径为8cm ,则扇形周长为 。
4.一个扇形的半径等于一个圆的半径的3倍,且面积相等,则这个扇形的圆心角等于__ 度.
5.半径为6的弧长等于半径为3的圆的周长,则这条弧所对的圆心角的度数是_____.
6.要修一段如图所示的圆弧形弯道,它的半径是48 m ,圆弧所对的圆心角是60°,那么这段弯道长_____m(保留π).
7. 如图,扇形AOB 的圆心角为60°,半径为6cm ,C ,D 分别是的三等分点,则阴影部分的面积是 。
8. 如图正方形的边长为2,分别以正方形的两个对角顶点为圆心,以2为半径画弧,则阴影部分面积为 。
60
o
R
第6题图 第7题图 第8题图
9.如图,两个半圆中,长为6的弦CD 与直径AB 平行且与小半圆相切,那么图中阴影部分的面积等于_____.
10.要在面积为1256平方米的三角形广场ABC 的三个角处各建一个半径相同的扇形草坪,要求草坪总面积为广场面积的一半,那么扇形的半径应是 ____________ 。
11、在∆ABC 中,∠BAC=90°,AB=AC=2,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为 ____________ 。
A
B C D
第9题图 第10题图 第11题图
12、某种商品的商标图案如图(阴影部分)已知菱形ABCD 的边长为4,∠A=60°,弧BD 是以A 为圆心AB 长为半径的弧, 弧CD 是以B 为圆心BC 为半径的弧,则该商标图案的面积为______________。
13、矩形ABCD 中,BC=2,DC=4,以AB 为直径的半圆O 与DC 相切于点E,则阴影部分的面积是______________。
14.如图所示,已知扇形AOB 的圆心角为直角,正方形OCDE 内接于扇形AOB ,点C ,E ,D 分别在OA ,OB 及AB 弧上,过点A 作AF ⊥ED 交ED 的延长线于F ,垂足为F ,如果正方形的边长为1,那么阴影部分的面积为__________.
第12题图 第13题图 第14题图
D
B
A
C
D。