弧长和扇形面积_教学设计(最新整理)
九年级数学上册(人教版)24.4弧长与扇形面积(第一课时)教学设计

"首先,我们来看弧长的计算公式。弧长等于圆周长的一部分,我们可以通过圆心角和半径来计算。其公式为:弧长= (圆心角/360) × 2πr。接下来,我们学习扇形面积的计算公式。扇形面积是圆面积的一部分,它等于圆心角所对的圆弧与半径所围成的图形。其公式为:扇形面积= (圆心角/360) × πr²。"
2.教师通过示例题,展示如何运用这些公式解决实际问题,让学生理解并掌握计算方法。
(三)学生小组讨论,500字
1.教师将学生分成小组,让学生合作讨论以下问题:
"如何计算一个圆的1/4弧长和扇形面积?如果圆的半径是10cm,圆心角是90度,你能计算出弧长和扇形面积吗?"
2.学生在小组内进行讨论,共同解决这些问题,教师巡回指导,解答学生的疑问。
3.梯度练习,巩固知识
设计不同难度的练习题,让学生独立完成,巩固所学知识。针对学生的错误,进行及时反馈和指导。
4.理论联系实际,学以致用
通过解决实际问题,让学生感受数学的实用性。例如,计算一段弯曲的道路的长度、计算扇形门的面积等。
5.总结反馈,拓展提高
在课堂结束时,让学生总结本节课所学内容,并进行自我评价。教师对学生的表现给予肯定和鼓励,同时对学生的不足之处进行指导。
(四)课堂练习,500字
1.教师设计不同难度的练习题,让学生独立完成,巩固所学知识。
"请同学们完成以下练习题:计算半径为5cm的圆的1/6弧长和扇形面积;计算圆心角为120度的扇形面积,半径为8cm。"
2.教师对学生的练习进行批改和反馈,针对错误进行讲解,确保学生掌握所学知识。
(五)总结归纳,500字
弧长与扇形的面积教学设计范文

弧长与扇形的面积教学设计弧长与扇形的面积教学设计范文作为一位优秀的人民教师,可能需要进行教学设计编写工作,教学设计是实现教学目标的计划性和决策性活动。
我们应该怎么写教学设计呢?下面是小编帮大家整理的弧长与扇形的面积教学设计,供大家参考借鉴,希望可以帮助到有需要的朋友。
弧长与扇形的面积教学设计1教学目标(一)教学知识点1.经历探索弧长计算公式及扇形面积计算公式的过程;2.了解弧长计算公式及扇形面积计算公式,并会应用公式解决问题.(二)能力训练要求1.经历探索弧长计算公式及扇形面积计算公式的过程,培养学生的探索能力.2.了解弧长及扇形面积公式后,能用公式解决问题,训练学生的数学运用能力.(三)情感与价值观要求1.经历探索弧长及扇形面积计算公式,让学生体验教学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.通过用弧长及扇形面积公式解决实际问题,让学生体验数学与人类生活的密切联系,激发学生学习数学的兴趣,提高他们的学习积极性,同时提高大家的运用能力.教学重点1.经历探索弧长及扇形面积计算公式的过程.2.了解弧长及扇形面积计算公式.3.会用公式解决问题.教学难点1.探索弧长及扇形面积计算公式.2.用公式解决实际问题.教学方法学生互相交流探索法教具准备2.投影片四张第一张:(记作A)第二张:(记作B)第三张:(记作C)第四张:(记作D)教学过程Ⅰ.创设问题情境,引入新课[师]在小学我们已经学习过有关圆的周长和面积公式,弧是圆周的一部分,扇形是圆的一部分,那么弧长与扇形面积应怎样计算?它们与圆的周长、圆的面积之间有怎样的关系呢?本节课我们将进行探索.Ⅱ.新课讲解一、复习1.圆的周长如何计算?2.圆的面积如何计算?3.圆的圆心角是多少度?[生]若圆的半径为r,则周长l=2r,面积S=r2,圆的圆心角是360.二、探索弧长的计算公式投影片(A)如图,某传送带的一个转动轮的半径为10cm.(1)转动轮转一周,传送带上的物品A被传送多少厘米?(2)转动轮转1,传送带上的物品A被传送多少厘米?(3)转动轮转n,传送带上的物品A被传送多少厘米?[师]分析:转动轮转一周,传送带上的物品应被传送一个圆的周长;因为圆的周长对应360的圆心角,所以转动轮转1,传送带上的物品A 被传送圆周长的;转动轮转n,传送带上的物品A被传送转1时传送距离的n倍.[生]解:(1)转动轮转一周,传送带上的物品A被传送210=20cm;(2)转动轮转1,传送带上的物品A被传送 cm;(3)转动轮转n,传送带上的物品A被传送n =cm.[师]根据上面的计算,你能猜想出在半径为R的圆中,n的圆心角所对的弧长的计算公式吗?请大家互相交流.[生]根据刚才的讨论可知,360的圆心角对应圆周长2R,那么1的圆心角对应的弧长为,n的圆心角对应的弧长应为1的圆心角对应的弧长的n倍,即n .[师]表述得非常棒.在半径为R的圆中,n的圆心角所对的弧长(arclength)的计算公式为:l=.下面我们看弧长公式的运用.三、例题讲解投影片(B)制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道的展直长度,即的长(结果精确到0.1mm).分析:要求管道的展直长度,即求的长,根根弧长公式l=可求得的长,其中n为圆心角,R为半径.解:R=40mm,n=110.的长= R= 4076.8mm.因此,管道的展直长度约为76.8mm.四、想一想投影片(C)在一块空旷的草地上有一根柱子,柱子上拴着一条长3m的绳子,绳子的另一端拴着一只狗.(1)这只狗的最大活动区域有多大?(2)如果这只狗只能绕柱子转过n角,那么它的最大活动区域有多大?[师]请大家互相交流.[生](1)如图(1),这只狗的最大活动区域是圆的面积,即9;(2)如图(2),狗的活动区域是扇形,扇形是圆的一部分,360的圆心角对应的圆面积,1的圆心角对应圆面积的,即=,n的圆心角对应的`圆面积为n =.[师]请大家根据刚才的例题归纳总结扇形的面积公式.[生]如果圆的半径为R,则圆的面积为R2,1的圆心角对应的扇形面积为,n的圆心角对应的扇形面积为n .因此扇形面积的计算公式为S扇形= R2,其中R为扇形的半径,n为圆心角.五、弧长与扇形面积的关系[师]我们探讨了弧长和扇形面积的公式,在半径为R的圆中,n的圆心角所对的弧长的计算公式为l=R,n的圆心角的扇形面积公式为S扇形=R2,在这两个公式中,弧长和扇形面积都和圆心角n.半径R有关系,因此l和S之间也有一定的关系,你能猜得出吗?请大家互相交流.[生]∵l= R,S扇形= R2,R2= RR.S扇形= lR.六、扇形面积的应用投影片(D)扇形AOB的半径为12cm,AOB=120,求的长(结果精确到0.1cm)和扇形AOB的面积(结果精确到0.1cm2)分析:要求弧长和扇形面积,根据公式需要知道半径R和圆心角n 即可,本题中这些条件已经告诉了,因此这个问题就解决了.解:的长= 1225.1cm.S扇形= 122150.7cm2.因此,的长约为25.1cm,扇形AOB的面积约为150.7cm2.Ⅲ.课堂练习随堂练习Ⅳ.课时小结本节课学习了如下内容:1.探索弧长的计算公式l= R,并运用公式进行计算;2.探索扇形的面积公式S= R2,并运用公式进行计算;3.探索弧长l及扇形的面积S之间的关系,并能已知一方求另一方.Ⅴ.课后作业习题节选Ⅵ.活动与探究如图,两个同心圆被两条半径截得的的长为6 cm,的长为10 cm,又AC=12cm,求阴影部分ABDC的面积.分析:要求阴影部分的面积,需求扇形COD的面积与扇形AOB 的面积之差.根据扇形面积S=lR,l已知,则需要求两个半径OC与OA,因为OC=OA+AC,AC已知,所以只要能求出OA即可.解:设OA=R,OC=R+12,O=n,根据已知条件有:得.3(R+12)=5R,R=18.OC=18+12=30.S=S扇形COD-S扇形AOB= 1030- 18=96 cm2.所以阴影部分的面积为96 cm2.板书设计:略。
九年级数学上册《弧长和扇形面积》教案、教学设计

九年级的学生已经具备了一定的数学基础和逻辑思维能力,能够理解并运用基本的几何概念和公式。在《弧长和扇形面积》这一章节中,学生将通过之前的学习,对圆的相关性质有了一定的了解,这为学习弧长和扇形面积打下了基础。然而,由于弧长和扇形面积的计算涉及圆心角、半径等多个变量,学生可能在综合运用这些知识解决实际问题时遇到困难。因此,在教学过程中,教师应关注以下几点:
3.能够通过实际操作,如使用量角器、圆规等工具,测量并计算出具体物体的弧长和扇形面积。
4.掌握弧长和扇形面积单位换算,能够灵活地在不同场景下应用。
(二)过程与方法
在教学过程中,教师将采用以下方法,帮助学生达成学习目标:
1.引导学生通过观察、探索、实践等活动,发现弧长和扇形面积的规律,培养学生的观察能力和探究精神。
-创设问题情境,鼓励学生提出问题、分析问题、解决问题,培养学生的批判性思维和创新意识。
-实施分层教学,为不同水平的学生提供不同难度的任务,确保每个学生都能在自身基础上得到提升。
-引入项目式学习,让学生在完成具体项目任务的过程中,将所学知识综合运用,提高解决实际问题的能力。
3.教学评价的设想:
-采用多元化的评价方式,包括课堂问答、小组讨论表现、课后作业、项目报告等,全面评估学生的学习效果。
-设计一些简单的实际应用题,如计算某段弧的长度、给定半径和圆心角的扇形面积,让学生运用公式进行解答。
2.提高拓展题:
-布置一些综合性的题目,如计算由多个扇形或不规则图形组成的总面积,要求学生结合所学知识,分析问题并给出解题步骤。
-鼓励学生尝试运用弧长和扇形面积的知识解决生活中的实际问题,如园林设计、建筑布局等。
-探究阶段:组织学生进行小组合作,利用教具和信息技术工具,探索圆心角、半径与弧长、扇形面积的关系,引导学生发现并理解计算公式。
弧长和扇形的面积 教学设计

弧长和扇形的面积教学设计姜永娜教学目标知识与技能:1.会计算弧长及扇形的面积。
2.会计算圆锥的侧面积和全面积,并能用这些知识解决相关问题。
过程与方法:1.通过识图、阅读图形探索弧长、扇形及其组合图形面积的计算方法和解题规律。
2.在探究弧长公式和扇形面积公式的过程中,体会“从特殊到一般”的数学思想方法。
情感态度价值观:在合作交流中体验成功的快乐。
教学重难点重点:1.计算弧长和扇形面积;2.利用弧长和扇形面积公式进行计算。
难点:理解公式的推导过程教学媒体:多媒体教学过程设计一、复习引入已知⊙O半径为R,⊙O的面积S是多少?S=πR2我们在求面积时往往只需要求出圆的一部分面积,如图中阴影图形的面积.为了更好研究这样的图形引出一个概念.扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
你能举例说出生活中的扇形吗?(比如扇子。
)问题1:请同学们观察下图,指出哪部分是扇形,并说出它是由哪条弧和哪两条半径构成?问题2:请同学们判断,在同圆或等圆中,是否具有相同圆心角的扇形面积也相等呢?学生同桌讨论,做出正确判断,老师予以补充说明。
结论:在同圆或等圆中,由于相等的圆心角所对的弧相等,所以具有相等圆心角的扇形,其面积也相等。
二、做一做认识了扇形,我们下面就来一起探究一下已知⊙O半径为R,如何求圆心角n°的扇形的面积1.教师引导学生迁移推导弧长公式的方法步骤:设置问题:圆的周长是多少?1°圆心角所对弧的长是多少?90°圆心角所对弧的长是多少?n°圆心角所对弧的长是多少?学生独立思考,给出答案。
(1)圆周长C=2πR;(2)1°圆心角所对弧长=;(3)90°圆心角所对弧长=2r901r 3602ππ⋅=;(4)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;n°圆心角所对弧长=.归纳结论:若设⊙O半径为R,n°圆心角所对弧长l,则(弧长公式)2.一起探究扇形面积(教师组织学生对比研究):(1)圆面积S=πR2;(2)圆心角为1°的扇形的面积=;(3)圆心角为1°的扇形的面积=2 1r 4π(4)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;(5)圆心角为n°的扇形的面积=.归纳结论:若设⊙O半径为R,圆心角为n°的扇形的面积S扇形,则S扇形=(扇形面积公式)3.注意:(1)在应用扇形的面积公式S扇形=进行计算时,要注意公式中n的意义.n 表示1°圆心角的倍数,它是不带单位的;提出问题:扇形的面积公式与弧长公式有联系吗?(教师组织学生探讨)S扇形= 12l R想一想:这个公式与什么公式类似?(小组合作研究)与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了.这样对比,帮助学生记忆公式.实际上,把扇形的弧分得越来越小,作经过各分点的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限.要让学生在理解的基础上记住公式.三、灵活应用例如图,⊙O的半径为10cm。
弧长与扇形的面积教案

弧长与扇形的面积教案一、教学目标1. 理解弧长的概念和计算方法。
2. 掌握扇形面积的计算方法。
3. 能够应用弧长和扇形面积的知识解决实际问题。
二、教学内容1. 弧长的概念和计算方法。
2. 扇形面积的计算方法。
3. 弧长和扇形面积的应用。
三、教学过程1. 导入老师通过引入一道实际问题,如一个半径为10cm的圆的一条弧长为15cm,问这条弧长对应的圆心角是多少度,让学生思考并尝试解答。
2. 弧长的概念和计算方法(1)引导学生观察圆的弧形和其中一个弧长,进一步培养学生对弧的直观感受。
(2)让学生尝试用圆的半径和圆心角来计算弧长,通过实际测量验证计算结果的准确性。
(3)总结弧长的计算方法(弧长 = 半径×圆心角 / 360°),并让学生进行练习。
3. 扇形面积的计算方法(1)引导学生观察一个扇形和其对应的圆,进一步培养学生对扇形的直观感受。
(2)让学生尝试用圆的半径和圆心角来计算扇形的面积,通过实际测量验证计算结果的准确性。
(3)总结扇形面积的计算方法(扇形面积 = 1/2 ×半径×半径×圆心角 / 360°),并让学生进行练习。
4. 弧长和扇形面积的应用(1)导入一个实际问题:一个圆形花坛的周长为30米,花坛中心的喷泉水按每秒60毫升的速度喷出,问这个喷泉每分钟喷水多少升?(2)引导学生分析问题,并利用已学知识解答问题。
(3)通过解答问题,让学生认识到弧长和扇形面积在解决实际问题中的应用价值。
五、教学总结1. 弧长是圆的一部分长度,可以用圆的半径和圆心角来计算。
2. 扇形是圆的一部分面积,可以用圆的半径和圆心角来计算。
3. 弧长和扇形面积的计算方法是由圆的半径和圆心角决定的。
4. 弧长和扇形面积的知识在解决实际问题中有很大的应用价值。
六、教学延伸1. 可以引导学生查找更多弧长和扇形面积的实际应用例子,并进行讨论和分享。
2. 可以设计更多扩展题目和实践任务,让学生更加熟练运用弧长和扇形面积的知识。
弧长和扇形面积(教案)

教案:弧长和扇形面积教学目标:1. 理解弧长的概念及计算方法。
2. 掌握扇形面积的计算公式。
3. 能够运用弧长和扇形面积的知识解决实际问题。
教学重点:1. 弧长的计算。
2. 扇形面积的计算。
教学难点:1. 弧长的计算公式的应用。
2. 扇形面积的计算公式的应用。
教学准备:1. 课件或黑板。
2. 教学卡片。
3. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾圆的周长公式:C = 2πr。
2. 提问:如果我们知道圆的半径,如何计算圆的周长呢?二、新课:弧长(10分钟)1. 引入弧长的概念:在圆上,弧长是指连接圆上两点之间的部分的长度。
2. 解释弧长的计算方法:弧长= 圆心角/ 360°×2πr。
3. 示例:给定一个半径为5cm的圆,圆心角为90°,计算弧长。
三、练习:弧长的计算(10分钟)1. 学生独立完成练习题,老师巡回指导。
2. 选取部分学生的作业进行讲解和点评。
四、导入扇形面积的概念(5分钟)1. 引入扇形面积的概念:扇形面积是指圆心角所对应的圆弧与半径所围成的区域的面积。
2. 提问:扇形面积与圆的面积有何关系?五、新课:扇形面积的计算(10分钟)1. 解释扇形面积的计算公式:扇形面积= (圆心角/ 360°) ×πr²。
2. 示例:给定一个半径为5cm的圆,圆心角为90°,计算扇形面积。
3. 强调扇形面积与圆心角的关系:圆心角越大,扇形面积越大。
教学反思:本节课通过引入弧长和扇形面积的概念,让学生掌握了弧长和扇形面积的计算方法。
在教学过程中,通过示例和练习题的讲解,帮助学生理解和应用知识点。
在今后的教学中,可以结合实际问题,让学生更好地运用弧长和扇形面积的知识。
六、练习:弧长和扇形面积的综合应用(10分钟)1. 学生独立完成综合练习题,老师巡回指导。
2. 选取部分学生的作业进行讲解和点评。
七、课堂小结(5分钟)1. 回顾本节课所学内容:弧长的计算方法和扇形面积的计算方法。
九年级数学上册《圆的弧长扇形面积公式》教案、教学设计

在小组讨论环节,我会将学生分成若干小组,让他们围绕以下问题展开讨论:
1.弧长与圆心角、半径之间的关系是什么?
2.扇形面积与圆心角、半径之间的关系是什么?
3.如何运用弧长和扇形面积公式解决实际问题?
讨论过程中,我会巡回指导,关注学生的讨论情况,及时解答学生的疑问。讨论结束后,各小组汇报讨论成果,共同分享学习心得。
九年级数学上册《圆的弧长扇形面积公式》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握圆的弧长和扇形面积的定义,掌握它们的计算公式。
2.能够运用弧长和扇形面积公式解决实际问题,提高学生的数学应用能力。
3.熟练运用量角器、圆规等工具测量和绘制圆的弧长和扇形,培养实际操作能力。
4.掌握圆的性质及其在解决弧长和扇形问题中的应用,提高学生的逻辑思维能力。
2.弧长计算公式:在学生理解弧长的概念后,我会引导学生利用圆的周长公式,推导出弧长的计算公式。通过小组讨论和教师讲解,让学生掌握弧长计算公式。
3.扇形面积的概念:以同样的方式,引入扇形面积的概念,让学生明白扇形是圆的一部分,它与圆心角和半径有关。
4.扇形面积计算公式:引导学生通过观察和思考,发现扇形面积与圆心角和半径的关系,进而推导出扇形面积的计算公式。
(三)情感态度与价值观
1.培养学生对数学学习的兴趣和热情,激发学生的求知欲和探索精神。
2.引导学生认识到数学在生活中的广泛应用,体会数学的价值和美,增强学生的数学意识。
3.培养学生严谨、细致的学习态度,养成勤奋思考、勇于探究的良好学习习惯。
4.引导学生学会与他人合作、分享,培养团结协作、共同进步的价值观。
-例题:如果知道一个扇形的弧长和面积,你能求出扇形的半径和圆心角吗?请给出解题步骤。
九年级数学下册《弧长与扇形面积》教案、教学设计

c.注重学生的自评与互评,培养学生自我反思和评价他人的能力。
四、教学内容与过程
(一)导入新课
1.教学活动设计:通过一个生活实例引入新课,如“同学们,你们在生活中有见过或使用过扇子吗?扇子的形状和面积是如何计算的呢?”通过这个问题,引发学生对扇形面积计算的思考。
c.各组分享讨论成果,教师给予评价和指导。
(四)课堂练习
1.教学内容:设计具有代表性的练习题,巩固学生对弧长与扇形面积计算方法的掌握。
2.教学方法:采用练习法,让学生在练习中巩固新知识,提高解题能力。
3.教学步骤:
a.教师发放练习题,学生独立完成。
b.教师巡回指导,解答学生的疑问。
c.选取部分学生的作业进行展示和讲解,共同分析解题思路和技巧。
a.设计多样化的实际问题,涵盖生活、科学等领域,引导学生运用所学知识解决问题。
b.引导学生进行小组讨论,分享解题思路,培养学生的团队协作能力和交流表达能力。
c.教师适时给予指导,针对学生的薄弱环节进行针对性辅导,提高学生的解题能力。
4.教学评价设想:
a.采用过程性评价,关注学生在学习过程中的表现,如课堂参与度、小组讨论、问题解决等。
1.抽象思维能力:学生对弧长与扇形面积的理解需要从具体的图形中提炼出数学模型,这需要较强的抽象思维能力。教师应引导学生从直观的图形中抽象出数学关系,培养学生的抽象思维能力。
2.知识迁移能力:学生在学习新知识时,需要将已有知识与新知识进行联系,形成知识体系。教师应帮助学生将圆的相关知识迁移到弧长与扇形面积的计算中,提高学生的知识迁移能力。
2.实践应用题:设计一道综合性的应用题,要求学生结合实际情境,运用弧长和扇形面积的计算方法解决问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、圆的面积;
独立思考,为
回顾
ห้องสมุดไป่ตู้
本课学习做好
准备。
直观教学,引
课堂 1.动态演示弧长和扇形变化;
出课题,从而
2.把握变化过程中几个特殊的位置,对应的弧长和扇形面积
确立学习目标
导入
【课件演示,观察,结合特殊条件下的几个弧长的分析和计算,有什么 引导并调动学
发现?】逐步完成导学案:
生课堂参与的
1、已知 ⊙O 半径为 R,这个圆的周长是
360 360
360
4、继续探索:当扇形半径为 R,圆心角为 n°时,扇形面积 S 扇形与弧 长 l 之间会有什么关系吗? 【在这两个公式中,我们发现弧长和扇形面积都和圆心角 n°半径 R 有
关系,因此 l 和 S 之间也有一定的关系,∵ l n R , S = n R 2 ,
180
360
n R 2
《 24.4 弧长和扇形面积 》教学设计
一、教案背景
1、面向学生: 中学
小学
2、学科:数学(人教版新课标实验教材) 年级:九年级
3、课时:第 1 课时
二、教学目标
1、知识与技能目标:让学生通过自主探索来认识扇形,掌握弧长和扇形面积的计算公式,并学会运用弧
长和扇形面积公式解决一些实际问题。
2、数学思考目标:让学生经历弧长和扇形面积公式的推导过程,培养学生自主探索的能力,体会由一般
讨论、交流和解决问题的过程,让学生更多的展示自己,建立自信,树立正确的价值观。
三、教材分析
本节课关键是理解弧长公式和扇形面积公式。利用“动态”思想理解弧长公式和扇形面积公式推导,
让学生体验知识的形成过程。
1、重点:(1)推导弧长及扇形面积计算公式的过程。
(2)掌握弧长及扇形面积计算公式,会用公式解决问题。
解:R=40mm,n=110。
∴ 的长= n πR= 110 ×40π≈
180
180
76.8mm。
因此,管道的展直长度约为 76.8mm。
通过三道例 题教学,巩固 两个公式,并 学习规范的书 写步骤。
对课本例题 书写过程加以 改进,使学生 精准掌握例 题。
教
2、 例 2、 制造弯形管道时,经常要先按中心线计算“展直长度”,再下料试, 例题 计算下图所示的管道的展直长度 L(结果取整数)。
到特殊的数学思想。
3、解决问题目标 :在利用弧长和扇形面积公式解题中,培养学生应用知识的能力,空间想象能力和动
手画图能力。
4、情感与价值目标:通过现实生活图片的欣赏,让学生感受到美的生活离不开数学,激发学生学习数学
的兴趣;通过对弧长和扇形面积公式的自主探究,让学生获得亲自参与研究探索的情感体验;通过同桌的
2、难点:两个公式的应用。
四、教学方法
根据九年级学生的年龄特点和心理特征以及现有的知识水平,老师通过动态演示形成弧长和扇形的面
积变化,启迪学生思维,在讲解新课时我主要采用启发式教学法,先观察当半径一定时弧长的变化与哪些
因素有关,然后由特殊到一般,由具体到抽象,通过探究,当学生顺利得出 n°圆心角所对弧长公式后,
广泛练习典型 题目。
R=____。
3、已知扇形的圆心角为1500 ,弧长为 20 cm ,则扇形的面积为
__________。 本节课应该掌握: 1、弧长的计算公式。
2、扇形的面积公式。
3、弧长 l 及扇形的面积 S 之间的关系,并能已知一方求另一方。
学生总结本节 课,教师补充, 完成教学目 标,突出知识 重点和情感体 验。
,面积
积极性,在老
是
。
师的指引下,
当圆心角为 1°时,弧长是 ,扇形面积是
。
在热烈的讨论
当圆心角为 2°时,弧长是 ,扇形面积是
。
中互相启发、
当圆心角为 3°时,弧长是
,扇形面积是
。
质疑、争辨、
……
补充,自己得
当圆心角为 n°时,弧长是
;扇形面积是
。
出几个公式。
2、你能推导出半径为 R,圆心角为 n°时,弧长是多少吗?
布置 作业
第 115 页 习题 24.4
必做题 1、2 题; 选做题 3 题。
24.4 弧长和扇形面积
一、弧长公式 : l nR
板书
180
设计
二、扇形的定义:
三、扇形面积公式: S
nR 2
1 lR
360 2
分层作业,巩 固公式,掌握 教材。
条理清晰,突 出重点。便于 学生理解和掌 握。
不仅锻炼学生
【360°的圆心角对应圆周长 2πR,那么 1°的圆心角对应的弧长为 的合作学习能
2 R R ,n°的圆心角对应的弧长应为 1°的圆心角对应的弧长的
力、表达能力, 同时对知识有
1、 360 180
了深刻、全面、
教
自主 学习
n 倍,即 n R n R 。】即 l n R
正确的理解, 培养了他们抽
角
,
半径的已知量便可求,本题已满足。
解:
60
的长=
10 10
10.5
180
3
S扇形
60 102 360
100 6
52.3
课堂 小结
3、 课堂 提升
1、已知扇形的圆心角为 120°,半径为 2,则这个扇形的面积 S扇形 =____.
学生继续巩 固基础知识,
2、已知扇形的圆心角为 30°,面积为 3cm2 ,则这个扇形的半径
再利用类比方法得出 n°圆心角所对扇形面积公式。同时再启发学生用联系和发展的观点得出扇形面积的
第二公式。本课设置三个例题,重点巩固两个公式,培养和渗透学生几何建摸和几何推理应用意识,提高
解决问题的能力和树立严谨的学习态度。
五、教学过程
环节
师 生活动
设计意图
教师确立延伸
课前 1、圆的周长;
目标,让学生
合作
180 180
180
象思维能力、
学
探究 3、类似的, 你能推导出半径为 R,圆心角为 n°时,扇形面积是多少吗? 科学严谨的学
过
n R 2
【圆的面积为πR2,1°的圆心角对应的扇形面积为
,n°的圆
习态度和数学 学习的方式方
360
法。
程
心角对应的扇形面积为 n R 2 n R 2 】。即 S = n R 2
∴S l
360 n R
R 。∴ S 1 lR 】即 S 1 lR
2
2
2
180
例 1、制作弯形管道时,需要先按中心线计算“展直长度”再下料,试 计算下图中管道的展直长度,即 的长(结果精确到 0.1mm)。
分析:要求管道的展直长度,即求 的长,根根弧长公式 l= nR 可 180
径 求得 的长,其中 n 为圆心角,R 为半 。
学
讲解 解:由弧长公式,得的长
过
=500π≈1 570(mm) 因此所要求的展直长度
程
L=2×700+1 570=2 970(mm)
例 3、如图,已知扇形 AOB 的半径为 10,∠AOB=60°,求 的长(结
果精确到 0.1)和扇形 AOB 的面积(结果精确到 0.1)
分析:要求弧长和扇形面积,只要有圆心