人教版九年级数学上册教案:24.4 圆锥的侧面积

合集下载

人教版九年级上册数学学案:24.4.2圆锥的侧面积全面积计

人教版九年级上册数学学案:24.4.2圆锥的侧面积全面积计

24.4.2 圆锥的侧面积全面积计算学案 【教学目标】经历探索圆锥侧面积计算公式的过程,发展实践探索能力;并会应用圆锥的侧面积计算公式计算有关问题,训练数学应用能力. 【重点难点】1、重点:应用圆锥侧面积公式计算有关问题.2、难点:探索圆锥侧面积计算公式。

一、知识回顾:: 1.圆弧长的计算公式是 ;扇形面积计算公式有:(1) ;(2) .2.圆柱的侧面积展开图形是 ,底面半径为r ,高为h 的圆柱侧面积等于 。

二、新知探索:1. 问题:圆锥的侧面展开图是什么图形?圆锥的侧面积怎样计算?2. 忆一忆:圆锥是由一个底面和一个侧面围成的.底面是一个 ,侧面展开图是一个 .圆锥是由一个 旋转得到的.旋转轴SO 叫做圆锥的轴。

圆锥的轴通过底面圆圆心,并垂直于底面圆半径.连结圆锥的顶点和底面圆上任意一点的线SA,SB 都叫做圆锥的母线,显然,圆锥的母线长都 . 圆锥的性质:(1)圆锥的高所在的直线是圆锥的轴,它垂直于 ,经过底面的圆心;(2)圆锥的母线长都 .3.归纳填空 扇形的半径R=圆锥的 ,扇形的弧长L=底面的 。

L= =S 侧面积= = = ; S 全面积= S 侧面积+4、例题讲解 例1、圆锥的底面半径为4cm.母线长为9cm,求它的侧面积和全面积.例2、在如图所示的扇形中,半径R =10,圆心角 =1440,用这个扇形围成一个圆锥的侧面。

(1)求这个圆锥的底面半径r;(2)求这个圆锥的高(精确到0.1)五、练习巩固:题组1:.1.已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是________2.已知一个圆锥的底面半径为3cm ,高为4cm ,则这个圆锥的侧面积为_________,全面积为_______。

COB A提示:不要死记公式,做作业必须画出侧面展开图的示意图。

题组2:3.如图, 已知圆锥的高为8,底面圆的直径为12,则此圆锥的侧面积是()A.24πB.30πC.48πD.60π4.已知一个圆锥的侧面展开图是一个半径为9,圆心角为120°的扇形,则该圆锥的底面的半径等于().A.9 B.27 C.3 D.105. 如图所示,已知圆锥的母线长AB=8cm,轴截面的顶角为60°,求圆锥全面积.六、课堂小结:通过本节课的学习,你有哪些收获?七、课后作业:1.矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转一周,所得圆柱体的表面积是__________(用含π的代数式表示)2.圆锥的底面半径是2米,母线长4米,则圆锥的侧面积是平方米.3.已知一个圆锥的高为6cm,半径为8cm,则这个圆锥的母线长为_______,侧面积为_______4.如图在Rt△ABC中,△BAC=90°,AB=3,BC=5,若把Rt△ABC绕直线AC旋转一周,则所得圆锥的侧面积等于()A.6πB.9πC.12πD.15π5.若圆锥的母线长SB为5cm,高SO为3cm,(1)求其侧面展开图中扇形的面积(2)求扇形的的圆心角度数.【选做】如图所示,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从点A出发绕侧面一周,再回到点A的最短的路线长是()A.63B.332C.33D.3八、教学反思:rnB OS。

人教版九年级数学上册24.4弧长和扇形面积(第2课时》一等奖优秀教学设计

人教版九年级数学上册24.4弧长和扇形面积(第2课时》一等奖优秀教学设计

人教版义务教育课程标准实验教科书九年级上册
24.4《弧长和扇形面积(第2课时)》教学设计
——圆锥的侧面积和全面积
一、教材分析
1、地位作用:《圆锥的侧面积和全面积》是义务教育课程标准实验教科书人民教育出版九年级(上)第二十四章《圆》中第4节的第2课时,本课时是前面所学知识的继续和发展,这是一节实践探究课,主要目的是亲历圆锥的侧面积和全面积公式的推导过程。

本节课是在学生已熟知的圆的周长、面积,弧长、扇形的面积和圆柱体的侧面积的基础上推导出来的又一个与圆有关的计算公式,它不仅是几何中的基本计算,在生产生活领域中也有着很广泛的实用价值。

通过学生的实践活动,渗透了立体图形平面化的数学思维方法,进一步培养了学生的空间观念和转化思想;通过对生活中实际问题的解决,体现数学来源于生活,
又服务于生活的教育理念。

2、教学目标:1.通过实验使学生知道圆锥各部分的名称。

2.理解圆锥的侧面积展开图是扇形,并能够计算圆锥的侧面积和全面积
3、教学重、难点
教学重点:圆锥的侧面积公式的推导与应用
教学难点:综合弧长与扇形面积的计算公式计算圆锥的侧面积.
突破难点的方法:动手操作,经历探究过程,从而推导出圆锥的侧面积和全面积计算公式。

二、教学准备:课件、导学案
三、教学过程
图23.3.6
图23.3.7
活动二:归纳总结,建构知识
1.圆锥母线的概念:连接圆锥顶点和底面圆周上任意一点的
少要用多少平方厘米的纸?(结果精确到
(三)综合训练
已知圆锥的侧面积展开图是一个半径为
厘米的扇形。

求这个圆锥的侧面积、高和锥角。

人教版九年级上册数学教案:24.4.2圆锥的侧面积和全面积

人教版九年级上册数学教案:24.4.2圆锥的侧面积和全面积

杭后六中九年级数学科目讲堂教课方案课题圆锥的侧面积和全面积时间教师二次备课有关课程标准内容:1.研究圆锥的形成,认识圆锥的有关观点和有关元素。

2.理解圆锥的侧面积计算方法(公式推导过程----侧面是由一个扇形围成的)3.可以推导公式,娴熟运用公式进行计算、把曲面上的问题转变归为平面问题,培育学生的转变能力和应意图识,培育学生三维空间的想象能力。

教材内容 /学情剖析:课前布本节课主要内容是研究圆锥的形成并推导圆锥的侧面积公式和全面积公式,并能利用圆锥的侧面积公式和全面积公式解决实质问题。

这节课是学生在小学认识了圆锥的基础上和前两节课弧长和扇形面置:每个学生做一个圆积的基础上学习的锥,(侧学习目标:1.知道圆锥各部分的名称,可以计算圆锥侧面积和全面积2.掌握圆锥的侧面积和全面积的计算方法要点:圆锥与其侧面睁开图各元素之间的关系。

面和底面难点:利用圆锥的侧面积计算公式解决实质问题。

用胶布粘住)认识圆锥各部分名宋此后,称时拆京师所设开。

小学馆和武学堂中的教师称谓皆称之为“教谕”。

至教元明清之学县学一律例1、例2教课环节教课内容预设时间过循之不学生讲程变。

明朝解、辨析、设当选翰林怀疑计院的进士教师总结之师称“教习”。

导教案变到清末,式题、例 3学堂兴学生上黑起,各科板展现教师仍沿用“教习”实“教谕”在明清时还有学官一意,即主管县一级的教育生员。

而相应府和州掌管教育生员者则谓“教授”和“学正”。

“教授”“学正”和“教谕”的副手一律称“训导”。

于民间,特别是汉代此后,“校”或“学”中教授经学者也称为“经师”。

在一些特定的讲学场合,比如书院、皇室,也称教师为“院长、西席、讲席”等。

教课策略一、检查自主学习达成状况(见导教案)(3 分钟)二、研究新知1 创建情境,引入新课(出示蒙古包课件,激发学生学习兴趣)2.出示学习目标(叫 1 名学生读)(2分钟)3.研究:学生取出自制的圆锥并把它切割成扇形和圆,认识圆锥各部分名称及圆锥的侧面积和全面积的计算方法。

最新人教版初中九年级上册数学【第二十四章 24.4弧长和扇形面积—圆锥的侧面积和全面积】教学课件

最新人教版初中九年级上册数学【第二十四章 24.4弧长和扇形面积—圆锥的侧面积和全面积】教学课件

l 3 r 1
h最后2得2出
【答疑】
两个已知量不在同一个公式中
h(32)已2 知 S锥侧 3 和
建立方程组
rl
3
l 2 r 2 2
2
2
① ②
由于l和r都是正数,解得
l 3 r 1
由①得 l 3,
把 l 3 代r 入②得 3 2 r2 8
r
r
r4 8r 2 9 0
r2 9或r 2 1
A
rl r2
rB O
半径r=40
l=80
1.圆锥的底面直径是80cm,母线长80cm,
则它的高是 cm,
侧面展开图面积是
cm².
80cm
h2 l2 r2 h 40 3
S锥侧 rl S锥侧 3200
80cm
2.(课本P114例3改编)蒙古包可以近似地看作由圆锥和圆柱
组成.如果想用毛毡搭建20个底面积为4π平方米,高为3.2米,
2
A
rB
O
l弧长 2r
圆锥侧面积计算公式
S锥侧 rl
S锥侧 又∵
S扇
nl 2
360
2r = nl
180
A
n 360r l

S锥侧
nl 2
360
360 r l
l 2
360
rl
P
S扇
nl 2
360
hl
nl
180 rB O
2r
圆锥侧面积计算公式
S锥侧 rl
圆锥全面积计算公式
P
hl
S锥全 S锥侧 S锥底
外围高2.2米的蒙古包,至少需要多少平方米的毛毡?(答
案保留π)

人教版-数学-九年级上册-24.4.2 圆锥的侧面积与全面积 教案

人教版-数学-九年级上册-24.4.2 圆锥的侧面积与全面积 教案

圆锥的侧面积与全面积教学目标分析知识与技能:1.认识圆锥,了解圆锥的相关概念。

2.探索圆锥侧面积、全面积计算公式。

3.会应用公式解决有关问题。

过程与方法:通过探究、观察、分析、计算,在活动中培养学生探究问题能力,合作交流意识。

并在解决实际问题中提高他们解决问题的能力,发展学生应用知识的意识。

情感态度与价值观:引导学生对问题观察、质疑,激发他们的好奇心和求知欲,使学生在运用数学知识解决问题的活动中获得成功的体验,建立学习的自信心。

并且鼓励学生思维的多样性,发展创新意识。

重难点分析教学重点:理解圆锥的相关概念,探索圆锥的侧面积的计算公式。

教学难点:探索圆锥侧面积的计算公式。

教学模式:“十二字”教学模式教学过程(一)出示学习目标1.认识圆锥,了解圆锥的相关概念2.探索圆锥侧面积、全面积计算公式3.会应用公式解决有关问题(二)自学指导认真阅读课本112-113页(例题2以前)的内容重点解决:1. 理解圆锥母线的概念。

2.思考圆锥的侧面展开图是什么形状?应怎样计算它的面积?认真解决课本思考中的三个问题并完成填空。

(三)检查自学1.圆锥的高和母线等概念。

思考:圆锥的底面半径、高线、母线长三者之间有怎样的关系: a2=h2+r22.圆锥的侧面展开图(1)沿着圆锥的母线,把一个圆锥的侧面展开,得到一个什么图形?这个扇形的弧长与底面的周长有什么关系?(2)圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?圆锥的 ____________就是其侧面展开图扇形的弧长,圆锥的 ___________就是其侧面展开图扇形的半径。

3.圆锥的侧面积和全面积引导学生理解圆锥的侧面积计算公式的推导过程,能准确的应用公式解决问题。

(四)当堂训练A组1. 根据下列条件求值(其中r、h、a 分别是圆锥的底面半径、高线、母线长)(1)a = 2,r=1 则 h =_______(2) h =3, r=4 则 a =_______(3) a = 10, h = 8 则 r=_______2.已知圆锥的底面直径为4,母线长为6,则它的侧面积为_________.3.已知圆锥底面圆的半径为2 cm ,高为√5,则这个圆锥的侧面积为_________;全面积为_________.B组1.(立体——平面)若一个圆锥的底面圆的周长是4πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角的度数是2.(平面——立体)现有一个圆心角为90°,半径为8 cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计).该圆锥底面圆的半径为______ .C组1.已知△ABC 中,∠ACB=90°,AC=3cm,BC=4cm,将△ABC绕直角边AC旋转一周,求所得圆锥的侧面积?(五)小结谈谈本节课的收获和困惑(六)作业:114页练习题1,2。

24.4 第2课圆锥的侧面积和全面积 课件 -2024-2025学年人教版九年级数学上册

24.4  第2课圆锥的侧面积和全面积   课件   -2024-2025学年人教版九年级数学上册
圆锥的侧面积 和全面积
教学目标:
1.知道圆锥的组成,理解圆锥的高, 母线等概念。
2.理解圆锥的侧面积和全面积公式 的推导过程,会应用圆锥的侧面积和全 面积公式进行相关计算。
2024/10/24
2
一、问题情境导入
神舟十号的表面涂 了一层特殊物质, 用于保护火箭,聪 明的你会计算它的 表面积吗?
R2+H2=L2
4.圆锥的侧面展开图
圆锥的侧面展开图是一个扇形
S侧
P
L
L
r
A
O
B
1.探究圆锥侧面积的计算
S扇 = L r / 2
圆锥中弧长
半径 呢?
是什么?
弧长 半径
弧长等于圆锥底 面圆的周长
圆锥的母线
S 侧=.圆锥的全面积计算
s全=s侧+s底
课后检测 1、已知圆锥的底面直径为4,母线长为6, 则它的侧面积为_________;全面积为 _________.
(2)若用这个最大的直角扇形恰好围成一个圆锥,求这
个圆锥的底面圆的半径?
(3)能否从最大的余料③中剪出一个圆做该圆锥的底面?
请说明理由.
A


B
O
C

A
解:(1)连接BC,则BC=20,


∵∠BAC=90°,AB=AC,
∴AB=AC=10 2.
B
O
C
2
90 10 2
∴S扇形=
360
50;
9010 2
二、合作交流,探究新知
圆锥知多少 • 认识圆锥
圆锥是由一个 侧面和一个底 面围成的几何 体。
圆锥的母线:连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线 圆锥的高:连接圆锥顶点与底面圆心的线段叫做圆锥的高

(新人教)九年级数学上册教案:24.4 圆锥的侧面积

圆锥的侧面积教学目标(一)教学知识点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.(二)能力训练要求1.经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.2.了解圆锥的侧面积计算公式后,能用公式进行计算,训练学生的数学应用能力.(三)情感与价值观要求1.让学生先观察实物,再想象结果,最后经过实践得出结论,通过这一系列活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验.2.通过运用公式解决实际问题,让学生懂得数学与人类生活的密切联系,激发他们学习数学的兴趣,克服困难的决心,更好地服务于实际.教学重点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.教学难点经历探索圆锥侧面积计算公式.教学方法观察——想象——实践——总结法教具准备一个圆锥模型(纸做)投影片两张第一张:(记作§3.8A)第二张:(记作§3.8B)教学过程Ⅰ.创设问题情境,引入新课[师]大家见过圆锥吗?你能举出实例吗?[主]见过,如漏斗、蒙古包.[师]你们知道圆锥的表面是由哪些面构成的吗?请大家互相交流.[生]圆锥的表面是由一个圆面和一个曲面围成的.[师]圆锥的曲面展开图是什么形状呢?应怎样计算它的面积呢?本节课我们将解决这些问题.Ⅲ.新课讲解一、探索圆锥的侧面展开图的形状[师](向学生展示圆锥模型)请大家先观察模型,再展开想象,讨论圆锥的侧面展开图是什么形状.[生]圆锥的侧面展开图是扇形.[师]能说说理由吗?[生甲]因为数学知识是一环扣一环的,后面的知识是在前面知识的基础上学习的.上节课的内容是弧长及扇形面积,本节课的内容是圆锥的侧面积,而弧长不是面积,所以我猜想圆锥的侧面展开图应该是扇形.[师]这位同学用的虽然是猜想,但也是有一定的道理的,并不是凭空瞎想,还有其他理由吗?[生乙]我是自己实践得出结论的,我拿一个扇形的纸片卷起来,就得到了一个圆锥模型.[师]很好,究竟大家的猜想是否正确呢?下面我就给大家做个演示(把圆锥沿一母线剪开),请大家观察侧面展开图是什么形状的?[生]是扇形.[师]大家的猜想非常正确,既然已经知道侧面展开图是扇形,那么根据上节课的扇形面积公式就能计算出圆锥的侧面积,由于我们不能把所有圆锥都剖开,在展开图中的扇形的半径和圆心角与不展开图形中的哪些因素有关呢?这将是我们进一步研究的对象.二、探索圆锥的侧面积公式[师]圆锥的侧面展开图是一个扇形,如图,设圆锥的母线(generating line)长为l,底面圆的半径为r,那么这个圆锥的侧面展开图中扇形的半径即为母线长l,扇形的弧长即为底面圆的周长2πr,根据扇形面积公式可知S=12·2πr·l=πrl.因此圆锥的侧面积为S侧=πrl.圆锥的侧面积与底面积之和称为圆锥的全面积(surfacearea),全面积为S 全=πr 2+πrl .三、利用圆锥的侧面积公式进行计算. 投影片(§3.8A)圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽.已知纸帽的底面周长为58cm ,高为20cm ,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm)2分析:根据题意,要求纸帽的面积,即求圆锥的侧面积.现在已知底面圆的周长,从中可求出底面圆的半径,从而可求出扇形的弧长.在高h 、底面圆的半径r 、母线l 组成的直角三角形中,根据勾股定理求出母线l ,代入S 侧=πrl 中即可.解:设纸帽的底面半径为r cm ,母线长为l cm ,则r =582πl =2258()202+π≈22.03cm , S 圆锥侧=πrl ≈12×58×22.03=638.87cm 2. 638.87×20=12777.4cm 2. 所以,至少需要12777.4cm 2的纸. 投影片(§3.8B)如图,已知Rt △ABC 的斜边AB =13cm ,一条直角边AC =5cm ,以直线AB 为轴旋转一周得一个几何体.求这个几何体的表面积.分析:首先应了解这个几何体的形状是上下两个圆锥,共用一个底面,表面积即为两个圆锥的侧面积之和.根据S 侧=360n πR 2或S 侧=πrl 可知,用第二个公式比较好求,但是得求出底面圆的半径,因为AB 垂直于底面圆,在Rt △ABC 中,由OC 、AB =BC 、AC 可求出r ,问题就解决了.解:在Rt △ABC 中,AB =13cm ,AC =5cm , ∴BC =12cm . ∵OC ·AB =BC ·AC , ∴r =OC =.∴S 表=πr (BC +AC )=π×6013×(12+5) =102013π cm 2. Ⅲ.课堂练习 随堂练习 Ⅳ.课时小结本节课学习了如下内容:探索圆锥的侧面展开图的形状,以及面积公式,并能用公式进行计算. Ⅴ.课后作业 习题3.11 Ⅵ.活动与探究 探索圆柱的侧面展开图在生活中,我们常常遇到圆柱形的物体,如油桶、铅笔、圆形柱子等,在小学我们已知圆柱是由两个圆的底面和一个侧面围成的,底面是两个等圆,侧面是一个曲面,两个底面之间的距离是圆柱的高.圆柱也可以看作是由一个矩形旋转得到的,旋转轴叫做圆柱的轴,圆柱侧面上平行于轴的线段都叫做圆柱的母线.容易看出,圆柱的轴通过上、下底面的圆心,圆柱的母线长都相等,并等于圆柱的高,圆柱的两个底面是平行的.如图,把圆柱的侧面沿它的一条母线剪开,展在一个平面上,侧面的展开图是矩形,这个矩形的一边长等于圆柱的高,即圆柱的母线长,另一边长是底面圆的周长,所以圆柱的侧面积等于底面圆的周长乘以圆柱的高.[例1]如图(1),把一个圆柱形木块沿它的轴剖开,得矩形ABCD .已知AD =18cm ,AB =30cm ,求这个圆柱形木块的表面积(精确到1cm 2).解:如图(2),AD 是圆柱底面的直径,AB 是圆柱的母线,设圆柱的表面积为S ,则S =2S 圆+S 侧.∴S =2π(182)2+2π×182×30=162π+540π≈2204cm 2. 所以这个圆柱形木块的表面积约为2204cm 2. 板书设计§3.8 圆锥的侧面积一、1.探索圆锥的侧面展开图的形状;2.探索圆锥的侧面积公式; 3.利用圆锥的侧面积公式进行计算.二、课堂练习三、课时小结四、课后作业回顾与思考教学目标(一)教学知识点1.掌握本章的知识结构图.2.探索圆及其相关结论.3.掌握并理解垂径定理.4.认识圆心角、弧、弦之间相等关系的定理.5.掌握圆心角和圆周角的关系定理.(二)能力训练要求1.通过探索圆及其相关结论的过程,发展学生的数学思考能力.2.用折叠、旋转的方法探索圆的对称性,以及圆心角、弧、弦之间关系的定理,发展学生的动手操作能力.3.用推理证明的方法研究圆周角和圆心角的关系,发展学生的推理能力.4.让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力.(三)情感与价值观要求通过学生自己归纳总结本章内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展.教学重点掌握圆的定义,圆的对称性,垂径定理,圆心角、弧、弦之间的关系,圆心角和圆周角的关系.对这些内容不仅仅是知道结论,要注重它们的推导过程和运用.教学难点上面这些内容的推导及应用.教学方法教师引导学生自己归纳总结法.教具准备投影片三张:第一张:(记作A)第二张:(记作D第三张:(记作C)教学过程Ⅰ.回顾本章内容[师]本章的内容已全部学完,大家能总结一下我们都学过哪些内容吗?[生]首先,我们学习了圆的定义;知道圆既是轴对称图形,又是中心对称图形,并且有旋转不变性的特点;利用轴对称变换的方法探索出垂径定理及逆定理;用旋转变换的方法探索圆心角、弧、弦之间相等关系的定理;用推理证明的方法研究了圆心角和圆周角的关系;又研究了确定圆的条件;点和圆、直线和圆、圆和圆的位置关系;圆的切线的性质和判断;探究了圆弧长和扇形面积公式,圆锥的侧面积.[师]很好,大家对所学知识掌握得不错.本章的内容可归纳为三大部分,第一部分由圆引出了圆的概念、对称性,圆周角与圆心角的关系,弧长、扇形面积,圆锥的侧面积,在对称性方面又学习了垂径定理,圆心角、孤、弦之间的关系定理;第二部分讨论直线与圆的位置关系,其中包括切线的性质与判定,切线的作图;第三部分是圆和圆的位置关系.这三部分构成了全章内容,结构如下:(投影片A)Ⅱ.具体内容巩固[师]上面我们大致梳理了一下本章内容,现在我们具体地进行回顾.一、圆的有关概念及性质[生]圆是平面上到定点的距离等于定长的所有点组成的图形.定点为圆心,定长为半径.圆既是轴对称图形,又是中心对称图形,对称轴是任意一条过圆心的直线,对称中心是圆心,圆还具有旋转不变性.[师]圆的这些性质在日常生活中有哪些应用呢?你能举出例子吗?[生]车轮做成圆形的就是利用了圆的旋转不变性.车轮在平坦的地面上行驶时,它与地面线相切,当它向前滚动时,轮子的中心与地面的距离总是不变的,这个距离就是半径.把车厢装在过轮子中心的车轴上,则车辆在平坦的公路上行驶时,人坐在车厢里会感觉非常平稳.如果车轮不是圆形,坐在车上的人会觉得非常颠.二、垂径定理及其逆定理[生]垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.[师]这两个定理大家一定要弄清楚、不能混淆,所以我们应先对他们进行区分.每个定理都是一个命题,每个命题都有条件和结论.在垂径定理中,条件是:一条直径垂直于一条弦,结论是:这条直径平分这条弦,且平分弦所对的弧(有两对弧相等).在逆定理中,条件是:一条直径平分一条弦(不是直径),结论是:这条直径垂直于这条弦,并且平分弦所对的弧(也有两对弧相等).从上面的分析可知,垂径定理中的条件是逆定理中的结论,垂径定理中的一个结论是逆定理中的条件,在具体的运用中,是根据已知条件提供的信息来决定用垂径定理还是其逆定理,若已知直径垂直于弦,则用垂径定理;若已知直径平分弦,则用逆定理.下面我们就用一些具体例子来区别它们.(投影片B)1.如图(1),在⊙O中,AB、AC为互相垂直的两条相等的弦,OD⊥AB,OE⊥AC,D、E 为垂足,则四边形ADOE是正方形吗?请说明理由.2.如图(2),在⊙O中,半径为50mm,有长50mm的弦AB,C为AB的中点,则OC垂直于AB吗?OC的长度是多少?[师]在上面的两个题中,大家能分析一下应该用垂径定理呢,还是用逆定理呢? [生]在第1题中,OD 、OE 都是过圆心的,又OD ⊥AB 、OE ⊥AC ,所以已知条件是直径垂直于弦,应用垂径定理;在第2题中,C 是弦AB 的中点,因此已知条件是平分弦(不是直径)的直径,应用逆定理.[师]很好,在家能用这两个定理完成这两个题吗? [生]1.解:∵OD ⊥AB ,OE ⊥AC ,AB ⊥AC , ∴四边形ADOE 是矩形. ∵AC =AB ,∴AE =AD . ∴四边形ADOE 是正方形. 2.解:∵C 为AB 的中点, ∴OC ⊥AB , 在Rt △OAC 中,AC =12AB =25mm ,OA =50mm . ∴由勾股定理得OC =22225025253OA AC -=-=(mm). 三、圆心角、弧、弦之间关系定理 [师]大家先回忆一下本部分内容.[生]在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.[师]下面我们进行有关练习 (投影片C)1.如图在⊙O 中,弦AB 所对的劣弧为圆的13,圆的半径为2cm ,求AB 的长.[生]解:由题意可知AB 的度数为120°, ∴∠AOB =120°. 作OC ⊥AB ,垂足为C ,则 ∠AOC =60°,AC =BC . 在Rt △ABC 中,AC =OA sin60°=2×sin60°=233= ∴AB =2AC =3. 四、圆心角与圆周角的关系[生]一条弧所对的圆周角等于它所对的圆心角的一半. 在同圆或等圆中,同弧或等弧所对的圆周角相等. 直径所对的圆周角是直角,90°的圆周角所对的弦是直径. 五、弧长,扇形面积,圆锥的侧面积和全面积[师]我们经过探索,归纳出弧长、扇形面积、圆锥的侧面积公式,大家不仅要牢记公式,而且要把它的由来表述清楚,由于时间关系,我们在这里不推导公式的由来,只是让学生掌握公式并能运用.[生]弧长公式l =180n Rπ,π是圆心角,R 为半径. 扇形面积公式S =2360n R π或S =12lR .n 为圆心角,R 为扇形的半径,l 为扇形弧长.圆锥的侧面积S 侧=πrl ,其中l 为圆锥的母线长,r 为底面圆的半径.S 全=S 侧+S 底=πrl +πr 2.Ⅲ.课时小结本节课我们复习巩固了圆的概念及对称性;垂径定理及其逆定理;圆心角、弧、弦、弦心距之间的关系;圆心角和圆周角的关系;弧长、扇形面积、圆锥的侧面积和全面积.Ⅳ.课后作业复习题 A 组Ⅴ.活动与深究弓形面积如图,把扇形OAmB 的面积以及△OAB 的面积计算出来,就可以得到弓形AmB 的面积.如图(1)中,弓形AmB 的面积小于半圆的面积,这时S 弓形=S 扇形-S △OAB ;图(2)中,弓形AmB 的面积大于半圆的面积,这时S 弓形=S 扇形+S △OAB ;图(3)中,弓形AmB 的面积等于半圆的面积,这时S 弓形=12S 圆.例题:水平放着的圆柱形排水管的截面半径是0.6m ,其中水面高是0.3m ,求截面上有水的弓形的面积(精确到0.01m 2).解:如图,在⊙O 中,连接OA 、OB ,作弦AB 的垂直平分线,垂足为D ,交AB 于点C .∵OA =0.6,DC =0.3,∴OD =0.6-0.3=0.3,∠AOD =60°,AD =0..∵S 弓形ACB =S 扇形OACB -S △OAB ,∴S 扇形OACB =120360·0.62=0.12π(m 2),S △OAB =12AB ·OD =12×0.0.3=0.2)∴S 弓形ACB =0.12π-0.0.22(m 2).板书设计回顾与思考一、1.圆的有关概念及性质;2.垂径定理及其逆定理;3.圆心角、弧、弦之间关系定理;4.圆心角与圆周角的关系;5.弧长、扇形面积、圆锥的侧面积和全面积.二、课时小结三、课后作业回顾与思考(2)教学目标(一)教学知识点1.了解点与圆,直线与圆以及圆和圆的位置关系.2.了解切线的概念,切线的性质及判定.3.会过圆上一点画圆的切线.(二)能力训练要求1.通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.2.通过探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式,发展学生的探索能力.3.通过画圆的切线,训练学生的作图能力.4.通过全章内容的归纳总结,训练学生各方面的能力.(三)情感与价值观要求1.通过探索有关公式,让学生懂得数学活动充满探索与创造,感受数学的严谨性以及数学结论的确定性.2.经历观察、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.教学重点1.探索并了解点与圆、直线与圆、圆与圆的位置关系.2.探索切线的性质;能判断一条直线是否为圆的切线;会过圆上一点画圆的切线.教学难点探索各种位置关系及切线的性质.教学方法学生自己交流总结法.教具准备投影片五张:第一张:(记作A)第二张:(记作B)第三张:(记作C)第四张:(记作D)第五张:(记作E)教学过程Ⅰ.回顾本章内容[师]上节课我们对本章的所有知识进行了回顾,并讨论了这些知识间的关系,绘制了本章知识结构图,还对一部分内容进行了回顾,本节课继续进行有关知识的巩固.Ⅱ.具体内容巩固一、确定圆的条件[师]作圆的问题实质上就是圆心和半径的问题,确定了圆心和半径,圆就随之确定.我们在探索这一问题时,与作直线类比,研究了经过一个点、两个点、三个点可以作几个圆,圆心的分布和半径的大小有什么特点.下面请大家自己总结.[生]经过一个点可以作无数个圆.因为以这个点以外的任意一点为圆心,以这两点所连的线段为半径就可以作一个圆.由于圆心是任意的,因此这样的圆有无数个.经过两点也可以作无数个圆.设这两点为A、B,经过A、B两点的圆,其圆心到A、B两点的距离一定相等,所以圆心应在线段AB的垂直平分线上,在AB的垂直平分线上任意取一点为圆心,这一点到A或B 的距离为半径都可以作一个经过A、B两点的圆.因此这样的圆也有无数个.经过在同一直线上的三点不能作圆.经过不在同一直线上的三点只能作一个圆.要作一个圆经过A、B、C三点,就要确定一个点作为圆心,使它到三点A、B、C的距离相等,到A、B两点距离相等的点在线段AB 的垂直平分线上,到B、C两点距离相等的点应在线段B、C的垂直平分线上,那么同时满足到A、B、C三点距离相等的点应既在AB的垂直平分线上,又在BC的垂直平分线上,既两条直线的交点,因为交点只有一个,即确定了圆心.这个交点到A点的距离为半径,所以这样的圆只能作出一个.[师]经过不在同一条直线上的四个点A、B、C、D能确定一个圆吗?[生]不一定,过不在同一条直线上的三点,我们可以确定一个圆,如果另外一个点到圆心的距离等于半径,则说明四个点在同一个圆上,如果另外一个点到圆心的距离不等于半径,说明四个点不在同一个圆上.例题讲解(投影片A)矩形的四个顶点在以对角线的交点为圆心的同一个圆上吗?为什么?[师]请大家互相交流.[生]解:如图,矩形ABCD的对角线AC和BD相交于点O.∵四边形ABCD为矩形,∴OA=OC=OB=OD.∴A、B、C、D四点到定点O的距离都等于矩形对角线的一半.∴A、B、C、D四点在以O为圆心,OA为半径的圆上.二、三种位置关系[师]我们在本章学习了三种位置关系,即点和圆的位置关系;直线和圆的位置关系;圆和圆的位置关系.下面我们逐一来回顾.1.点和圆的位置关系[生]点和圆的位置关系有三种,即点在圆外;点在圆上;点在圆内.判断一个点是在圆的什么部位,就是看这一点与圆心的距离和半径的大小关系,如果这个距离大于半径,说明这个点在圆外;如果这个距离等于半径,说明这个点在圆上;如果这个距离小于半径,说明这个点在圆内.[师]总结得不错,下面看具体的例子.(投影片B)1.⊙O 的半径r =5cm ,圆心O 到直线l 的 距离d =OD =3 m .在直线l 上有P 、Q 、R 三点,且有PD =4cm ,QD >4cm ,RD <4cm ,P 、Q 、R 三点对于⊙O 的位置各是怎样的?2.菱形各边的中点在同一个圆上吗?分析:要判断某些点是否在圆上,只要看这些点到圆心的距离是否等于半径.[生]1.解:如图(1),在Rt △OPD 中,∵OD =3,PD =4,∴OP 222234OD PD ++5=r .所以点P 在圆上.同理可知OR 22OD DR +5,OQ 22OD DQ +5.所以点R 在圆内,点Q 在圆外.2.如图(2),菱形ABCD 中,对角线AC 和BD 相交于点O ,E 、F 、G 、H 分别是各边的中点.因为菱形的对角线互相垂直,所以△AOB 、△BOC 、△COD 、△DOA 都是直角三角形,又由于E 、F 、G 、H 分别是各直角三角形斜边上的中点,所以OE 、OF 、OG 、OH 分别是各直角三角形斜边上的中线,因此有OE =12AB ,OF =12BC ,OG =12CD ,OH =12AD ,而AB =BC =CD =DA .所以OE =OF =OG =OH .即各中点E 、F 、G 、H 到对角线的交点O 的距离相等,所以菱形各边的中点在同一个圆上.2.直线和圆的位置关系[生]直线和圆的位置关系也有三种,即相离、相切、相交,当直线和圆有两个公共点时,此时直线与圆相交;当直线和圆有且只有一个公共点时,此时直线和圆相切;当直线和圆没有公共点时,此时直线和圆相离.[师]总结得不错,判断一条直线和圆的位置关系有哪些方法呢?[生]有两种方法,一种就是从公共点的个数来判断,上面已知讨论过了,另一种是比较圆心到直线的距离d与半径的大小.当d<r时,直线和圆相交;当d=r时,直线和圆相切;当d>r时,直线和圆相离.[师]很好,下面我们做一个练习.(投影片C)如图,点A的坐标是(-4,3),以点A为圆心,4为半径作圆,则⊙A与x轴、y轴、原点有怎样的位置关系?分析:因为x轴、y轴是直线,所以要判断⊙A与x轴、y轴的位置关系,即是判断直线与圆的位置关系,根据条件需用圆心A到直线的距离d与半径r比较.O是点,⊙A与原点即是求点和圆的位置关系,通过求OA与r作比较即可.[生]解:∵A点的坐标是(-4,3),∴A点到x轴、y轴的距离分别是3和4.又因为⊙A的半径为4,∴A点到x轴的距离小于半径,到y轴的距离等于半径.∴⊙A与x轴、y轴的位置关系分别为相交、相切.由勾股定理可求出OA的距离等于5,因为OA>4,所以点O在圆外.[师]上面我们讨论了直线和圆的三种位置关系,下面我们要对相切这种位置关系进行深层次的研究,即切线的性质和判定.[生]切线的性质是:圆的切线垂直于过切点的直径.切线的判定是:经过直径的一端,并且垂直于这条直径的直线是圆的切线.[师]下面我们看它们的应用.(投影片D)1.如图(1),在Rt △ABC 中,∠C =90°,AC =12,BC =9,D 是AB 上一点,以BD 为直径的⊙O 切AC 于点E ,求AD 的长.2.如图(2),AB 是⊙O 的直径,C 是⊙O 上的一点,∠CAE =∠B ,你认为AE 与⊙O 相切吗?为什么?分析:1.由⊙O 与AC 相切可知OE ⊥AC ,又∠C =90°,所以△AOE ∽△ABC ,则对应边成比例,OA OE BA BC=.求出半径和OA 后,由OA -OD =AD ,就求出了AD . 2.根据切线的判定,要求AE 与⊙O 相切,需求∠BAE =90°,由AB 为⊙O 的直径得∠ACB =90°,则∠BAC +∠B =90°,所以∠CAE +∠BAC =90°,即∠BAE =90°.[师]请大家按照我们刚才的分析写出步骤.[生]1.解:∵∠C =90°,AC =12,BC =9,∴由勾股定理得AB =15.∵⊙O 切AC 于点E ,连接OE ,∴OE ⊥AC .∴OE ∥BC .∴△OAE ∽△BAC . ∴OA OE AB BC =,即AB OE OE AB BC-=. ∴15159OE OE -=.∴OE =458∴AD =AB -2OD =AB -2OE =15-458×2=154. 2.解:∵AB 是⊙O 的直径,∴∠ACB =90°.∴∠CAB +∠B =90°.∴∠CAE =∠B ,∴∠CAB +∠CAE =90°,即BA⊥AE.∵BA为⊙O的直径,∴AE与⊙O相切.3.圆和圆的位置关系[师]还是请大家先总结内容,再进行练习.[生]圆和圆的位置关系有三大类,即相离、相切、相交,其中相离包括外离和内含,相切包括外切和内切,因此也可以说圆和圆的位置关系有五种,即外离、外切、相交、内切、内含.[师]那么应根据什么条件来判断它们之间的关系呢?[生]判断圆和圆的位置关系;是根据公共点的个数以及一个圆上的点在另一个圆的内部还是外部来判断.当两个圆没有公共点时有两种情况,即外离和内含两种位置关系.当每个圆上的点都在另一个圆的外部时是外离;当其中一个圆上的点都在另一个圆的内部时是内含.当两个圆有唯一公共点时,有外切和内切两种位置关系,当除公共点外,每个圆上的点都在另一个圆的外部时是外切;当除公共点外,其中一个圆上的点都在另一个圆的内部时是内切.两个圆有两个公共点时,一个圆上的点有的在另一个圆的内部,有的在另一个圆的外部时是相交.两圆相交只要有两个公共点就可判定它们的位置关系是相交.[师]只有这一种判定方法吗?[生]还有用圆心距d和两圆的半径R、r之间的关系能判断外切和内切两种位置关系,当d=R+r时是外切,当d=R-r(R>r)时是内切.[师]下面我们还可以用d与R,r的关系来讨论出另外三种两圆的位置关系,大家分别画出外离、内含和相交这三种位置关系.探索它们之间的关系,它们的关系可能是存在相等关系,也有可能是存在不等关系.(让学生探索)大家得出结论了吗?是不是这样的.当d>R+r时,两圆外离;当R-r<d<R+r时,两圆相交;当d<R-r(R>r)时,两圆内含.(投影片E)设⊙O1和⊙O2的半径分别为R、r,圆心距为d,在下列情况下,⊙O1和⊙O2的位置关系怎样?①R=6cm,r=3cm,d=4cm;②R=6cm,r=3cm,d=0;③R=3cm,r=7cm,d=4cm;④R=1cm,r=6cm,d=7cm;⑤R=6cm,r=3cm,d=10cm;⑥R=5cm,r=3cm,d=3cm;⑦R=3cm,r=5cm,d=1cm.[生](1)∵R-r=3cm<4cm<R+r=9cm,∴⊙O1与⊙O2的位置关系是相交;(2)∵d<R-r,∴两圆的位置关系是内含;(3)∵d=r-R,∴两圆的位置关系是内切;(4)∵d=R+r,∴两圆的位置关系是外切;(5)∵d>R+r,∴两圆的位置关系是外离;(6)∵R-r<d<R+r,∴两圆的位置关系是相交;(7)∵d<r-R,∴两圆的位置关系是内含.三、有关外接圆和内切圆的定义及画法[生]过不在同一条直线上的三个点可以确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心叫三角形的外心,它是三角形三边垂直平分线的交点.因为画圆的关键是确定圆心和半径,所以作三角形的外接圆时,只要找三边垂直平分线的交点,这就是圆心,以这点到三角形任一顶点间的距离为半径就可作出三角形的外接圆.和三角形三边都相切的圆;叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫三角形的内心.因此,作三角形的内切圆时,只要作两条角平分线就找到了圆心,以这点与任一边之间的距离为半径,就可作出三角形的内切圆.Ⅲ.课堂练习1.画三个半径分别为2cm、2.5cm、4cm的圆,使它他们两两外切.2.两个同心圆中,大圆的弦AB和AC分别和小圆相切于点D和E,则DE与BC的位置关系怎样?DE与BC之间有怎样的数量关系?(DE 12 BC)Ⅳ.课时小结。

人教版数学九年级上册24.4《圆锥的侧面积》说课稿

人教版数学九年级上册24.4《圆锥的侧面积》说课稿一. 教材分析人教版数学九年级上册第24章《圆锥》是初中数学的重要内容,为学生提供了研究空间几何图形的基础。

24.4节《圆锥的侧面积》是在学生已经掌握了圆锥的定义、特性以及底面圆的周长和面积的基础上进行讲解的。

本节课主要让学生了解圆锥的侧面积的概念,学习计算圆锥侧面积的方法,并能够运用这一知识解决实际问题。

教材通过实例引入圆锥侧面积的计算公式,引导学生探究、发现并证明这一公式,从而培养学生解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于圆锥的基本概念和特性有一定的了解。

但学生在学习圆锥的侧面积时,可能会遇到将圆锥侧面展开成扇形和圆环的困难,因此需要教师在教学过程中进行引导和帮助。

三. 说教学目标1.知识与技能目标:让学生理解圆锥侧面积的概念,掌握计算圆锥侧面积的方法,并能够运用这一知识解决实际问题。

2.过程与方法目标:通过观察、操作、探究等活动,培养学生空间想象能力、逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。

四. 说教学重难点1.重点:圆锥侧面积的概念及其计算方法。

2.难点:圆锥侧面展开成扇形和圆环的理解,以及如何运用圆锥侧面积的知识解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和探究发现法,引导学生主动参与、积极思考。

2.教学手段:利用多媒体课件、实物模型、圆锥侧面展开图等教具,帮助学生直观地理解圆锥侧面积的概念和计算方法。

六. 说教学过程1.导入新课:通过一个生活中的实例,如制作圆锥形风筝,引出圆锥侧面积的概念。

2.探究圆锥侧面积的计算方法:让学生分组讨论,每组尝试用不同的方法计算圆锥侧面积,最后汇报交流。

3.讲解与演示:教师讲解圆锥侧面展开成扇形和圆环的过程,并用多媒体课件展示,帮助学生直观地理解。

人教版数学九年级上册24.4《圆锥的侧面积》教学设计

人教版数学九年级上册24.4《圆锥的侧面积》教学设计一. 教材分析《圆锥的侧面积》是人教版数学九年级上册第24章《圆锥》的一部分,本节内容是在学生已经掌握了圆锥的基本概念、性质以及圆锥的体积计算的基础上进行学习的。

本节课的主要内容是引导学生探究圆锥的侧面积的计算方法,并能够运用所学知识解决实际问题。

教材通过实例和活动,让学生经历探究过程,培养学生的空间想象能力和数学思维能力。

二. 学情分析九年级的学生已经具备了一定的空间想象能力和数学思维能力,他们对圆锥的基本概念和性质有一定的了解。

但是,对于圆锥的侧面积的计算方法,他们可能还比较陌生。

因此,在教学过程中,教师需要通过实例和活动,引导学生理解和掌握圆锥侧面积的计算方法。

三. 教学目标1.理解圆锥侧面积的概念,掌握圆锥侧面积的计算方法。

2.能够运用圆锥侧面积的知识解决实际问题。

3.培养学生的空间想象能力和数学思维能力。

四. 教学重难点1.圆锥侧面积的概念。

2.圆锥侧面积的计算方法。

五. 教学方法1.采用问题驱动的教学方法,通过实例和活动,引导学生探究圆锥侧面积的计算方法。

2.利用多媒体辅助教学,展示圆锥的形状和性质,帮助学生更好地理解和掌握知识。

3.采用小组合作学习的方式,让学生在探究过程中相互交流、相互学习。

六. 教学准备1.多媒体教学设备。

2.圆锥模型。

3.相关教学PPT。

七. 教学过程1.导入(5分钟)教师通过展示圆锥模型,引导学生回顾圆锥的基本概念和性质,为新课的学习做好铺垫。

2.呈现(10分钟)教师通过PPT展示圆锥侧面积的实例,引导学生观察和思考,让学生初步了解圆锥侧面积的概念。

3.操练(15分钟)教师学生进行小组合作学习,让学生通过实际操作,探究圆锥侧面积的计算方法。

教师巡回指导,解答学生的疑问。

4.巩固(5分钟)教师通过PPT展示一些关于圆锥侧面积的计算题目,让学生独立完成,检验学生对知识的掌握情况。

5.拓展(5分钟)教师通过PPT展示一些实际问题,让学生运用圆锥侧面积的知识进行解决,提高学生的应用能力。

九年级数学上册24.4.2圆锥的侧面积和全面积教案(新版)新人教版

24.4.2圆锥的侧面积和全面积【教学目标】1.知识目标(1)知道圆锥各部分的名称(2)理解圆锥的侧面积展开图是扇形,并能够计算圆锥的侧面积和全面积.2.能力目标通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题.3.情感目标教给学生立体图形与平面图形的思维转换,讲清扇形各元素与圆锥各元素之间的关系.【重点难点】1.圆锥的侧面积公式的推导与应用.2.综合弧长与扇形面积的计算公式计算圆锥的侧面积.【教学过程】一.新课导入观察自己制作的圆锥.在小学大家已学过圆椎,在生活中我们也常常遇到圆椎形的物体,涉及到圆椎形物体的侧面积和全面积的计算问题如何计算呢?这就是今天要学的圆椎的侧面展开图研究的内容。

(幻灯展示生活中常遇的圆椎形物体,如:冰激凌筒、烟囱顶、等),前面展示的物体都是圆椎.在小学,大家已学过圆椎,哪位同学能说出圆椎有哪些特征?(安排举手的学生回答:圆柱的底面是圆面,侧面是曲面.)二.新课展开、重难点突破1、圆锥的基本概念在右图的圆锥中,连结圆锥的顶点S和底面圆上任意一点的线段SA、SA1……叫做圆锥的母线,连接顶点S与底面圆的圆心O的线段叫做圆锥的高。

2、圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系右图中,将圆锥的侧面沿母线l剪开,展开成平面图形,可以得到一个扇形,设圆锥的底面半径为r,这个扇形的半径等于什么?扇形的弧长等于什么?3、圆锥侧面积计算公式从右图中可以看出,圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长,这样,S圆锥侧=S扇形=·2πr · l = πrl4、圆锥全面积计算公式S圆锥全=S圆锥侧+S圆锥底面= πr l +πr 2=πr(l +r)例1、一个圆锥形零件的母线长为a,底面的半径为r,求这个圆锥形零件的侧面积和全面积.解圆锥的侧面展开后是一个扇形,该扇形的半径为a,扇形的弧长为2πr,所以S侧=×2πr×a=πra;S底=πr2;S=πra+πr2.答:这个圆锥形零件的侧面积为πra,全面积为πra+πr2例2 在右图中的扇形中,半径R=10,圆心角θ =144°,用这个扇形围成一个圆锥的侧面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥的侧面积教学目标(一)教学知识点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.(二)能力训练要求1.经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.2.了解圆锥的侧面积计算公式后,能用公式进行计算,训练学生的数学应用能力.(三)情感与价值观要求1.让学生先观察实物,再想象结果,最后经过实践得出结论,通过这一系列活动,培养学生的观察、想象、实践能力,同时训练他们的语言表达能力,使他们获得学习数学的经验,感受成功的体验.2.通过运用公式解决实际问题,让学生懂得数学与人类生活的密切联系,激发他们学习数学的兴趣,克服困难的决心,更好地服务于实际.教学重点1.经历探索圆锥侧面积计算公式的过程.2.了解圆锥的侧面积计算公式,并会应用公式解决问题.教学难点经历探索圆锥侧面积计算公式.教学方法观察——想象——实践——总结法教具准备一个圆锥模型(纸做)投影片两张第一张:(记作§3.8A)第二张:(记作§3.8B)教学过程Ⅰ.创设问题情境,引入新课[师]大家见过圆锥吗?你能举出实例吗?[主]见过,如漏斗、蒙古包.[师]你们知道圆锥的表面是由哪些面构成的吗?请大家互相交流.[生]圆锥的表面是由一个圆面和一个曲面围成的.[师]圆锥的曲面展开图是什么形状呢?应怎样计算它的面积呢?本节课我们将解决这些问题.Ⅲ.新课讲解一、探索圆锥的侧面展开图的形状[师](向学生展示圆锥模型)请大家先观察模型,再展开想象,讨论圆锥的侧面展开图是什么形状.[生]圆锥的侧面展开图是扇形.[师]能说说理由吗?[生甲]因为数学知识是一环扣一环的,后面的知识是在前面知识的基础上学习的.上节课的内容是弧长及扇形面积,本节课的内容是圆锥的侧面积,而弧长不是面积,所以我猜想圆锥的侧面展开图应该是扇形.[师]这位同学用的虽然是猜想,但也是有一定的道理的,并不是凭空瞎想,还有其他理由吗?[生乙]我是自己实践得出结论的,我拿一个扇形的纸片卷起来,就得到了一个圆锥模型.[师]很好,究竟大家的猜想是否正确呢?下面我就给大家做个演示(把圆锥沿一母线剪开),请大家观察侧面展开图是什么形状的?[生]是扇形.[师]大家的猜想非常正确,既然已经知道侧面展开图是扇形,那么根据上节课的扇形面积公式就能计算出圆锥的侧面积,由于我们不能把所有圆锥都剖开,在展开图中的扇形的半径和圆心角与不展开图形中的哪些因素有关呢?这将是我们进一步研究的对象.二、探索圆锥的侧面积公式[师]圆锥的侧面展开图是一个扇形,如图,设圆锥的母线(generating line)长为l,底面圆的半径为r,那么这个圆锥的侧面展开图中扇形的半径即为母线长l,扇形的弧长即为底面圆的周长2πr,根据扇形面积公式可知S=12·2πr·l=πrl.因此圆锥的侧面积为S侧=πrl.圆锥的侧面积与底面积之和称为圆锥的全面积(surfacearea),全面积为S全=πr2+πrl.三、利用圆锥的侧面积公式进行计算.投影片(§3.8A)圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽.已知纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm)2分析:根据题意,要求纸帽的面积,即求圆锥的侧面积.现在已知底面圆的周长,从中可求出底面圆的半径,从而可求出扇形的弧长.在高h、底面圆的半径r、母线l组成的直角三角形中,根据勾股定理求出母线l,代入S侧=πrl中即可.解:设纸帽的底面半径为r cm ,母线长为l cm ,则r =582πl =2258()202+π≈22.03cm , S 圆锥侧=πrl ≈12×58×22.03=638.87cm 2. 638.87×20=12777.4cm 2. 所以,至少需要12777.4cm 2的纸. 投影片(§3.8B)如图,已知Rt △ABC 的斜边AB =13cm ,一条直角边AC =5cm ,以直线AB 为轴旋转一周得一个几何体.求这个几何体的表面积.分析:首先应了解这个几何体的形状是上下两个圆锥,共用一个底面,表面积即为两个圆锥的侧面积之和.根据S 侧=360n πR 2或S 侧=πrl 可知,用第二个公式比较好求,但是得求出底面圆的半径,因为AB 垂直于底面圆,在Rt △ABC 中,由OC 、AB =BC 、AC 可求出r ,问题就解决了.解:在Rt △ABC 中,AB =13cm ,AC =5cm , ∴BC =12cm . ∵OC ·AB =BC ·AC , ∴r =OC =.∴S 表=πr (BC +AC )=π×6013×(12+5)=102013π cm2.Ⅲ.课堂练习随堂练习Ⅳ.课时小结本节课学习了如下内容:探索圆锥的侧面展开图的形状,以及面积公式,并能用公式进行计算.Ⅴ.课后作业习题3.11Ⅵ.活动与探究探索圆柱的侧面展开图在生活中,我们常常遇到圆柱形的物体,如油桶、铅笔、圆形柱子等,在小学我们已知圆柱是由两个圆的底面和一个侧面围成的,底面是两个等圆,侧面是一个曲面,两个底面之间的距离是圆柱的高.圆柱也可以看作是由一个矩形旋转得到的,旋转轴叫做圆柱的轴,圆柱侧面上平行于轴的线段都叫做圆柱的母线.容易看出,圆柱的轴通过上、下底面的圆心,圆柱的母线长都相等,并等于圆柱的高,圆柱的两个底面是平行的.如图,把圆柱的侧面沿它的一条母线剪开,展在一个平面上,侧面的展开图是矩形,这个矩形的一边长等于圆柱的高,即圆柱的母线长,另一边长是底面圆的周长,所以圆柱的侧面积等于底面圆的周长乘以圆柱的高.[例1]如图(1),把一个圆柱形木块沿它的轴剖开,得矩形ABCD.已知AD=18cm,AB =30cm,求这个圆柱形木块的表面积(精确到1cm2).解:如图(2),AD 是圆柱底面的直径,AB 是圆柱的母线,设圆柱的表面积为S ,则S =2S 圆+S 侧.∴S =2π(182)2+2π×182×30=162π+540π≈2204cm 2. 所以这个圆柱形木块的表面积约为2204cm 2. 板书设计§3.8 圆锥的侧面积一、1.探索圆锥的侧面展开图的形状;2.探索圆锥的侧面积公式; 3.利用圆锥的侧面积公式进行计算. 二、课堂练习 三、课时小结 四、课后作业回顾与思考教学目标 (一)教学知识点1.掌握本章的知识结构图. 2.探索圆及其相关结论. 3.掌握并理解垂径定理.4.认识圆心角、弧、弦之间相等关系的定理.5.掌握圆心角和圆周角的关系定理.(二)能力训练要求1.通过探索圆及其相关结论的过程,发展学生的数学思考能力.2.用折叠、旋转的方法探索圆的对称性,以及圆心角、弧、弦之间关系的定理,发展学生的动手操作能力.3.用推理证明的方法研究圆周角和圆心角的关系,发展学生的推理能力.4.让学生自己总结交流所学内容,发展学生的语言表达能力和合作交流能力.(三)情感与价值观要求通过学生自己归纳总结本章内容,使他们在动手操作方面,探索研究方面,语言表达方面,分类讨论、归纳等方面都有所发展.教学重点掌握圆的定义,圆的对称性,垂径定理,圆心角、弧、弦之间的关系,圆心角和圆周角的关系.对这些内容不仅仅是知道结论,要注重它们的推导过程和运用.教学难点上面这些内容的推导及应用.教学方法教师引导学生自己归纳总结法.教具准备投影片三张:第一张:(记作A)第二张:(记作D第三张:(记作C)教学过程Ⅰ.回顾本章内容[师]本章的内容已全部学完,大家能总结一下我们都学过哪些内容吗?[生]首先,我们学习了圆的定义;知道圆既是轴对称图形,又是中心对称图形,并且有旋转不变性的特点;利用轴对称变换的方法探索出垂径定理及逆定理;用旋转变换的方法探索圆心角、弧、弦之间相等关系的定理;用推理证明的方法研究了圆心角和圆周角的关系;又研究了确定圆的条件;点和圆、直线和圆、圆和圆的位置关系;圆的切线的性质和判断;探究了圆弧长和扇形面积公式,圆锥的侧面积.[师]很好,大家对所学知识掌握得不错.本章的内容可归纳为三大部分,第一部分由圆引出了圆的概念、对称性,圆周角与圆心角的关系,弧长、扇形面积,圆锥的侧面积,在对称性方面又学习了垂径定理,圆心角、孤、弦之间的关系定理;第二部分讨论直线与圆的位置关系,其中包括切线的性质与判定,切线的作图;第三部分是圆和圆的位置关系.这三部分构成了全章内容,结构如下:(投影片A)Ⅱ.具体内容巩固[师]上面我们大致梳理了一下本章内容,现在我们具体地进行回顾.一、圆的有关概念及性质[生]圆是平面上到定点的距离等于定长的所有点组成的图形.定点为圆心,定长为半径.圆既是轴对称图形,又是中心对称图形,对称轴是任意一条过圆心的直线,对称中心是圆心,圆还具有旋转不变性.[师]圆的这些性质在日常生活中有哪些应用呢?你能举出例子吗?[生]车轮做成圆形的就是利用了圆的旋转不变性.车轮在平坦的地面上行驶时,它与地面线相切,当它向前滚动时,轮子的中心与地面的距离总是不变的,这个距离就是半径.把车厢装在过轮子中心的车轴上,则车辆在平坦的公路上行驶时,人坐在车厢里会感觉非常平稳.如果车轮不是圆形,坐在车上的人会觉得非常颠.二、垂径定理及其逆定理[生]垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.[师]这两个定理大家一定要弄清楚、不能混淆,所以我们应先对他们进行区分.每个定理都是一个命题,每个命题都有条件和结论.在垂径定理中,条件是:一条直径垂直于一条弦,结论是:这条直径平分这条弦,且平分弦所对的弧(有两对弧相等).在逆定理中,条件是:一条直径平分一条弦(不是直径),结论是:这条直径垂直于这条弦,并且平分弦所对的弧(也有两对弧相等).从上面的分析可知,垂径定理中的条件是逆定理中的结论,垂径定理中的一个结论是逆定理中的条件,在具体的运用中,是根据已知条件提供的信息来决定用垂径定理还是其逆定理,若已知直径垂直于弦,则用垂径定理;若已知直径平分弦,则用逆定理.下面我们就用一些具体例子来区别它们.(投影片B)1.如图(1),在⊙O中,AB、AC为互相垂直的两条相等的弦,OD⊥AB,OE⊥AC,D、E 为垂足,则四边形ADOE是正方形吗?请说明理由.2.如图(2),在⊙O中,半径为50mm,有长50mm的弦AB,C为AB的中点,则OC垂直于AB吗?OC的长度是多少?[师]在上面的两个题中,大家能分析一下应该用垂径定理呢,还是用逆定理呢?[生]在第1题中,OD、OE都是过圆心的,又OD⊥AB、OE⊥AC,所以已知条件是直径垂直于弦,应用垂径定理;在第2题中,C是弦AB的中点,因此已知条件是平分弦(不是直径)的直径,应用逆定理.[师]很好,在家能用这两个定理完成这两个题吗?[生]1.解:∵OD⊥AB,OE⊥AC,AB⊥AC,∴四边形ADOE是矩形.∵AC=AB,∴AE=AD.∴四边形ADOE是正方形.2.解:∵C为AB的中点,∴OC⊥AB,在Rt △OAC 中,AC =12AB =25mm ,OA =50mm . ∴由勾股定理得OC =22225025253OA AC -=-=(mm). 三、圆心角、弧、弦之间关系定理 [师]大家先回忆一下本部分内容.[生]在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.[师]下面我们进行有关练习 (投影片C)1.如图在⊙O 中,弦AB 所对的劣弧为圆的13,圆的半径为2cm ,求AB 的长.[生]解:由题意可知AB 的度数为120°, ∴∠AOB =120°. 作OC ⊥AB ,垂足为C ,则 ∠AOC =60°,AC =BC . 在Rt △ABC 中,AC =OA sin60°=2×sin60°=2×333= ∴AB =2AC =3. 四、圆心角与圆周角的关系[生]一条弧所对的圆周角等于它所对的圆心角的一半. 在同圆或等圆中,同弧或等弧所对的圆周角相等. 直径所对的圆周角是直角,90°的圆周角所对的弦是直径. 五、弧长,扇形面积,圆锥的侧面积和全面积[师]我们经过探索,归纳出弧长、扇形面积、圆锥的侧面积公式,大家不仅要牢记公式,而且要把它的由来表述清楚,由于时间关系,我们在这里不推导公式的由来,只是让学生掌握公式并能运用.[生]弧长公式l =180n R π,π是圆心角,R 为半径. 扇形面积公式S =2360n R π或S =12lR .n 为圆心角,R 为扇形的半径,l 为扇形弧长. 圆锥的侧面积S 侧=πrl ,其中l 为圆锥的母线长,r 为底面圆的半径.S 全=S 侧+S 底=πrl +πr 2.Ⅲ.课时小结本节课我们复习巩固了圆的概念及对称性;垂径定理及其逆定理;圆心角、弧、弦、弦心距之间的关系;圆心角和圆周角的关系;弧长、扇形面积、圆锥的侧面积和全面积.Ⅳ.课后作业复习题 A 组Ⅴ.活动与深究弓形面积如图,把扇形OAmB 的面积以及△OAB 的面积计算出来,就可以得到弓形AmB 的面积.如图(1)中,弓形AmB 的面积小于半圆的面积,这时S 弓形=S 扇形-S △OAB ;图(2)中,弓形AmB 的面积大于半圆的面积,这时S 弓形=S 扇形+S △OAB ;图(3)中,弓形AmB 的面积等于半圆的面积,这时S 弓形=12S 圆.例题:水平放着的圆柱形排水管的截面半径是0.6m ,其中水面高是0.3m ,求截面上有水的弓形的面积(精确到0.01m 2).解:如图,在⊙O 中,连接OA 、OB ,作弦AB 的垂直平分线,垂足为D ,交AB 于点C .∵OA =0.6,DC =0.3,∴OD =0.6-0.3=0.3,∠AOD =60°,AD =0.33. ∵S 弓形ACB =S 扇形OACB -S △OAB ,∴S 扇形OACB =120360·0.62=0.12π(m 2), S △OAB =12AB ·OD =12×0.63×0.3=0.093(m 2) ∴S 弓形ACB =0.12π-0.093≈0.22(m 2). 板书设计回顾与思考一、1.圆的有关概念及性质;2.垂径定理及其逆定理;3.圆心角、弧、弦之间关系定理;4.圆心角与圆周角的关系;5.弧长、扇形面积、圆锥的侧面积和全面积.二、课时小结三、课后作业回顾与思考(2)教学目标(一)教学知识点1.了解点与圆,直线与圆以及圆和圆的位置关系.2.了解切线的概念,切线的性质及判定.3.会过圆上一点画圆的切线.(二)能力训练要求1.通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.2.通过探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式,发展学生的探索能力.3.通过画圆的切线,训练学生的作图能力.4.通过全章内容的归纳总结,训练学生各方面的能力.(三)情感与价值观要求1.通过探索有关公式,让学生懂得数学活动充满探索与创造,感受数学的严谨性以及数学结论的确定性.2.经历观察、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.教学重点1.探索并了解点与圆、直线与圆、圆与圆的位置关系.2.探索切线的性质;能判断一条直线是否为圆的切线;会过圆上一点画圆的切线.教学难点探索各种位置关系及切线的性质.教学方法学生自己交流总结法.教具准备投影片五张:第一张:(记作A)第二张:(记作B)第三张:(记作C)第四张:(记作D)第五张:(记作E)教学过程Ⅰ.回顾本章内容[师]上节课我们对本章的所有知识进行了回顾,并讨论了这些知识间的关系,绘制了本章知识结构图,还对一部分内容进行了回顾,本节课继续进行有关知识的巩固.Ⅱ.具体内容巩固一、确定圆的条件[师]作圆的问题实质上就是圆心和半径的问题,确定了圆心和半径,圆就随之确定.我们在探索这一问题时,与作直线类比,研究了经过一个点、两个点、三个点可以作几个圆,圆心的分布和半径的大小有什么特点.下面请大家自己总结.[生]经过一个点可以作无数个圆.因为以这个点以外的任意一点为圆心,以这两点所连的线段为半径就可以作一个圆.由于圆心是任意的,因此这样的圆有无数个.经过两点也可以作无数个圆.设这两点为A、B,经过A、B两点的圆,其圆心到A、B两点的距离一定相等,所以圆心应在线段AB的垂直平分线上,在AB的垂直平分线上任意取一点为圆心,这一点到A或B 的距离为半径都可以作一个经过A、B两点的圆.因此这样的圆也有无数个.经过在同一直线上的三点不能作圆.经过不在同一直线上的三点只能作一个圆.要作一个圆经过A、B、C三点,就要确定一个点作为圆心,使它到三点A、B、C的距离相等,到A、B两点距离相等的点在线段AB 的垂直平分线上,到B、C两点距离相等的点应在线段B、C的垂直平分线上,那么同时满足到A、B、C三点距离相等的点应既在AB的垂直平分线上,又在BC的垂直平分线上,既两条直线的交点,因为交点只有一个,即确定了圆心.这个交点到A点的距离为半径,所以这样的圆只能作出一个.[师]经过不在同一条直线上的四个点A、B、C、D能确定一个圆吗?[生]不一定,过不在同一条直线上的三点,我们可以确定一个圆,如果另外一个点到圆心的距离等于半径,则说明四个点在同一个圆上,如果另外一个点到圆心的距离不等于半径,说明四个点不在同一个圆上.例题讲解(投影片A)矩形的四个顶点在以对角线的交点为圆心的同一个圆上吗?为什么?[师]请大家互相交流.[生]解:如图,矩形ABCD的对角线AC和BD相交于点O.∵四边形ABCD 为矩形,∴OA =OC =OB =OD .∴A 、B 、C 、D 四点到定点O 的距离都等于矩形对角线的一半.∴A 、B 、C 、D 四点在以O 为圆心,OA 为半径的圆上.二、三种位置关系[师]我们在本章学习了三种位置关系,即点和圆的位置关系;直线和圆的位置关系;圆和圆的位置关系.下面我们逐一来回顾.1.点和圆的位置关系[生]点和圆的位置关系有三种,即点在圆外;点在圆上;点在圆内.判断一个点是在圆的什么部位,就是看这一点与圆心的距离和半径的大小关系,如果这个距离大于半径,说明这个点在圆外;如果这个距离等于半径,说明这个点在圆上;如果这个距离小于半径,说明这个点在圆内.[师]总结得不错,下面看具体的例子.(投影片B)1.⊙O 的半径r =5cm ,圆心O 到直线l 的 距离d =OD =3 m .在直线l 上有P 、Q 、R 三点,且有PD =4cm ,QD >4cm ,RD <4cm ,P 、Q 、R 三点对于⊙O 的位置各是怎样的?2.菱形各边的中点在同一个圆上吗?分析:要判断某些点是否在圆上,只要看这些点到圆心的距离是否等于半径.[生]1.解:如图(1),在Rt △OPD 中,∵OD =3,PD =4,∴OP 222234OD PD ++5=r .所以点P 在圆上.同理可知OR 22OD DR +5,OQ 22OD DQ +5.所以点R在圆内,点Q在圆外.2.如图(2),菱形ABCD中,对角线AC和BD相交于点O,E、F、G、H分别是各边的中点.因为菱形的对角线互相垂直,所以△AOB、△BOC、△COD、△DOA都是直角三角形,又由于E、F、G、H分别是各直角三角形斜边上的中点,所以OE、OF、OG、OH分别是各直角三角形斜边上的中线,因此有OE=12AB,OF=12BC,OG=12CD,OH=12AD,而AB=BC=CD=DA.所以OE=OF=OG=OH.即各中点E、F、G、H到对角线的交点O的距离相等,所以菱形各边的中点在同一个圆上.2.直线和圆的位置关系[生]直线和圆的位置关系也有三种,即相离、相切、相交,当直线和圆有两个公共点时,此时直线与圆相交;当直线和圆有且只有一个公共点时,此时直线和圆相切;当直线和圆没有公共点时,此时直线和圆相离.[师]总结得不错,判断一条直线和圆的位置关系有哪些方法呢?[生]有两种方法,一种就是从公共点的个数来判断,上面已知讨论过了,另一种是比较圆心到直线的距离d与半径的大小.当d<r时,直线和圆相交;当d=r时,直线和圆相切;当d>r时,直线和圆相离.[师]很好,下面我们做一个练习.(投影片C)如图,点A的坐标是(-4,3),以点A为圆心,4为半径作圆,则⊙A与x轴、y轴、原点有怎样的位置关系?分析:因为x 轴、y 轴是直线,所以要判断⊙A 与x 轴、y 轴的位置关系,即是判断直线与圆的位置关系,根据条件需用圆心A 到直线的距离d 与半径r 比较.O 是点,⊙A 与原点即是求点和圆的位置关系,通过求OA 与r 作比较即可.[生]解:∵A 点的坐标是(-4,3),∴A 点到x 轴、y 轴的距离分别是3和4.又因为⊙A 的半径为4,∴A 点到x 轴的距离小于半径,到y 轴的距离等于半径.∴⊙A 与x 轴、y 轴的位置关系分别为相交、相切.由勾股定理可求出OA 的距离等于5,因为OA >4,所以点O 在圆外.[师]上面我们讨论了直线和圆的三种位置关系,下面我们要对相切这种位置关系进行深层次的研究,即切线的性质和判定.[生]切线的性质是:圆的切线垂直于过切点的直径.切线的判定是:经过直径的一端,并且垂直于这条直径的直线是圆的切线.[师]下面我们看它们的应用.(投影片D)1.如图(1),在Rt △ABC 中,∠C =90°,AC =12,BC =9,D 是AB 上一点,以BD 为直径的⊙O 切AC 于点E ,求AD 的长.2.如图(2),AB 是⊙O 的直径,C 是⊙O 上的一点,∠CAE =∠B ,你认为AE 与⊙O 相切吗?为什么?分析:1.由⊙O 与AC 相切可知OE ⊥AC ,又∠C =90°,所以△AOE ∽△ABC ,则对应边成比例,OA OE BA BC.求出半径和OA 后,由OA -OD =AD ,就求出了AD . 2.根据切线的判定,要求AE 与⊙O 相切,需求∠BAE =90°,由AB 为⊙O 的直径得∠ACB =90°,则∠BAC +∠B =90°,所以∠CAE +∠BAC =90°,即∠BAE =90°.[师]请大家按照我们刚才的分析写出步骤.[生]1.解:∵∠C=90°,AC=12,BC=9,∴由勾股定理得AB=15.∵⊙O切AC于点E,连接OE,∴OE⊥AC.∴OE∥BC.∴△OAE∽△BAC.∴OA OEAB BC=,即AB OE OEAB BC-=.∴15159OE OE-=.∴OE=458∴AD=AB-2OD=AB-2OE=15-458×2=154.2.解:∵AB是⊙O的直径,∴∠ACB=90°.∴∠CAB+∠B=90°.∴∠CAE=∠B,∴∠CAB+∠CAE=90°,即BA⊥AE.∵BA为⊙O的直径,∴AE与⊙O相切.3.圆和圆的位置关系[师]还是请大家先总结内容,再进行练习.[生]圆和圆的位置关系有三大类,即相离、相切、相交,其中相离包括外离和内含,相切包括外切和内切,因此也可以说圆和圆的位置关系有五种,即外离、外切、相交、内切、内含.[师]那么应根据什么条件来判断它们之间的关系呢?[生]判断圆和圆的位置关系;是根据公共点的个数以及一个圆上的点在另一个圆的内部还是外部来判断.当两个圆没有公共点时有两种情况,即外离和内含两种位置关系.当每个圆上的点都在另一个圆的外部时是外离;当其中一个圆上的点都在另一个圆的内部时是内含.当两个圆有唯一公共点时,有外切和内切两种位置关系,当除公共点外,每个圆上的点都在另一个圆的外部时是外切;当除公共点外,其中一个圆上的点都在另一个圆的内部时是内切.两个圆有两个公共点时,一个圆上的点有的在另一个圆的内部,有的在另一个圆的外部时是相交.两圆相交只要有两个公共点就可判定它们的位置关系是相交.[师]只有这一种判定方法吗?[生]还有用圆心距d和两圆的半径R、r之间的关系能判断外切和内切两种位置关系,当d=R+r时是外切,当d=R-r(R>r)时是内切.[师]下面我们还可以用d与R,r的关系来讨论出另外三种两圆的位置关系,大家分别画出外离、内含和相交这三种位置关系.探索它们之间的关系,它们的关系可能是存在相等关系,也有可能是存在不等关系.(让学生探索)大家得出结论了吗?是不是这样的.当d>R+r时,两圆外离;当R-r<d<R+r时,两圆相交;当d<R-r(R>r)时,两圆内含.(投影片E)设⊙O1和⊙O2的半径分别为R、r,圆心距为d,在下列情况下,⊙O1和⊙O2的位置关系怎样?①R=6cm,r=3cm,d=4cm;②R=6cm,r=3cm,d=0;③R=3cm,r=7cm,d=4cm;④R=1cm,r=6cm,d=7cm;⑤R=6cm,r=3cm,d=10cm;⑥R=5cm,r=3cm,d=3cm;⑦R=3cm,r=5cm,d=1cm.[生](1)∵R-r=3cm<4cm<R+r=9cm,∴⊙O1与⊙O2的位置关系是相交;(2)∵d<R-r,∴两圆的位置关系是内含;(3)∵d=r-R,∴两圆的位置关系是内切;(4)∵d=R+r,∴两圆的位置关系是外切;(5)∵d>R+r,∴两圆的位置关系是外离;(6)∵R-r<d<R+r,∴两圆的位置关系是相交;(7)∵d<r-R,∴两圆的位置关系是内含.。

相关文档
最新文档