计算圆锥的侧面积和全面积教学设计
人教版数学九年级上册《计算圆锥的侧面积和全面积》教学设计1

人教版数学九年级上册《计算圆锥的侧面积和全面积》教学设计1一. 教材分析人教版数学九年级上册《计算圆锥的侧面积和全面积》这一节内容,是在学生掌握了圆锥的基本概念、性质和圆锥的体积计算的基础上进行学习的。
本节课的主要内容是引导学生掌握圆锥的侧面积和全面积的计算方法,培养学生运用几何知识解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了圆锥的基本概念和性质,对圆锥的体积计算也有一定的了解。
但是,对于圆锥的侧面积和全面积的计算,学生可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生通过观察、思考、操作、交流等活动,自主探索圆锥的侧面积和全面积的计算方法,从而提高学生的空间想象能力和解决问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握圆锥的侧面积和全面积的计算方法,能够运用所学知识解决实际问题。
2.过程与方法目标:通过观察、思考、操作、交流等活动,培养学生的空间想象能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探究的精神。
四. 教学重难点1.重点:圆锥的侧面积和全面积的计算方法。
2.难点:圆锥的全面积的计算方法。
五. 教学方法1.情境教学法:通过实物演示、图片展示等手段,引导学生观察、思考,激发学生的学习兴趣。
2.启发式教学法:教师提出问题,引导学生主动探究,培养学生的问题解决能力。
3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队合作意识。
4.操作教学法:学生动手操作,直观地感受圆锥的性质,提高学生的空间想象能力。
六. 教学准备1.教师准备:教材、课件、圆锥模型、黑板、粉笔等。
2.学生准备:笔记本、尺子、圆规、剪刀等。
七. 教学过程1.导入(5分钟)教师通过展示圆锥模型,引导学生回顾圆锥的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过课件呈现圆锥的侧面积和全面积的计算方法,引导学生观察、思考,让学生初步了解圆锥的侧面积和全面积的计算方法。
人教版数学九年级上册《计算圆锥的侧面积和全面积》教学设计3

人教版数学九年级上册《计算圆锥的侧面积和全面积》教学设计3一. 教材分析人教版数学九年级上册《计算圆锥的侧面积和全面积》是本册教材中的一个重要内容,它是在学生已经掌握了圆的性质、扇形的性质等知识的基础上进行学习的。
本节课的主要内容是让学生掌握圆锥的侧面积和全面积的计算方法,并能够运用这些方法解决实际问题。
教材中通过生动的图片和直观的图形,引导学生探究圆锥的侧面积和全面积的计算方法,使得学生能够更好地理解和掌握这些知识。
二. 学情分析九年级的学生已经具备了一定的空间想象能力和逻辑思维能力,对于圆锥的形状和性质有一定的了解。
但是,学生在计算圆锥的侧面积和全面积时,可能会因为对圆锥的结构的把握不准确而导致计算错误。
因此,在教学过程中,教师需要注重引导学生正确理解圆锥的侧面展开图与圆锥的关系,并通过实际的操作和练习,让学生熟练掌握计算方法。
三. 教学目标1.知识与技能目标:让学生掌握圆锥的侧面积和全面积的计算方法,并能够运用这些方法解决实际问题。
2.过程与方法目标:通过观察、操作、探究等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的勇气。
四. 教学重难点1.重点:圆锥的侧面积和全面积的计算方法。
2.难点:理解圆锥的侧面展开图与圆锥的关系,以及如何将圆锥的侧面展开图转化为计算侧面积和全面积的依据。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,引导学生主动探究圆锥的侧面积和全面积的计算方法。
2.操作法:教师学生进行实际的操作,让学生通过观察、实践,理解圆锥的侧面展开图与圆锥的关系。
3.讨论法:教师学生进行小组讨论,让学生在合作中交流思想,共同解决问题。
六. 教学准备1.教师准备:教师需要准备相关的教学材料,如圆锥的模型、圆锥的侧面展开图等。
2.学生准备:学生需要准备好笔记本、尺子、圆规等学习工具。
七. 教学过程1.导入(5分钟)教师通过展示一些与圆锥相关的实际问题,如饮料杯、火箭等,引导学生关注圆锥的形状和性质,激发学生的学习兴趣。
九年级数学圆锥的侧面积和全面积教案

教案一:九年级数学圆锥的侧面积和全面积一、教学目标:1.理解圆锥的定义,掌握圆锥的侧面积和全面积公式的推导过程;2.能够应用所学知识解决与圆锥的侧面积和全面积相关的问题。
二、教学重难点:1.掌握圆锥的侧面积和全面积的公式的推导过程;2.在解决实际问题时,能够正确应用所学知识。
三、教学准备:1.教学课件、黑板、多媒体设备;2.学生准备的教材、笔记本和学习用具。
四、教学过程:Step 1 导入1.向学生介绍圆锥的概念,指出圆锥是由一个圆形底面和从底面上其中一点出发,既可以平行于底面,也可以不平行于底面的射线所围成的立体。
要求学生将圆锥的概念写在笔记本上,并画出一个圆锥的示意图。
Step 2 探究1.向学生提问:当圆锥的射线是和底面相交于一个点时,这种圆锥的形状是什么样的?请举例说明。
2.让学生通过观察和思考,探究这种特殊圆锥的性质,并让学生将结论写在笔记本上。
3.学生展示并讨论自己的结论,并与全班进行讨论。
Step 3 概念1.向学生介绍圆锥的侧面积和全面积的定义,并将其写在黑板上。
2.让学生记录下定义并理解其中的关键概念。
3.提醒学生要注意定义中的单位。
Step 4 推导1.向学生展示圆锥的侧面积公式的推导过程,并讲解每一步的原理和思路。
2.让学生跟随教师的步骤,将推导过程写在黑板上。
Step 5 计算1.以一个具体的圆锥为例,向学生展示如何计算圆锥的侧面积和全面积。
2.让学生逐步完成计算,并将结果写在纸上。
Step 6 实例1.给学生提供一些实际问题,要求他们运用所学知识解决问题。
2.学生独立完成问题,并将解答写在纸上。
3.学生进行互评,并讨论解题方法和答案的正确性。
Step 7 总结1.教师对本堂课的重难点内容进行总结,并强调学生在学习过程中需要注意的要点。
2.学生将本节课的重点内容整理为笔记。
五、课后作业:1.复习本节课的内容,确保对圆锥的侧面积和全面积的计算方法掌握透彻;2.完成课后作业,练习应用所学知识解决实际问题。
24.4.2圆锥的侧面积和全面积.4.2圆锥的侧面积和全面积(教案)

24.4.2圆锥的侧面积和全面积一、课题内容本节课学习内容涉及人民教育出版社义务教育教科书《数学》九年级上册第二十四章《圆》中的24.4《弧长和扇形面积》。
二、教学分析1、内容分析本节课内容是在学习了弧长和扇形的面积公式的基础上学习圆锥的侧面积和全面积。
本堂课是本章的教学难点,难点在于公式的推导和扇形圆锥的相互转化,能应用公式解决一些实际问题。
(1)重点:1.理解圆锥侧面积和全面积的公式及其有关计算。
2.培养学生空间观念及空间图形与平面图形相互转化的思想。
(2)难点:1.利用圆锥的侧面积和全面积的公式解决实际问题。
2.圆锥侧面展开图(扇形)中各元素与圆锥各元素之间的关系。
2、学情分析1.九年级学生在新课的学习中已掌握弧长和扇形面积公式的基本知识。
2.学生的分析、理解能力在学习新课时有明显提高。
3.学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。
三、教学目标知识与技能:掌握圆锥的特征,弄清圆锥侧面展开图中各元素与圆锥中各元素之间的对应关系;会推导、计算圆锥的侧面积和全面积。
过程与方法:通过对圆锥侧面积的推导,体会空间图形平面化的数学方法;发展类比和转化的数学思想;进一步培养空间观念。
情感与态度:通过对实际问题的分析,体会数学的实用价值;在小组活动中培养合作交流能力和探究精神。
四、教学过程设计一、创设情境,引入新课由于学生刚上完体育课,问他们现在想吃什么?然后出示冰淇淋的图片。
思考厂家怎么制作冰淇淋的包装纸?二、组织活动,讲授新课(1)活动一1、以小组为单位利用课前准备好的圆形纸片制作一个扇形;2、带领学生回忆弧长和扇形公式。
(三个公式:重点强调弧长和扇形公式的转化及关系)。
3、如果将你们手中的扇形卷起来能得到什么?(扇形构成圆锥的侧面)要构成个完整的圆锥还差什么?怎样获取?(圆锥由一个侧面和一个底面都成)。
此活动主要让学生感受扇形和圆锥的关系,为活动二推圆锥的侧面积和全面积公式做准备。
《计算圆锥的侧面积和全面积》教学设计(黑龙江县级优课)

解:过C点作 ,垂足为D点(下略)
答:这个几何体的全面积为
巩固公式
准确计算
培养学生发散思维能力
活动4.
小结与作业布置
我们认识了圆锥的侧面展开图,学会计算圆锥的侧面积和全面积,在认识圆锥的侧面积展开图时,应知道圆锥的底面周长就是其侧面展开图扇形的弧长。圆锥的母线就是其侧面展开图扇形的半径。
圆锥的侧面积和全面积教学设计
教
学
分的名称。
2.理解圆锥的侧面积展开图是扇形,并能够计算圆锥的侧面积和全面积
方法过程
利用所学的弧长和扇形面积公式即可通过计算它的展开图的面积求得。
情感态度
教给学生立体图形与平面图形的思维转换。讲清扇形各元素与圆锥各元素之间的关系。
熟练、准确计算圆锥的侧面积和全面积
课后反思
学法指导
动手操做,准确计算
教学重点
圆锥的侧面展开图,计算圆锥的侧面积和全面积。
教学难点
圆锥的侧面展开图,计算圆锥的侧面积和全面积
教学过程设计
问题情景
师生活动
设计目标
活动1.把一个课前准备好的圆锥模型沿着母线剪开,让学生观察圆锥的侧面展开图,学生容易看出,圆锥的侧面展开图是一个扇形。
如图 23.3.6,我们把圆锥底面圆周上的任意一点与圆锥顶点的连线叫做圆锥的母线,连结顶点与底面圆心的线段叫做圆锥的高,如图中 ,而 就是圆锥的高。
问题:圆锥的母线有几条?
由具体的模型认识圆锥的侧面展开图,认识圆锥各个部分的名称
活动2.
(1)沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长与底面的周长有什么关系?
(2)圆锥侧面展开图是扇形,这个扇形的半径与圆锥中的哪一条线段相等?
圆锥的侧面积和全面积教案

21.3 圆锥的侧面积和全面积
一、 教 学 目 标
1. 理解圆锥的侧面积和表面积的含义 2. 探索并掌握圆锥的侧面积和表面积的计算方法,会正确地计算圆锥的侧面积和表
面积
二、 重 点 难 点 及 其 突 破 措 施
三、 教 学 方 法 及 学 法 指 导 四、教 具
重点
1、 掌握圆锥的 侧面积和表 面积的计算 方法
锥
学生 活动 学生观 察、思考
时间 分配 1 分钟
知识回 顾
我们上节课已学了扇形的弧长公式和扇形
的面积公式,大家还记得它们的计算公式
吗?
弧
长
:
L n/ 360* 2 R n /180* R
面积:
向学生展 示扇形并 让学生回 答计算公 式
观察,回 3 分钟 忆,思考, 并回答问 题
S n / 360* R2 1/ 2LR
答:它的母线长是 10。
2.一个底面半径为 12,母线长为 20 的圆锥,
创设问题
求它的侧面积和全面积。
情境,引
解答:S 侧 = rl 12* 20 240
导学生思
S 全= rl r 2
考,个别
辅导,点
= 240 122
评
=384 答:它的侧面积是 240 ,表面积是 384 。
表面积的计算公式:.........
例子:.......
学生计算栏:...........
.......
..........
........
...........
2 分钟
开图为扇形,且扇形的半径等于圆锥的母线,
弧长等于圆锥底面圆的周.
5.如果用 r 表示圆锥的底面半径,h 表示圆锥
40圆锥的侧面积和全面积教案

圆锥的侧面积和全面积教案教学目标:1. 理解圆锥的侧面积和全面积的概念。
2. 学会计算圆锥的侧面积和全面积。
3. 能够应用圆锥的侧面积和全面积解决实际问题。
教学重点:1. 圆锥的侧面积和全面积的概念。
2. 计算圆锥的侧面积和全面积的方法。
教学难点:1. 圆锥的侧面积和全面积的计算方法。
教学准备:1. 圆锥模型。
2. 直尺、圆规等绘图工具。
教学过程:一、导入(5分钟)1. 引导学生观察圆锥模型,让学生尝试描述圆锥的特征。
2. 提问:圆锥的侧面积和全面积是什么意思?二、新课讲解(15分钟)1. 讲解圆锥的侧面积的概念:圆锥的侧面积是指圆锥的侧面展开后形成的扇形的面积。
2. 讲解圆锥的全面积的概念:圆锥的全面积是指圆锥的底面积和侧面积之和。
3. 讲解计算圆锥的侧面积的方法:利用圆锥的侧面展开图,计算扇形的面积。
4. 讲解计算圆锥的全面积的方法:将底面积和侧面积相加。
三、例题解析(15分钟)1. 给出一个圆锥的侧面展开图,让学生计算圆锥的侧面积。
2. 给出一个圆锥的底面和侧面,让学生计算圆锥的全面积。
四、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 解答学生提出的问题,给予及时的指导和帮助。
五、总结与反思(5分钟)1. 让学生总结本节课所学的内容,巩固知识点。
2. 提问学生:如何应用圆锥的侧面积和全面积解决实际问题?教学延伸:1. 引导学生进一步学习圆锥的体积计算。
2. 让学生尝试解决与圆锥侧面积和全面积相关的实际问题。
教学反思:本节课通过讲解、例题解析和课堂练习,让学生掌握了圆锥的侧面积和全面积的概念及计算方法。
在教学过程中,要注意引导学生观察实物,培养学生的空间想象能力。
通过课堂练习和教学延伸,让学生巩固所学知识,提高解决问题的能力。
六、圆锥侧面积和全面积的公式推导教学目标:1. 理解圆锥侧面积和全面积的公式推导过程。
2. 学会运用公式计算圆锥的侧面积和全面积。
教学重点:1. 圆锥侧面积和全面积的公式推导过程。
人教版圆锥的侧面积和全面积教案

人教版圆锥的侧面积和全面积教案一、教学目标。
1. 知识与能力。
(1)掌握圆锥的侧面积和全面积的计算方法;(2)能够运用所学知识解决相关问题。
2. 过程与方法。
通过引导学生观察、探究、实验、讨论等方式,培养学生的分析问题和解决问题的能力。
3. 情感态度价值观。
培养学生的动手能力和创新意识,激发学生对数学学习的兴趣。
二、教学重点和难点。
1. 教学重点。
(1)掌握圆锥的侧面积和全面积的计算方法;(2)能够灵活运用所学知识解决相关问题。
2. 教学难点。
学生理解和掌握圆锥的侧面积和全面积的计算方法。
三、教学过程。
1. 导入新课。
通过展示一些日常生活中常见的圆锥体,如冰淇淋蛋筒、圆锥形纸杯等,引导学生观察并讨论圆锥的特点。
2. 讲解圆锥的侧面积和全面积的计算方法。
(1)引导学生观察圆锥的特点,引出圆锥的侧面积和全面积的计算方法;(2)通过实物或图片展示,引导学生理解圆锥的侧面积和全面积的计算公式;(3)通过具体例题,讲解圆锥的侧面积和全面积的计算方法。
3. 案例分析。
以日常生活中的实际问题为例,让学生运用所学知识计算圆锥的侧面积和全面积,培养学生的分析和解决问题的能力。
4. 练习与训练。
(1)课堂练习,布置一些练习题,让学生在课堂上进行练习;(2)课后作业,布置一些相关的作业,巩固所学知识。
5. 总结与拓展。
总结本节课的重点内容,引导学生进行思考和讨论,拓展相关知识。
四、教学反思。
本节课通过引导学生观察、讨论、实验等方式,使学生对圆锥的侧面积和全面积有了更深入的理解,培养了学生的分析和解决问题的能力。
同时,通过案例分析和练习训练,巩固了学生所学知识,提高了学生的数学运用能力。
在今后的教学中,可以结合更多的实际问题,引导学生灵活运用所学知识解决实际问题,激发学生对数学学习的兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.4.2圆锥的侧面积和全面积
【教学目标】
知识目标
(1)知道圆锥各部分的名称.
(2) 理解圆锥侧面积展开图是扇形,并能够计算圆锥的侧面积和全面积. 能力目标
经历探索圆锥侧面积和全面积的计算公式以及应用它解决现实生活中的一些实际问题.
学生体会立体图形与平面图形的思维转换思想,理解扇形与圆锥各元素之间的关系
情感目标
经历探索圆锥侧面积计算公式的过程,发展学生的实践探索能力.培养学生空间观念,激发学生的好奇心和求知欲,并在运用数学知识解答实际问题的活动中获取成功的体验,建立自信心
【重点】
圆锥侧面积和全面积的计算
【难点】
探索圆锥侧面积计算公式的推导过程.
【方法手段】
1.动手实践探究归纳
2. 总结提升准确计算
【课前准备】圆规、三角尺、多媒体课件
【教学过程】
一.创设情境
1、(1)圆的周长公式
(2)圆的面积公式
(3)弧长的计算公式
(4)扇形面积计算公式
2.观察自己制作的圆锥.
3.出示图片,初步认识圆锥形
图
23.3.6
二.探究新知
1、圆锥的基本概念
(1)圆锥是由一个底面和一个侧面围成的几何体
(2)如图,圆锥中,连结圆锥的顶点S 和底面圆上任意一点的线段SA 、SA 1……
把连接圆锥顶点和底面圆周上任意一点的线段叫做 圆锥的母线
问题: 圆锥的母线有几条?
(3)连接顶点S 与底面圆的圆心O 的线段叫做 圆锥的高
(4)如图, R 是圆锥的一条母线,而h 就是圆锥的高,圆锥的底面半径、高线、母线长
三者之间的关系:
2、填空:
根据下列条件求值(其中r 、h 、ι 分别是圆锥的底面半径、高线、母线长)
(1) ι = 2, r=1 则 h =_______
(2) h = 3, r=4 则ι=_______
(3) ι= 10, h = 8 则r =_______
3、圆锥中的各元素与它的侧面展开图——扇形的各元素之间的关系
思考:圆锥的侧面展开图是什么图形?如何计算圆锥的侧面积?如何计算圆
锥的全面积?
2
22r h R +=
如图,将圆锥的侧面沿母线ι剪开,展开成平面图形,可以得到一个扇形,设圆锥的底面半径为r,这个扇形的半径等于什么?扇形的弧长等于什么?
扇形的半径R即为圆锥的母线ι
扇形的弧长L是圆锥底面的周长C=2πr
4、圆锥侧面积计算公式
如图,圆锥的母线即为扇形的半径,而圆锥底面的周长是扇形的弧长,这样, S圆锥侧= S扇形=·2πr ·ι= πrι
5、圆锥全面积计算公式
S圆锥全= S圆锥侧+S圆锥底面=πr l +πr 2=πr(l +r)
6、根据下列条件求圆锥侧面积展开图的圆心角Ø(r、h、ι分别是圆锥的底面半径、高线、母线长)
ι = 2,r = 1 则Ø =________
7、知一个圆锥的高为6cm,半径为8cm,则这个圆锥的母线长为_______
8、知一个圆锥的底面半径为12cm,母线长为20cm,则这个圆锥的侧面积为_________,全面积为_______
例1、圆锥形烟囱帽(如图)的母线长为100cm,高为80cm,求这个烟囱帽的面积为多少平方米?
例2、如图所示的扇形中,半径R=10,圆心角θ=144°用这个扇形围成一个圆锥的侧面.
(1)求这个圆锥的底面半径r;
(2)求这个圆锥的高.
三、小结提升
小组交流这节课的学习历程,你有哪些收获?
合作实践展示的快乐分享……
知识迁移中的困惑消除策略…
圆锥的母线就是其侧面展开图扇形的半径.
圆锥的底面周长就是其侧面展开图扇形的弧长。
S 圆锥侧=πrl
(r表示圆锥底面的半径, l 表示圆锥的母线长
四、课后作业
1、梳理课本113---114圆锥相应知识点
2、课本115页1、9、10
六、板书设计
七、课后追记
本节课的教学中,从生活中的圆锥图片欣赏出发,探究得到圆锥的侧面积和全面积的计算公式,再运用这个公式解决一些实际问题,我在正教学过程中,始终注重学生的参与意识,注重学生对待学习的态度是否积极,注重引导学生从数学角度去思考问题,让学生主动表述思维过程,及时得到信息的发馈。
课堂上,尽量留给学生更多展示自己的机会,让学生在融洽、和谐的课堂氛围中,在老师、同学的鼓励和欣赏中认识自我,找到自信,体验成功的乐趣,逐步形成良好的学习数学素养。