《圆》第四节弧长和扇形面积导学案1
九年级数学上册(人教版)24.4弧长与扇形面积(第一课时)教学设计

"首先,我们来看弧长的计算公式。弧长等于圆周长的一部分,我们可以通过圆心角和半径来计算。其公式为:弧长= (圆心角/360) × 2πr。接下来,我们学习扇形面积的计算公式。扇形面积是圆面积的一部分,它等于圆心角所对的圆弧与半径所围成的图形。其公式为:扇形面积= (圆心角/360) × πr²。"
2.教师通过示例题,展示如何运用这些公式解决实际问题,让学生理解并掌握计算方法。
(三)学生小组讨论,500字
1.教师将学生分成小组,让学生合作讨论以下问题:
"如何计算一个圆的1/4弧长和扇形面积?如果圆的半径是10cm,圆心角是90度,你能计算出弧长和扇形面积吗?"
2.学生在小组内进行讨论,共同解决这些问题,教师巡回指导,解答学生的疑问。
3.梯度练习,巩固知识
设计不同难度的练习题,让学生独立完成,巩固所学知识。针对学生的错误,进行及时反馈和指导。
4.理论联系实际,学以致用
通过解决实际问题,让学生感受数学的实用性。例如,计算一段弯曲的道路的长度、计算扇形门的面积等。
5.总结反馈,拓展提高
在课堂结束时,让学生总结本节课所学内容,并进行自我评价。教师对学生的表现给予肯定和鼓励,同时对学生的不足之处进行指导。
(四)课堂练习,500字
1.教师设计不同难度的练习题,让学生独立完成,巩固所学知识。
"请同学们完成以下练习题:计算半径为5cm的圆的1/6弧长和扇形面积;计算圆心角为120度的扇形面积,半径为8cm。"
2.教师对学生的练习进行批改和反馈,针对错误进行讲解,确保学生掌握所学知识。
(五)总结归纳,500字
人教版九年级数学上册《弧长和扇形面积》学案及同步作业(含答案)

24.4弧长和扇形面积(第1课时)【学习目标】了解扇形的概念,理解 n?°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.【学习重点】n°的圆心角所对的弧长 L= n R,扇形面积S扇= n R2及其它们的应用.180360【学习过程】(教师寄语:勤动脑,多动手,体验收获!)自主探究(教师寄语:学会独立思考,自主学习是最重要的!)一、任务一:探究弧长公式1、圆的周长公式是什么?什么叫弧长?2、圆的周长可以看作 ______度的圆心角所对的弧.1°的圆心角所对的弧长是 _______; 2°的圆心角所对的弧长是 _______;4°的圆心角所对的弧长是 _______;n°的圆心角所对的弧长是 _______。
任务二:探究扇形面积公式3、圆的面积公式是什么?什么叫扇形?4、圆的面积可以看作度圆心角所对的扇形的面积;设圆的半径为R,1°的圆心角所对的扇形面积S 扇形 =_______; 2°的圆心角所对的扇形面积 S 扇形=_______; 5°的圆心角所对的扇形面积S 扇形=_______;n °的圆心角所对的扇形面积S 扇形 =_______。
5、比较扇形面积公式和弧长公式,如何用弧长表示扇形的面积?二、合作学习(教师寄语:学会与别人合作是一种能力!)例 1、(教材 121 页例 1)例 2:如图,已知扇形 AOB的半径为 10,∠ AOB=60°,求AB的长( ?结果精确到 0.1)和扇形 AOB的面积结果精确到 0.1)三、课时小结(教师寄语:及时总结能使人不断进步!)四、自我测评(教师寄语:细心思考,必定成功!)1、已知扇形的圆心角为120°,半径为6,则扇形的弧长是().A . 3B . 4C . 5D . 62、如图所示,把边长为 2 的正方形 ABCD的一边放在定直线L 上,按顺时针方向绕点 D 旋转到如图的位置,则点 B 运动到点 B′所经过的路线长度为()A.1B.C.2D.2B C(A')B'AlD C'A BCO(第 2 题图)(第 3 题图)(第 4 题图)(第 6 题图)3、如图所示, OA=30B,则AD的长是BC的长的 _____倍.4、如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中AOB 为120,OC 长为8cm, CA 长为12cm,则阴影部分的面积为。
24.4 弧长和扇形面积第1课时教案

24.4弧长和扇形面积教案一、【教材分析】二、【教学流程】自 主 探 究问题2、你还记得圆面积的计算公式吗?圆面积可以看作多少度的圆心角所对的扇形的面积?1°的圆心角所对的扇形面积是多少?n 的圆心角呢?设:已知⊙O 半径为R ,求n 的圆 心角所对的扇形面积. 比较扇形面积公式和弧长公式,看看它们之间有什么关系?2R =360n S π扇形 1=2S lR 扇形其中,l 是扇形的弧长,R 为半径. 学生认真思考,由中等学生回答:圆周长为2R π,可看作是360°的圆心角所对的弧长;教师关注学生对公式的理解程度.教师引导学生类比弧长公式的推导过程,推导出扇形面积公式. 经过观察,学生能够看出:类比的方法研究问题.来源于生活服务于生活,强化应用意识O DC B A 补 偿 提 高1、 如图2,水平放置的圆柱形排水管道的截面半径是0.6m ,其中水面高0.3m ,求截面上有水部分的面积(精确到0.01 m 2)2、三角形ABC 的外接圆半径为2,60=∠BAC °,则∠BAC 所对的弧BC 的长为教师出示例题后,引导学生分析已知条件,教师要关注学生对题目中的有关概念是否清楚,如水面高指的是什么? 经过分析,学生知道了水面高即弧AB 的中点到弦AB的距离. 因此想到做辅助线的方法:连接OA 、AB ,过O 作OC ⊥AB 于点D ,交弧AB 于点C .垂径定理的应用.加强学生对本节课内容的认识与联系三、【板书设计】四、【教后反思】。
《弧长和扇形的面积》学案

28.3.1《弧长和扇形的面积》学案教学目标:1.认识扇形,会计算弧长和扇形的面积,2.通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获得新知的能力。
重点难点:1、重点:弧长和扇形面积公式,准确计算弧长和扇形的面积。
2、难点:运用弧长和扇形的面积公式计算比较复杂图形的面积。
研讨过程:一、发现弧长和扇形的面积的公式1、弧长公式如图28.3.1是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°.你能求出这段铁轨的长度吗?(取3.14)问题:上面求的是90︒的圆心角所对的弧长,若圆心角为n ︒,如何计算它所对的弧长呢?请同学们计算半径为3cm ,圆心角分别为180︒、90︒、45︒、1︒、n ︒所对的弧长。
圆心角为180︒所对的弧长圆心角为90︒所对的弧长圆心角为45︒所对的弧长圆心角为1︒所对的弧长圆心角为n ︒所对的弧长弧长的计算公式为:1802360r n r n l ππ=⋅= 练习:已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。
2、扇形的面积。
如图28.3.3,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。
问:右图中扇形有几个?圆心角是180︒,占整个周角的 ,因此圆心角为180︒的扇形的面积是圆面积的 。
圆心角是90︒,占整个周角的 ,因此圆心角为90︒的扇形的面积是圆面积的 。
圆心角是45︒,占整个周角的 ,因此圆心角为45︒的扇形的面积是圆面积的 。
O B A O B AA B O A B O A B O 图23.3.1 图28.3.332圆心角是1︒,占整个周角的 ,因此圆心角为1︒的扇形的面积是圆面积的 。
圆心角是n ︒,占整个周角的 ,因此圆心角为n ︒的扇形的面积是圆面积的 。
如果设圆心角是n °的扇形面积为S ,圆的半径为r ,那么扇形的面积为lr r r n r n S 2121803602=⨯==ππ.因此扇形面积的计算公式为 3602r n S π= 或lr S 21=练习:1、如果扇形的圆心角是280°,那么这个扇形的面积等于这个扇形所在圆的面积的____________; 2、扇形的面积是它所在圆的面积的,这个扇形的圆心角的度数是 。
24.4 弧长和扇形面积(第1课时教案)

24.4 弧长和扇形面积(第1课时)教学内容1.n °的圆心角所对的弧长L=180n Rπ 2.扇形的概念;3.圆心角为n °的扇形面积是S 扇形=2360n R π;4.应用以上内容解决一些具体题目. 教学目标了解扇形的概念,理解n•°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.通过复习圆的周长、圆的面积公式,探索n °的圆心角所对的弧长L=2180n R π和扇形面积S 扇=2360n R π的计算公式,并应用这些公式解决一些题目.重难点、关键1.重点:n °的圆心角所对的弧长L=180n Rπ,扇形面积S 扇=2360n R π及其它们的应用.2.难点:两个公式的应用.3.关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程. 教具、学具准备小黑板、圆规、直尺、量角器、纸板. 教学过程 一、引入问题:制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L(单位:mm ,精确到10mm)二、探索新知(老师口问,学生口答)请同学们回答下列问题.1.半径为R 的圆,周长是多少? 2.圆的周长可以看作是多少度的圆心角所对的弧?3.1°圆心角所对弧长是多少? 2°的圆心角所对的弧长是_______. 4°的圆心角所对的弧长是_______. ……n °的圆心角所对的弧长是_______.(老师点评)根据同学们的解题过程,我们可得到:n °的圆心角所对的弧长为180Rn l π=(幻灯片5).c针对练习题1.已知一个圆的半径为12,则圆心角为150°所对的弧长为( ) A .5π B .6π C .8π D .10π2.一个圆的半径为8cm ,则弧长为π316cm 所对的圆心角为( )A .60°B .120°C .150°D .180°3.若长为12π的弧所对的圆心角120°,则这条弧所在圆的半径为() A .6 B .9 C .18 D .36问题、制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即»AB 的长(结果精确到0.1mm )(幻灯片7).c分析:要求»AB 的弧长,圆心角知,半径知,只要代入弧长公式即可. 解:R=40mm ,n=110∴»AB 的长=180n R π=11040180π⨯≈76.8(mm )因此,管道的展直长度约为76.8mm .练习题: 有一段弯道是圆弧形的,道长是12m ,弧所对的圆心角是段圆弧的半径R(精确0.1m)扇形的定义:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫扇形.1)半径为R 的圆,面积是多少?圆的面积可以看作是多少度的圆心角所对的扇形? 1°圆心角所对扇形面积是多少?2°的圆心角所对的扇形面积S 扇形=_______.设圆半径为R ,n °的圆心角所对的扇形面积S 扇形=_______. 因此:在半径为R 的圆中,圆心角n °的扇形针对练习题1、已知扇形的圆心角为120°,半径为2,则这个扇形的面积,S 扇=_ .已知扇形面积为π34 ,圆心角为120°,则这个扇形的半径R=已知半径为2cm 的扇形,其弧长为π34 ,则这个扇形的面积,S 扇=例题:如图,水平放置的圆柱形排水管道的截面半径是0.6m ,其中水面高0.3m 。
弧长和扇形面积(教案)

教案:弧长和扇形面积教学目标:1. 理解弧长的概念及计算方法。
2. 掌握扇形面积的计算公式。
3. 能够运用弧长和扇形面积的知识解决实际问题。
教学重点:1. 弧长的计算。
2. 扇形面积的计算。
教学难点:1. 弧长的计算公式的应用。
2. 扇形面积的计算公式的应用。
教学准备:1. 课件或黑板。
2. 教学卡片。
3. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾圆的周长公式:C = 2πr。
2. 提问:如果我们知道圆的半径,如何计算圆的周长呢?二、新课:弧长(10分钟)1. 引入弧长的概念:在圆上,弧长是指连接圆上两点之间的部分的长度。
2. 解释弧长的计算方法:弧长= 圆心角/ 360°×2πr。
3. 示例:给定一个半径为5cm的圆,圆心角为90°,计算弧长。
三、练习:弧长的计算(10分钟)1. 学生独立完成练习题,老师巡回指导。
2. 选取部分学生的作业进行讲解和点评。
四、导入扇形面积的概念(5分钟)1. 引入扇形面积的概念:扇形面积是指圆心角所对应的圆弧与半径所围成的区域的面积。
2. 提问:扇形面积与圆的面积有何关系?五、新课:扇形面积的计算(10分钟)1. 解释扇形面积的计算公式:扇形面积= (圆心角/ 360°) ×πr²。
2. 示例:给定一个半径为5cm的圆,圆心角为90°,计算扇形面积。
3. 强调扇形面积与圆心角的关系:圆心角越大,扇形面积越大。
教学反思:本节课通过引入弧长和扇形面积的概念,让学生掌握了弧长和扇形面积的计算方法。
在教学过程中,通过示例和练习题的讲解,帮助学生理解和应用知识点。
在今后的教学中,可以结合实际问题,让学生更好地运用弧长和扇形面积的知识。
六、练习:弧长和扇形面积的综合应用(10分钟)1. 学生独立完成综合练习题,老师巡回指导。
2. 选取部分学生的作业进行讲解和点评。
七、课堂小结(5分钟)1. 回顾本节课所学内容:弧长的计算方法和扇形面积的计算方法。
24.4 弧长和扇形面积 导学案(含答案)

24.4 弧长和扇形面积 导学案第1课时 弧长和扇形面积1、教学目标1.了解扇形的概念,复习圆的周长、圆的面积公式.2.探索n°的圆心角所对的弧长l =n πR 180、扇形面积S =n πR 2360和S =12lR 的计算公式,并应用这些公式解决相关问题.2、预习反馈阅读教材P 111~113,完成下列知识探究. 1.在半径为R 的圆中,1°的圆心角所对的弧长是πR 180,n°的圆心角所对的弧长是n πR180. 2.在半径为R 的圆中,1°的圆心角所对的扇形面积是πR 2360,n°的圆心角所对的扇形面积是n πR 2360. 3.半径为R ,弧长为l 的扇形面积S =12lR .3、名校讲坛例1 制造弯形管道时,经常要先按中心线计算“展直长度”,再下料,试计算如图所示的管道的展直长度L (结果取整数).【思路点拨】 先根据弧长公式求出100°所对的弧长,再加上两边的长度. 【解答】 由弧长公式,得AB ︵的长 l =100×900×π180=500π≈1 570(mm).因此所要求的展直长度L =2×700+1 570=2 970(mm).【跟踪训练1】 如图,用一个半径为5 cm 的定滑轮带动重物上升,滑轮上一点P 旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了(C)A .π cmB .2π cmC .3π cmD .5π cm【点拨】 重物上升的高度就是108°所对的弧长.【跟踪训练2】 如图,点A ,B ,C 在半径为9的⊙O 上,AB ︵的长为2π,则∠ACB 的大小是20°.【点拨】 先根据弧长公式求出AB ︵所对的圆心角,再根据圆周角定理求出∠ACB 即可.例2 如图,水平放置的圆柱形排水管道的截面半径是0.6 m ,其中水面高0.3 m .求截面上有水部分的面积(结果保留小数点后两位).【思路点拨】 有水的部分实际上是一个弓形,弓形的面积可以通过扇形的面积与相应三角形面积的和或差求得.【解答】 如图,连接OA ,OB ,作弦AB 的垂直平分线,垂足为D ,交AB ︵于点C ,连接AC .∵OC=0.6 m,DC=0.3 m,∴OD=OC-DC=0.3 m.∴OD=DC.又∵AD⊥DC,∴AD是线段OC的垂直平分线.∴AC=AO=OC.从而∠AOD=60°,∠AOB=120°.有水部分的面积S=S扇形OAB-S△OAB=120π360×0.62-12AB·OD=0.12π-12×0.63×0.3≈0.22(m2).【跟踪训练3】已知:如图,AB为⊙O的直径,点C,D在⊙O上,且BC=6 cm,AC =8 cm,∠ABD=45°.(1)求BD的长;(2)求图中阴影部分的面积.解:(1)∵AB是⊙O的直径,∴∠C=90°,∠BDA=90°.∵BC=6 cm,AC=8 cm,∴AB=10 cm.∵∠ABD=45°,∴△ABD是等腰直角三角形.∴BD=AD=22AB=5 2 cm.(2)连接DO,∵∠ABD=45°,∠BDA=90°,∴∠BAD =45°. ∴∠BOD =90°. ∵AB =10 cm , ∴OB =OD =5 cm.∴S 阴影=S 扇形OBD -S △OBD =90π×52360-12×52=(25π4-252)cm 2.4、巩固训练1.已知扇形的圆心角为120°,半径为2,则这个扇形的面积S 扇=43π;已知扇形面积为43π,圆心角为120°,则这个扇形的半径R =2. 2.已知扇形的半径为5 cm ,面积为20 cm 2,则扇形弧长为8cm .3.如图,已知C ,D 是以AB 为直径的半圆周上的两点,O 是圆心,半径OA =2,∠COD =120°,则图中阴影部分的面积等于23π.4.如图,水平放置的圆柱形排水管道的截面半径是0.6 cm ,其中水面高0.9 cm ,则截面上有水部分的面积为0.91__cm 2.(结果保留小数点后两位)5.如图,已知P ,Q 分别是半径为1的半圆圆周上的两个三等分点,AB 是直径,则阴影部分的面积为π6.【点拨】 连接OP ,OQ ,利用同底等高将△BPQ 的面积转化成△OPQ 的面积.6.如图,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,连接AC ,BD. (1)求证:AC =BD ;(2)若图中阴影部分的面积是34π cm 2,OA =2 cm ,求OC 的长.解:(1)证明:∵∠AOB =∠COD =90°, ∴∠AOC =∠BOD. 又∵AO =BO ,CO =DO , ∴△AOC ≌△BOD(SAS ). ∴AC =BD.(2)根据题意,得S 阴影=90π×22360-90π·OC 2360=34π,解得OC =1. ∴OC 的长为1 cm .5、课堂小结1.n°的圆心角所对的弧长公式l =n πR180.2.n°的圆心角所对的扇形面积公式S =n πR 2360.3.阴影部分面积的求法.第2课时圆锥的侧面积和全面积1、教学目标1.理解圆锥的相关概念,会计算圆锥的侧面积和全面积.2.进一步培养学生综合运用相关知识解决问题的能力.4、预习反馈阅读教材P113~114,完成下列知识探究.1.圆锥是由一个底面和一个侧面围成的几何体,连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线,连接顶点和底面圆心的线段叫做圆锥的高.2.圆锥的侧面展开图是一个扇形,其半径为圆锥的母线,弧长是圆锥底面圆的周长.3.圆锥的母线l,圆锥的高h,底面圆的半径r,存在关系式:l2=h2+r2,圆锥的侧面积S=πrl;圆锥的全面积S全=S底+S侧=πr2+πrl.3、名校讲坛例蒙古包可以近似地看作由圆锥和圆柱组成.如果想用毛毡搭建20个底面积为12 m2,高为3.2 m,外围高1.8 m的蒙古包,至少需要多少平方米的毛毡(π取3.142,结果取整数)?【解答】如图是一个蒙古包的示意图.根据题意,下部圆柱的底面积为12 m2,高h2=1.8 m;上部圆锥的高h1=3.2-1.8=1.4(m).圆柱的底面圆的半径r=12π≈1.954(m),侧面积为2π×1.954×1.8≈22.10(m 2). 圆锥的母线长l = 1.9542+1.42≈2.404(m), 侧面展开扇形的弧长为2π×1.954≈12.28(m), 圆锥的侧面积为12×2.404×12.28≈14.76(m 2).因此,搭建20个这样的蒙古包至少需要毛毡20×(22.10+14.76)≈738(m 2).【跟踪训练1】 如图,用一个半径为30 cm ,面积为300 π cm 2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r 为(B )A .5 cmB .10 cmC .20 cmD .5π cm【跟踪训练2】 一个几何体由圆锥和圆柱组成,其尺寸如图所示,求该几何体的全面积(即表面积)是多少?(结果保留π)解:圆锥的母线长是:32+42=5. 圆锥的侧面积是:12×8π×5=20π.圆柱的侧面积是:8π×4=32π. 几何体的下底面面积是:π×42=16π. 所以该几何体的全面积(即表面积)为: 20π+32π+16π=68π.6、巩固训练1.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为(C) A.2.5 B.5 C.10 D.152.若一个圆锥的侧面展开图是半径为18 cm,圆心角为240°的扇形,则这个圆锥的底面半径长是(C)A.6 cm B.9 cm C.12 cm D.18 cm 3.已知圆锥的底面半径长为3,母线长为4,则它的侧面积是(B)A.24πB.12πC.6πD.124.圆锥体的底面周长为6π,侧面积为12π5.如图,一个圆锥的高为3 3 cm,侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比;(2)求圆锥的底面圆的半径.解:(1)设此圆锥的高为h,底面半径为r,母线长为l.∵2πr=πl,∴lr=2.(2)由图可知l2=h2+r2,h=3 3 cm,∴(2r)2=(33)2+r2,即4r2=27+r2.解得r=3.∴r=3 cm.5、课堂小结1.圆锥的母线长等于扇形的半径;扇形的弧长等于圆锥底面圆的周长.2.圆锥侧面展开图的有关计算.。
九年级数学弧长及扇形的面积导学案

3.9弧长及扇形的面积导学案小组名称:姓名:得分:学习目标:1、理解扇形的概念,探索弧长及扇形面积计算公式并会应用n°的圆心角所对的弧长和扇形面积的计算公式解决问题;2、经历探索弧长和扇形面积计算公式的过程,锻炼自己的合作、交流能力;3.应用弧长和扇形面积计算公式解决实际问题,体验数学与生活的密切联系.学习流程:一、课前预习:2.圆的面积公式是3. 概念:如图,由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形。
二、探究学习:任务一:小组合作探索弧长公式问题探索:圆的周长可以看作______度的圆心角所对的弧.如果圆的半径为R,那么,①圆心角是1°,它所对的弧长________;②圆心角是2°,它所对的弧长_________;③圆心角是3°,它所对的弧长________;④圆心角是n°,它所对的弧长________;如果弧长为L,那么弧长的计算公式为: L=__________________________任务二:自主探究扇形面积的计算公式(1)圆的面积可以看作度圆心角所对的扇形的面积;(2)如果圆的半径为R,那么,圆心角1°的扇形面积等于;圆心角2°的扇形面积等于;圆心角3°的扇形面积等于;圆心角n°的扇形面积等于;总结:如果扇形圆心角度数为n,半径为R,那么扇形面积的计算公式为:S=__________________________任务三:你能结合弧长公式把扇形面积公式进行简化,用含L的式子表示扇形面积吗?(小组内展示交流)因此扇形面积的计算公式为:S=______________三、课后自我反思本节课的收获是什么?达标检测1.在半径为12的⊙O 中,150°的圆心角所对的弧长等于2.已知扇形的圆心角为60°,半径为5,则扇形有周长为3.半径为3cm ,圆心角为120°的扇形的面积为4.扇形的圆心角为120°,弧长为6πcm面积为c ㎡5.如图所示,⊙A 、⊙B 、⊙C 均相离,且半径均为1,则三个扇形的的面积之和为 ;家庭作业:1.弧长等于半径的圆弧所对应的圆心角是( ) 2.正三角形ABC 内接于半径为2cm 的圆,则AB 所对弧的长为( )3.已知圆弧的半径为50,圆心角为60○,则此弧的弧长为 ;4. 如图,在两个同心圆中,两圆半径分别为2,1,∠AOB=120°,则阴影部分面积是( )5.已知圆的周长是6π,那么60°的圆心角所对的弧长是( )6.如右图,已知AB 为⊙O 的直径,BC 为弦,若∠A=30°,BC=2,则弧BC 的长为 ,扇形COB 的面积为7、一个扇形的弧长为20πcm ,面积是240πc ㎡,则该扇形的圆心角为 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《圆》第四节弧长和扇形面积导学案1
主编人:占利华主审人:文档设计者:设计时间:文档类型:
文库精品文档,欢迎下载使用。
Word精品文档,可以编辑修改,放心下载
班级:学号:姓名:
学习目标:
【知识与技能】
1、理解并掌握弧长及扇形面积的计算公式
2、会利用弧长、扇形面积计算公式计算简单组合图形的周长
【过程与方法】
1、认识扇形,会计算弧长和扇形的面积
2、通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获得新知识的能力
【情感、态度与价值观】
1、通过对弧长及扇形的面积公式的推导,理解整体和局部
2、通过图形的转化,体会转化在数学解题中的妙用
【重点】
弧长和扇形面积公式,准确计算弧长和扇形的面积
【难点】
运用弧长和扇形的面积公式计算比较复杂图形的面积
学习过程:
一、自主学习
(一)复习巩固
1、小学里学习过圆周长的计算公式、圆面积计算公式,那公式分别是什么?
2、我们知道,弧长是它所对应的圆周长的一部分,扇形面积是它所对应的圆面积的一
部分,那么弧长、扇形面积应怎样计算呢?
(二)自主探究
1、如图,某传送带的一个转动轮的半径为10cm
1)转动轮转一周,传送带上的物品A被传送多少厘米?
2)转动轮转1°,传送带上的物品A被传送多少厘米?
3)转动轮转n°,传送带上的物品A被传送多少厘米?
O
B
O
B
A
A
B
O
A B
O
A
B O
2、制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算下图中管道
的展直长度,即的长(结果精确到0.1mm).
3、上面求的是110°的圆心角所对的弧长,若圆心角为n ︒,如何计算它所对的弧长呢? 请同学们计算半径为3cm ,圆心角分别为180︒、90︒、45︒、1︒、n ︒所对的弧长。
因此弧长的计算公式为
l =__________________________
4、如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形
问:右图中扇形有几个?同求弧长的思维一样,要求扇形的面积,应思考圆心角为1︒的扇形面积是面积的几分之几?进而求出圆心角n 的扇形面积 如果设圆心角是n °的扇形面积为S ,圆的半径为r ,
那么扇形的面积为S = ___ .
因此扇形面积的计算公式:
S =———————— 或 S =——————————
(三)、归纳总结:
1、 叫扇形
2、弧长的计算公式是 扇形面积的计算公式是
(四)自我尝试:
已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。
二、教师点拔
1、本节学习有数学知识有弧长计算公式 和扇形 面积公式
2、与圆有关的阴影面积计算问题有时化零为整,有时化整为零,转化的方法是用割补法,为此常添加适当的辅助线。
三、课堂检测
1、如果扇形的圆心角是230°,那么这个扇形的面积等于这个扇形所在圆的面积的____________;
2、扇形的面积是它所在圆的面积的
3
2
,这个扇形的圆心角的度数是_________°. 3、扇形的面积是S ,它的半径是r ,这个扇形的弧长是_____________
四、课外训练
1、如图,PA 、PB 切⊙O 于A 、B ,求阴影部分周长和面积。
2、如图,⊙A 、⊙B 、⊙C 、⊙D 相互外离,它们的半径是1,顺次连结四个圆心得到四边形ABCD ,则图中四个扇形的面积和是多少?
B
3、一块等边三角形的木板,边长为1,现将木板沿水平线翻滚,那么B 点从开始至结束所走过的路径长度是多少?
4、圆心角为60°的扇形的半径为10厘米,求这个扇形的面积和周长.
5、已知如图,在以O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,C 为切点。
设弦AB 的长为d ,圆环面积S 与d 之间有怎样的数量关系?
6、如图,正三角形ABC 的边长为2,分别以A 、B 、C 为圆心,1为半径画弧,与△ABC 的内切圆O 围成的图形为图中阴影部分。
求S 阴影。
7、如图,扇形OAB 的圆心角是90°,分别以OA 、OB 为直径在扇形内作半圆,则12S S 、 两部分图形面积的大小关系是什么?
可以编辑的试卷(可以删除)。