冷挤压和冷锻简介介绍

合集下载

冷锻工艺的详细介绍

冷锻工艺的详细介绍

铁芯类
此铁芯可用高速机 生产:300min/PCS
此孔Pin线打孔
此孔Pin线打孔
此孔Pin线打孔
此孔圆弧孔
此孔深孔台阶孔
铁芯类
此凸点为顶针顶出
轴类(圆)
轴类(圆)
轴类(打孔)
轴类(打孔)
轴类(扁旳)
轴类(搓沟)
轴类(搓螺丝)
第三节冷锻产品旳加工计算措施
一、单重计算:
略图1、
略图2、
Si(硅)
-
Mn(锰)
沸腾钢
≤0.60 ≤0.60 0.60-0.60 0.60-0.60 0.60-0.60 0.60-0.60
≤0.10 ≤0.10 ≤0.10 ≤0.10 ≤0.10 ≤0.10 ≤0.10 ≤0.10 ≤0.10 ≤0.10
≤0.60 ≤0.60 0.60-0.60 0.60-0.60 0.60-0.60 0.60-0.90 0.60-0.90 0.70-1.00 0.30-0.60 0.70-1.00
四、根据产品计算膨胀比,确认头部是否能够到位:
1、产品膨胀比:
d22.h +D2.t
d3
铁(Fe) ≤ 3.5(倍)
但l、d2>d1
经验数 不锈钢
≤ 3.0(倍)
例:
经验数
=材料线径
d1=d=4 d2=4.5 D=10
4.52×3.5+102×1.5 ≤ 3.45(倍) 43
h=3.5
t=1.5
五、根据产品计算断面收缩率,确认打孔部品是否能够加工:
冷锻技术将来发展动向:
二十一世纪,在冷锻技术旳生产应用和理论研究方面,我国正在继续追赶世界先进水平并有自己旳特 色。某些工厂企业,尤其是某些汽车零部件生产厂家,在主动应用冷锻加工发展汽车零件中旳冷锻件,

金属材料的成型工艺

金属材料的成型工艺

金属材料的成型工艺引言金属材料的成型工艺是指通过加热、加压和变形等手段,将金属材料由初始形状转变为目标形状的工艺过程。

金属材料的成型工艺在制造业中占据着重要地位,广泛应用于汽车制造、航空航天、电子设备等领域。

本文将介绍金属材料的成型工艺的几种常见方法。

压力成形压力成形是金属材料成型工艺中最常见的一种方法。

它通过施加压力将金属材料强制塑造成所需形状。

主要的压力成形工艺包括锻造、冲压和挤压。

锻造锻造是一种将金属材料加热到一定温度后,在冷镦机或锻压机上施加压力进行塑性变形的工艺。

锻造通常分为冷锻和热锻两种方式。

与其他成型工艺相比,锻造具有精度高、力学性能好等优点。

冲压冲压是利用冲床将板材或带材冲压成所需形状的工艺。

冲压通常包括剪切、冲孔、成形等步骤。

冲压工艺具有高效率、高精度和批量生产能力等优点。

挤压挤压是将金属材料塑性变形成为具有一定截面形状的长条材料的工艺。

它可以通过挤压机将金属材料挤压出所需形状。

挤压工艺具有高生产效率和高材料利用率等优点。

热成形热成形是指在金属材料加热至高温状态下进行塑性变形的工艺。

热成形通常包括热锻、热轧和挤压等方法。

热锻热锻是一种在金属材料达到高温时施加压力进行塑性变形的工艺。

热锻通常在1200℃以上的高温下进行,可以获得更好的塑性变形性能和力学性能。

热轧热轧是将金属材料加热到较高温度后通过轧机进行连续轧制的工艺。

热轧可以改变材料的厚度、宽度或长度,并使材料达到所需的机械性能。

热挤压热挤压是一种在金属材料达到高温时将其压入模具中进行塑性变形的工艺。

热挤压通常适用于薄壁、大截面和复杂形状的金属制品的生产。

冷成形冷成形是指在室温下进行金属材料塑性变形的工艺。

冷成形通常包括冷轧、冷挤压和冷拉伸等方法。

冷轧冷轧是将金属材料在室温下通过轧机进行塑性变形的工艺。

冷轧通常用于薄板材料的生产,可以提高材料的表面质量和机械性能。

冷挤压冷挤压是一种在室温下将金属材料通过模具进行塑性变形的工艺。

冷挤压和冷锻简介介绍

冷挤压和冷锻简介介绍

冷镦、冷挤压基础知识介绍发布日期:2007-03-16 浏览次数:54冷挤压是精密塑性体积成形技术中的一个重要组成部分。

冷挤压是指在冷态下将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及具有一定力学性能的挤压件。

显然,冷挤压加工是靠模具来控制金属流动,靠金属体积的大量转移来成形零件的。

冷挤压技术是一种高精、高效、优质低耗的先进生产工艺技术,较多应用于中小型锻件规模化生产中。

与热锻、温锻工艺相比,可以节材30%~50%,节能40%~80%而且能够提高锻件质量,改善作业环境。

目前,冷挤压技术已在紧固件、机械、仪表、电器、轻工、宇航、船舶、军工等工业部门中得到较为广泛的应用,已成为金属塑性体积成形技术中不可缺少的重要加工手段之一。

二战后,冷挤压技术在国外工业发达国家的汽车、摩托车、家用电器等行业得到了广泛的发展应用,而新型挤压材料、模具新钢种和大吨位压力机的出现便拓展了其发展空间。

日本80年代自称,其轿车生产中以锻造工艺方法生产的零件,有30%~40%是采用冷挤压工艺生产的。

随着科技的进步和汽车、摩托车、家用电器等行业对产品技术要求的不断提高,冷挤压生产工艺技术己逐渐成为中小锻件精化生产的发展方向。

与其他加工工艺相比冷挤压有如下优点:1)节约原材料。

冷挤压是利用金属的塑性变形来制成所需形状的零件,因而能大量减少切削加工,提高材料利用率。

冷挤压的材料利用率一般可达到80%以上。

2)提高劳动生产率。

用冷挤压工艺代替切削加工制造零件,能使生产率提高几倍、几十倍、甚至上百倍。

3)制件可以获得理想的表面粗糙度和尺寸精度。

零件的精度可达IT7~IT8级,表面粗糙度可达R0.2~R0.6。

因此,用冷挤压加工的零件一般很少再切削加工,只需在要求特别高之处进行精磨。

4)提高零件的力学性能。

冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度远高于原材料的强度。

冷挤压和冷锻简介

冷挤压和冷锻简介

冷镦、冷挤压基础知识介绍发布日期:2007-03-16 浏览次数:54冷挤压是精密塑性体积成形技术中的一个重要组成部分。

冷挤压是指在冷态下将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及具有一定力学性能的挤压件。

显然,冷挤压加工是靠模具来控制金属流动,靠金属体积的大量转移来成形零件的。

冷挤压技术是一种高精、高效、优质低耗的先进生产工艺技术,较多应用于中小型锻件规模化生产中。

与热锻、温锻工艺相比,可以节材30%~50%,节能40%~80%而且能够提高锻件质量,改善作业环境。

目前,冷挤压技术已在紧固件、机械、仪表、电器、轻工、宇航、船舶、军工等工业部门中得到较为广泛的应用,已成为金属塑性体积成形技术中不可缺少的重要加工手段之一。

二战后,冷挤压技术在国外工业发达国家的汽车、摩托车、家用电器等行业得到了广泛的发展应用,而新型挤压材料、模具新钢种和大吨位压力机的出现便拓展了其发展空间。

日本80年代自称,其轿车生产中以锻造工艺方法生产的零件,有30%~40%是采用冷挤压工艺生产的。

随着科技的进步和汽车、摩托车、家用电器等行业对产品技术要求的不断提高,冷挤压生产工艺技术己逐渐成为中小锻件精化生产的发展方向。

与其他加工工艺相比冷挤压有如下优点:1)节约原材料。

冷挤压是利用金属的塑性变形来制成所需形状的零件,因而能大量减少切削加工,提高材料利用率。

冷挤压的材料利用率一般可达到80%以上。

2)提高劳动生产率。

用冷挤压工艺代替切削加工制造零件,能使生产率提高几倍、几十倍、甚至上百倍。

3)制件可以获得理想的表面粗糙度和尺寸精度。

零件的精度可达IT7~IT8级,表面粗糙度可达R0.2~R0.6。

因此,用冷挤压加工的零件一般很少再切削加工,只需在要求特别高之处进行精磨。

4)提高零件的力学性能。

冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度远高于原材料的强度。

挤压工艺与模具设计

挤压工艺与模具设计

挤压工艺及模具设计Extrusion Technology and Mould Design一、挤压工艺分类挤压可分为以下三类:1)冷挤压,又称冷锻,一般指在回复温度以下(室温)的挤压。

2)温挤压,一般指坯料在金属再结晶温度以下、回复温度以上进行的挤压。

对于黑色金属,以600℃为界,划分为低温挤压和高温挤压。

3)热挤压,指坯料在金属再结晶温度以上进行的挤压。

1)冷挤压工艺冷挤压是在冷态下,将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及一定力学性能的挤压件。

冷挤压与热锻、粉末冶金、铸造及切削加工相比,具有以下主要优点:1)因在冷态下挤压成形,挤压件质量好、精度高、其强度性能也好;2)冷挤压属于少、无切削加工,节省原材料;3)冷挤压是利用模具来成形的,其生产效率很高;4)可以加工其它工艺难于加工的零件。

2)温挤压工艺温挤压成形技术是近年来在冷挤压塑性成形基础上发展起来的一种少无切削新工艺,又称温热挤压。

它与冷、热挤压不同,挤压前已对毛坯进行加热,但其加热温度通常认为是在室温以上、再结晶温度以下的温度范围内。

对温挤压的温度范围目前还没有一个严格的规定。

有时把变温前将毛坯加热,变形后具有冷作硬化的变形,称为温变形。

或者,将加热温度低于热锻终锻温度的变形,称为温变形。

从金属学观点来看,区分冷、热加工可根据金属塑性变形后有无加工硬化现象存在来决定似乎更合理些。

在金属塑性变形后存在加工硬化现象这个过程称为冷变形及温变形。

3)热挤压工艺热挤压是几种挤压工艺中最早采用的挤压成形技术,它是在热锻温度时借助于材料塑性好的特点,对金属进行各种挤压成形。

目前,热挤压主要用于制造普通等截面的长形件、型材、管材、棒料及各种机器零件等。

热挤压不仅可以成形塑性好,强度相对较低的有色金属及其合金,低、中碳钢等,而且还可以成形强度较高的高碳、高合金钢,如结构用特殊钢、不锈钢、高速工具钢和耐热钢等。

冷锻工艺的详细介绍

冷锻工艺的详细介绍

冷锻工艺的详细介绍
1冷锻工艺
冷锻工艺是一种热处理工艺,它利用冷锻和模具来改善材料的力学性能,创造更高的强度和更大的金属塑性或韧性,这通常可以实现材料的尺寸精度和强度的提高。

2步骤
(1)首先,应用冷锻能量来进行表面处理,以改善表面均匀性。

模具的形状被设计为遵循目标零件的形状,以实现特定的尺寸要求。

(2)然后,材料在模具中结合挤压力和高温,将不同类型的零件形状改善。

(3)接下来,冷却处理(可能需要慢速冷却)将应用于改变材料组织结构和力学性能。

(4)最后,金属零件被去除出模具,然后经过必要的加工加工和检查,就可以完成冷锻工艺了。

3工艺特点
冷锻工艺的最大优势之一是其高生产效率。

它通过应用冷锻能量来改变材料性能,可以有效降低加工时间。

此外,它还可以实现高尺寸精度,以及提供耐用的强度和强壁厚度。

冷锻工艺还可以实现更多的特点,如更高的弯曲和抗拉伸强度,更好的硬度和缩小材料的尺寸,以及更好的耐腐蚀性。

由于它对材料表面形状的精确控制,因此冷锻工艺可以用于生产各种形状和尺寸的零件。

4应用
由于冷锻工艺可以提供一般以上的性能以及相当高的产出,它的应用非常广泛。

它主要用于金属模具,钣金加工、内燃机铝块或不锈钢,汽车零部件,电子部件和航空航天等行业。

冷变形的特点及应用

冷变形的特点及应用冷变形是指材料在低温下发生塑性变形的现象。

与常温下的塑性变形相比,冷变形具有以下几个特点:1. 温度影响:冷变形发生在低温下,一般为材料的固定温度下进行变形。

温度的降低会使材料的塑性变形能力降低,增加了材料的强度和硬度。

因此,在进行冷变形时,需要施加更大的应力才能使材料发生塑性变形。

2. 麻痹效应:冷变形会使材料表面产生麻痹效应,即材料表面的晶粒被拉长,使其变得细长而不规则。

这种细长的晶粒会使材料的塑性变形能力降低,增加了材料的强度和硬度。

3. 冷变形强度:冷变形会使材料的强度和硬度增加。

在冷变形过程中,材料的晶体结构会发生改变,晶粒会被拉长并细化,这种细化的晶粒结构会使材料的强度和硬度增加。

4. 冷加工硬化:冷变形会使材料的硬度增加,这是由于冷变形过程中材料的晶体结构发生了改变,晶粒会被拉长并细化。

这种细化的晶粒结构会增加材料的位错密度,从而增加了材料的硬度。

冷变形具有以下几个应用:1. 冷轧:冷轧是一种常见的冷变形加工方法,用于制造薄板和带材。

冷轧过程中,金属材料通过辊道冷却后,在低温下被压制成所需的形状。

冷轧可以使材料的强度和硬度增加,同时还可以提高材料的表面质量和尺寸精度。

2. 冷拉伸:冷拉伸是一种将金属材料拉伸至所需尺寸的加工方法。

在冷拉伸过程中,材料在低温下被拉伸,从而使其形状发生变化。

冷拉伸可以使材料的强度和硬度增加,同时还可以提高材料的表面质量和尺寸精度。

3. 冷挤压:冷挤压是一种将金属材料通过模具压制成所需形状的加工方法。

在冷挤压过程中,材料在低温下通过模具的挤压作用,使其发生塑性变形。

冷挤压可以使材料的强度和硬度增加,同时还可以提高材料的表面质量和尺寸精度。

4. 冷锻:冷锻是一种将金属材料通过模具的冷锻作用,使其形状发生变化的加工方法。

在冷锻过程中,材料在低温下被模具锤击,从而使其发生塑性变形。

冷锻可以使材料的强度和硬度增加,同时还可以提高材料的表面质量和尺寸精度。

冷挤压工艺

冷挤压工艺今天,在这篇文章中,我将介绍一种称为冷挤压工艺的技术。

它的应用范围广泛,在工业界有着重要的地位。

冷挤压是一种利用模具对金属材料进行加工的方式。

它可以把原来本来就比较软的金属,经过挤压后使其变得更加坚硬。

挤压的压力一般来自于模具的重量和模具的尺寸,当然也可以通过模具的结构来控制挤压的压力值。

另外,还有两种更常用的冷挤压工艺,一种是多次挤压,另一种是连续挤压。

多次挤压可以使每一次挤压得到均匀的材料,从而改善材料的品质。

而连续挤压则可以大大提高产品的生产效率,是时间效率和物料利用率极高的一种工艺。

冷挤压工艺广泛应用于工业生产,它可以用于制造大量相同的零件,它也可以加工复杂的材料,使其物理性能达到所需的要求。

另外,冷挤压工艺还能够有效的减少材料的缺陷,降低收率,甚至改善材料的物理性能,提高材料的使用寿命。

由于冷挤压工艺拥有以上性能,它在许多行业中有广泛的应用,例如汽车制造、机械加工、电子、家电等等。

最典型的是汽车制造行业,在汽车制造用冷挤压工艺制出的冷挤压零件,可以明显的提高汽车的安全性,而且,这种零件更加耐久、结构简单,具有良好的经济效益。

然而,冷挤压工艺也不是完全没有缺点的。

冷挤压工艺的处理速度会比较慢,而且,如果整个工艺操作不当,还可能给最终产品带来损害。

另外,冷挤压工艺中在运输过程中,材料容易受到振动,这可能会破坏最终形成的零件,从而影响最终产品的质量。

就冷挤压工艺而言,它在不同行业有着广泛的应用,它可以有效的提高零件的质量,承载能力和耐磨性,同时减少收率,提高生产效率,是相当有效的工艺。

当然,在大规模的生产中,要做好整个挤压过程的控制,以确保最终产品质量的稳定性。

本文介绍了一种名为冷挤压工艺的技术,主要介绍了这种技术的应用范围和性能,以及在不同行业中的应用,以及存在的一些问题。

总之,冷挤压工艺是一种重要的工艺技术,必须正确地使用,才能获得最佳的使用效果。

冷镦的基础知识

温挤压不仅适用于变形抗力高的难加因为温挤压有便于组织连续生产的优点。在冷挤压时,包括冷挤压低碳钢在内,一般在加工前要进行预先软化退火,在各道冷挤压工序之间也要进行退火处理。在冷挤压以前要进行钝化处理。这就使得组织连续生产产生困难。温挤压时可以不进行预先软化退火和各工序之间的退火,也可以不进行表面处理,这就使得组织连续生产成为可能.至少可以减少许多辅助工序*
冷挤压技术是一种高精、高效、优质低耗的先进生产工艺技术,较多应用于中小型锻件规模化生产中。与热锻、温锻工艺相比,可以节材30%~50%,节能40%~80%而且能够提高锻件质量,改善作业环境。
目前,冷挤压技术已在紧固件、机械、仪表、电器、轻工、宇航、船舶、军工等工业部门中得到较为广泛的应用,已成为金属塑性体积成形技术中不可缺少的重要加工手段之一。二战后,冷挤压技术在国外工业发达国家的汽车、摩托车、家用电器等行业得到了广泛的发展应用,而新型挤压材料、模具新钢种和大吨位压力机的出现便拓展了其发展空间。日本80年代自称,其轿车生产中以锻造工艺方法生产的零件,有30%~40%是采用冷挤压工艺生产的。随着科技的进步和汽车、摩托车、家用电器等行业对产品技术要求的不断提高,冷挤压生产工艺技术己逐渐成为中小锻件精化生产的发展方向。与其他加工工艺相比冷挤压有如下优点:
根据挤压时金属流动方向与凸模运动方向之间的关系,
常用的挤压方法可以分为以下几类。
(一)正挤压 挤压时,金属的流动方向与凸横的运动方向相一致。正挤压又分为实心件正挤压空心件正挤压两种。正挤压法可以制造各种形状的实心件和空心件,如螺钉、心轴、管子和弹壳等。
(二)反挤压 挤压时,金屑的流动方向与凸模的运动方向相反,反挤压法可以制造各种断面形状的杯形件,如仪表罩壳、万向节轴承套等。
4) 挤压专机将成为一种发展趋势。随着中小型锻件的精化生产发展及冷挤压、温挤压工艺的推广应用,多工位冷挤压压力机、精压机及针对某种锻件而设计制造的专机会得到大力发展。

不锈钢的锻造加工方式

不锈钢的锻造加工方式
不锈钢的锻造加工方式主要有以下几种:
1. 热锻:将不锈钢加热到一定温度,通过锤击或压力机的冲击力使其发生塑性变形,从而改变其形状和尺寸。

热锻能够提高不锈钢的塑性和韧性,使其具有更好的力学性能。

2. 冷锻:在常温下对不锈钢进行变形,常用的冷锻方式有冷锤锻和冷挤压。

冷锻对材料的硬化效果较好,可以提高不锈钢的强度和硬度。

3. 轧制锻造:将不锈钢放在轧机中进行连续压制和塑性变形,通过轧制使其形状和尺寸发生变化。

轧制锻造通常适用于制造板材、管材、棒材等形状复杂的不锈钢产品。

4. 粉末冶金:将不锈钢粉末按照一定比例混合,然后通过加热和压力使其结合成形,在热固化和烧结的同时使不锈钢的性能得到提高。

粉末冶金适用于制造复杂形状和高精度要求的不锈钢零件。

5. 光敏材料锻造:利用激光束对不锈钢进行加热和变形,通过快速冷却使其形成高硬度的表层,并在内部形成具有良好韧性的组织。

光敏材料锻造适用于制造高强度、高硬度和高耐磨性的不锈钢零件。

以上是常见的不锈钢锻造加工方式,具体选择哪种方式取决于不锈钢的材质、形状和加工要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冷镦、冷挤压基础知识介绍发布日期:2007-03-16 浏览次数:54冷挤压是精密塑性体积成形技术中的一个重要组成部分。

冷挤压是指在冷态下将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及具有一定力学性能的挤压件。

显然,冷挤压加工是靠模具来控制金属流动,靠金属体积的大量转移来成形零件的。

冷挤压技术是一种高精、高效、优质低耗的先进生产工艺技术,较多应用于中小型锻件规模化生产中。

与热锻、温锻工艺相比,可以节材30%~50%,节能40%~80%而且能够提高锻件质量,改善作业环境。

目前,冷挤压技术已在紧固件、机械、仪表、电器、轻工、宇航、船舶、军工等工业部门中得到较为广泛的应用,已成为金属塑性体积成形技术中不可缺少的重要加工手段之一。

二战后,冷挤压技术在国外工业发达国家的汽车、摩托车、家用电器等行业得到了广泛的发展应用,而新型挤压材料、模具新钢种和大吨位压力机的出现便拓展了其发展空间。

日本80年代自称,其轿车生产中以锻造工艺方法生产的零件,有30%~40%是采用冷挤压工艺生产的。

随着科技的进步和汽车、摩托车、家用电器等行业对产品技术要求的不断提高,冷挤压生产工艺技术己逐渐成为中小锻件精化生产的发展方向。

与其他加工工艺相比冷挤压有如下优点:1)节约原材料。

冷挤压是利用金属的塑性变形来制成所需形状的零件,因而能大量减少切削加工,提高材料利用率。

冷挤压的材料利用率一般可达到80%以上。

2)提高劳动生产率。

用冷挤压工艺代替切削加工制造零件,能使生产率提高几倍、几十倍、甚至上百倍。

3)制件可以获得理想的表面粗糙度和尺寸精度。

零件的精度可达IT7~IT8级,表面粗糙度可达R0.2~R0.6。

因此,用冷挤压加工的零件一般很少再切削加工,只需在要求特别高之处进行精磨。

4)提高零件的力学性能。

冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度远高于原材料的强度。

此外,合理的冷挤压工艺可使零件表面形成压应力而提高疲劳强度。

因此,某些原需热处理强化的零件用冷挤压工艺后可省去热处理工艺,有些零件原需要用强度高的钢材制造,用冷挤压工艺后就可用强度较低的钢材替用。

5)可加工形状复杂的,难以切削加工的零件。

如异形截面、复杂内腔、内齿及表面看不见的内槽等。

6)降低零件成本。

由于冷挤压工艺具有节约原材料、提高生产率、减少零件的切削加工量、可用较差的材料代用优质材料等优点,从而使零件成本大大降低。

冷挤压技术在应用中存在的难点主要有:1)对模具要求高。

冷挤压时毛坯在模具中受三向压应力而使变形抗力显著增大,这使得模具所受的应力远比一般冲压模大,冷挤压钢材时,模具所受的应力常达2000MPa~2500MPa。

例如制造一个直径38mm,壁厚5.6mm,高100mm的低碳钢杯形件为例,采用拉延方法加工时,最大变形力仅为17t,而采用冷挤压方法加工时,则需变形力132t,这时作用在冷挤压凸模上的单位压力达2300MPa以上。

模具除需要具有高强度外,还需有足够的冲击韧性和耐磨性。

此外,金属毛坯在模具中强烈的塑性变形,会使模具温度升高至250℃~300℃左右,因而,模具材料需要一定的回火稳定性。

由于上述情况,冷挤压模具的寿命远低于冲压模。

2)需要大吨位的压力机。

由于冷挤压时毛坯的变形抗力大,需用数百吨甚至几千吨的压力机。

3)由于冷挤压的模具成本高,一般只适用于大批量生产的零件。

它适宜的最小批量是5~10万件。

4)毛坯在挤压前需进行表面处理。

这不但增加了工序,需占用较大的生产面积,而且难以实现生产自动化。

5)不宜用于高强度材料加工。

6)冷挤压零件的塑性、冲击韧性变差,而且零件的残余应力大,这会引起零件变形和耐腐蚀性的降低(产生应力腐蚀)国内外冷挤压技术发展过程现代冷挤压技术是从18世纪末开始的,法国人在法国革命时代把铅从小孔中挤出制成枪弹,开始了冷挤压。

1830年在法国已经有人开始利用机械压力机,采用反挤压方法制造铅管和锡管。

1906年美国为了制造黄铜的西服纽扣,已经有人取得了正挤压空心杯形坯料的专利权。

1909年美国人获得专利的Hooker法——正向冲挤法,金属流动方向与冲挤方向相同,就是在买了1906年的专利之后发展起来的,该专利中的杯形坯料,是采用拉深法制造的。

第一次世界大战中,曾用Hooker法制造了黄铜弹壳,而在第二次世界大战以前的1934年,德国人就利用这种方法试制了钢弹壳,但因热胶着严重,没有成功。

直到第二次世界大战中期由于采用了新的表面润滑处理方法——使工件表面形成磷酸盐薄膜,挤压方法制造钢质弹壳获得成功。

自此,冷挤压技术走向实用,成为冷锻技术中应用最广泛的一种方法。

60年代,日本汽车工业的成长,为冷挤压技术的发展创造了有利的条件。

从冷挤压设备上看,自从1933年,日本会田株式会社生产了日本第一台 2000kN PK型精压机(肘杆式压力机)以来,到目前为止,己生产了2000多台PK系列压力机。

随着汽车工业的发展,对高精度压力机的要求愈加迫切,会田株式会社又研制成功了各种锻造压力机。

同时,日本小松研制了以高精度和易于操作为目标的 LIC、LZC系列冷锻成形压力机。

从冷挤压产品上看,日本70年代成功冷挤压启动离合器齿轮、传动轴花键、交流发电机磁极铁芯。

80年代,又成功冷挤大型高精度等速圆球外座圈、内座圈、十字轴、汽车差速器伞齿轮等高精零件。

为日本汽车的高性能化和降低生产成本做出了很大贡献。

我国的冷挤压技术与日本的起步时间相当。

70年代,我国曾在自行车、汽车电器等批量生产的产品中,推广过冷挤压生产工艺技术,也开发成功了启动齿轮的挤压成形,并投入批量生产。

但由于未从根本上解决工艺、设备、材料、模具、润滑、自动化装置以及毛坯料的原始尺寸、原始状态、后处理等一系列技术问题,因而未得到较大发展。

80年代,随着家电和汽车摩托车工业的迅速发展,对冷挤压工艺设备及生产技术的引进、消化、吸收,科研人员通过生产实践攻克了冷挤压技术的不少难题与此同时冷锻设备也有了较大发展。

目前,我国己能用冷挤压工艺生产表壳、自行车飞轮、中轴、精锻齿轮、汽车用等速万向节、内燃机用火花塞与活塞销、汽车挺杆、照相机零件、汽车启动器定向套筒、启动齿轮等,且己达到国外同等水平。

冷挤压技术的发展趋势1)随着能源危机的日趋严重,人们对环境质量将更加关注,加之市场竞争日益加剧,促使锻件生产向高效、高质、精化、节能节材方向发展。

因此用挤压成形等工艺手段所生产的精化锻件的产量,在市场竞争中将得到较大的发展。

2)汽车向轻型化、高速度、平稳性方向发展,对锻件的尺寸精度、重量精度及力学性能等都提出了较高的要求。

如轿车发动机用连杆锻件除对大小头之间的误差有要求外,对每件的重量误差也要求不大于八克。

新产品的高要求,将促进精化生产工艺的发展。

3)专业化、规模化的组织生产仍是冷挤压生产的发展方向和趋势。

在法国,以挤压成形工艺生产锻件的专业厂家1991-1994年全员劳动生产率,即每人生产挤压件的产量及产值,均高于一般生产模锻件或者自由锻件的厂家。

以1994年为例,专业厂家挤压件人均产量为 51024KG,创产值775688法郎。

而同期一般性生产模锻件的厂家,其人均产量仅为39344KG,产值592384法郎,仅相当于挤压件专业生产厂家的77.1%和76.37%。

自由锻件生产厂与之相比则更低。

4) 挤压专机将成为一种发展趋势。

随着中小型锻件的精化生产发展及冷挤压、温挤压工艺的推广应用,多工位冷挤压压力机、精压机及针对某种锻件而设计制造的专机会得到大力发展。

冷温挤压的定义和分类挤压是迫使金屑块料产生塑性流动,通过凸模与凹模间的间隙或凹模出口,制造空心或断面比毛坯断面要小的零件的一种工艺方法。

如果毛坯不经加热就进行挤压,便称为冷挤压。

冷挤压是无切屑、少切屑零件加工工艺之一,所以是金屑塑性加工中一种先进的工艺方法。

如果将毛坯加热到再结晶温度以下的温度进行挤压,便称为温挤压。

温挤压仍具有少无切屑的优点。

根据挤压时金属流动方向与凸模运动方向之间的关系,常用的挤压方法可以分为以下几类。

(一)正挤压挤压时,金属的流动方向与凸横的运动方向相一致。

正挤压又分为实心件正挤压空心件正挤压两种。

正挤压法可以制造各种形状的实心件和空心件,如螺钉、心轴、管子和弹壳等。

(二)反挤压挤压时,金屑的流动方向与凸模的运动方向相反,反挤压法可以制造各种断面形状的杯形件,如仪表罩壳、万向节轴承套等。

(三)复合挤压挤压时,毛坯一部分金属流动方向与凸模的运动方向相同,而另一部分金屑流动方向则与凸模的运动方向相反,复合挤压法可以制造双杯类零件,也可以制造杯杆类零件和杆杆类零件。

(四)减径挤压变形程度较小的一种变态正挤压法,毛坯断面仅作轻度缩减。

主要用于制造直径相差不大的阶梯轴类零件以及作为深孔杯形件的修整工序。

以上几种挤压的共同特点是:金屑流动方向都与凸模轴线平行,因此可统称为轴向挤压法。

另外还有径向挤压和镦挤法。

冷挤压的主要矛盾冷挤压是在金属冷态下,而且是在强烈的三向压应力状态下变形的,因此变形抗力较大,如以制造一个直径38mm、厚5.6mm、高100mm的杯形低碳钢零件为例,采用深拉伸方法加工。

最后一次拉伸工序仅需变形力170KN而采用冷挤压加工则需变形力1320KN。

这时作用在凸模上的单位压力达到2300MP以上,相当于大气压力的23000倍。

由于变形抗力高,所以就导致以下的缺点:(1)模具易磨损,易破坏、因此要求模具材料好。

目前一般模具钢,其许用应力最大只能达2500MPa,最好的模具钢也不超过3000MPa。

为了解决冷挤压的主要矛盾,就得采取各种技术措施,在尽力降低冷挤压材料变形抗力的同时,设法提高模具的承受能力。

以利于冷挤压生产的顺利进行。

2)对挤压设备要求较高,吨位要大。

除了要求挤压设备应有较大的强度以外,还要求有较好的刚度。

此外.还要求设备具有良好的精度并具有可靠的保险装置。

冷挤压和温挤压的比较:冷挤压虽有很多优点,但变形抗力大,就限制了零件的尺寸,同时也限制了变形抗力大的材料采用冷挤压工艺。

热挤压成形法,虽然可以使材料变形抗力变小,但由于加热,产生氧化、脱碳及热膨胀等问题,降低了产品的尺寸精度和表面质量,因而一般都需要经过大量的切削加工,才能作为最后产品。

温挤压是将毛坯加热到金属再结晶温度以下某个适当的温度进行挤压。

由于金属加热,毛坯的变形抗力减小.成形容易,压力机的吨位也可以减小,而且模具的寿命延长。

但与热挤压不同,因为在低温范围内加热,氧化、脱碳的可能性小,产品的机械性能与冷挤压的产品也差别不大。

特别是在室温下难加工的材料,例如析出硬化相的不锈钢、高碳钢、含铬量高的—些钢、高温合金等,在温挤压时可能变成可以加工或容易加工。

相关文档
最新文档