冷挤压和冷镦基础知识介绍
冷镦模具设计培训资料

冷镦模具设计培训资料冷镦模具设计是一项重要的工程技术,它涉及到冷镦工艺和模具结构的设计。
在冷镦生产过程中,模具起着关键性的作用,它决定了产品的加工精度、质量和生产效率。
因此,加强冷镦模具设计的培训是十分必要的。
以下是一份关于冷镦模具设计的培训资料。
一、冷镦模具设计的基本知识1.冷镦工艺的基本原理与特点:冷镦是利用金属在常温下的可塑性进行成型的一种冷加工方法。
冷镦工艺的特点是成型力量小、能耗低、能高效地将原材料加工成型,具有广泛的应用前景。
2.冷镦模具的分类:根据不同的加工要求和产品形状,冷镦模具主要可分为剪切模具、折边模具、拉伸模具和成形模具等几类。
3.冷镦模具的工作原理:冷镦模具是利用金属在受力作用下发生塑性变形,以达到所需产品形状和尺寸的一种工具。
冷镦模具的工作原理主要包括切削原理、切断原理、拉伸原理和成形原理等。
二、冷镦模具设计的基本步骤与方法1.冷镦模具设计的基本步骤:a.明确产品形状与尺寸要求;b.建立产品三维几何模型;c.分析产品的特点与加工工艺;d.制定模具加工工艺方案;e.进行模具结构设计;f.完善模具零部件设计;g.进行模具装配与调试;h.进行模具试验与修正;i.完善模具设计文件。
2.冷镦模具设计的基本方法:a.模具结构设计方法;b.模具加工工艺与工装设计方法;c.模具材料与热处理的选择方法;d.模具零部件装配与调试方法;e.模具试验与优化设计方法。
三、冷镦模具设计的关键技术与注意事项1.冷镦模具设计的关键技术:a.模具结构设计技术;b.模具零件设计技术;c.模具加工与装配技术;d.模具热处理技术。
2.冷镦模具设计的注意事项:a.注意材料的选择与热处理;b.注意模具结构的合理性与刚度;c.注意模具零部件的制造精度;d.注意模具的涂层保护与维护。
四、冷镦模具设计的应用与发展趋势1.冷镦模具设计的应用领域:冷镦模具广泛应用于汽车、摩托车、电子、家电、建筑设备等工业领域。
2.冷镦模具设计的发展趋势:a.使用CAD/CAM/CAE等先进技术进行模具设计与分析;b.开展模具标准化与模具设计规范的制定与推广;c.结合数值模拟与优化技术,提高冷镦模具设计与生产过程的效率和质量。
冷镦基础知识和工艺分析ppt

冷镦基础知识和工艺分析 ppt
contents
目录
• 冷镦成型工艺简介 • 冷镦成型工艺特点 • 冷镦成型工艺影响因素 • 冷镦成型工艺应用场景 • 冷镦成型工艺发展趋势 • 冷镦成型工艺常见问题及解决方案
01
冷镦成型工艺简介
冷镦成型工艺定义
冷镦成型工艺是指利用模具在常温下对金属坯料施加压力, 使其产生塑性变形而形成所需形状和尺寸的零件的一种成型 方法。
03
在冷镦成型工艺中,模具是关键的工艺装备之一,其结构形式、材料选择、热 处理工艺等因素直接影响到零件的质量和生产效率。
02
冷镦成型工艺特点
提高生产效率
加工效率
采用多工位冷镦成型方式,可同时处理多个零件,提高生产效率。
生产周期
通过减少或消除加热、矫直、打磨等辅助工序,缩短了生产周期。
提高零件强度
材料纯净度
3
材料中的杂质会对成型效果产生不良影响。
模具设计因素
模具结构
合理的模具结构可以降低成型难度和提高成型效 果。
模具材料
模具材料的硬度、耐磨性和抗冲击性能对成型效 果有影响。
模具加工精度
模具加工精度对成型件的尺寸和形状精度有影响 。
工艺参数选择
冷镦速度
速度过快会导致成型不充分,速 度过慢则会影响生产效率。
优化材料性能
材料利用率
冷镦成型工艺可以最大限度地利用原材料,提高材料的利用率,降低生产成本。
性能优化
通过合理的材料选择和冷镦工艺优化,可以进一步优化零件的性能,提高其使用 效果和寿命。
03
冷镦成型工艺影响因素
材料因素
1 2
材料硬度
硬度过高会导致成型困难,硬度过低则会使成 型效果不佳。
冷镦知识和工艺讲解

冷镦知识和工艺讲解1. 引言冷镦是一种常见的金属加工工艺,广泛应用于制造业中。
本文将介绍冷镦的基本知识和工艺讲解,包括工艺流程、设备、材料要求和优缺点等方面的内容。
2. 冷镦的基本概念冷镦是一种通过将金属坯料加热至适当温度,然后在冷态下进行镦制的金属加工方法。
它能够通过变形加工来改变金属材料的形状和大小。
冷镦的工艺非常灵活,可以生产各种形状的零部件,如螺栓、螺母、螺柱等。
3. 冷镦的工艺流程冷镦的工艺流程一般包括以下几个步骤:3.1 材料准备首先需要准备金属坯料,一般使用钢材或铜材制作。
材料的选择要根据具体产品的要求来确定,包括物理性质、化学成分和机械性能等。
3.2 加热处理金属坯料需要进行加热处理,以提高其可塑性和变形能力。
常用的加热方法包括电阻加热、感应加热和火焰加热等。
3.3 冷镦成型加热后的金属坯料送入冷镦机进行成型。
冷镦机是一种特殊的加工设备,通过压力和模具的作用,将金属坯料逐渐变形为所需形状。
3.4 后处理成型后的零件还需要进行后处理,包括清洗、去毛刺、抛光等步骤。
这些步骤可以提高零件的表面质量和尺寸精度。
3.5 检验和包装最后,对零件进行检验,确保其质量符合要求。
合格的零件经过包装后,可以进行销售或者下一道工序的加工。
4. 冷镦的设备冷镦机是冷镦过程中最重要的设备,它通常由下列部分组成:•送料装置:用于将金属坯料送入冷镦机,保持均匀的进料速度。
•压力机构:通过压力使金属坯料变形,完成冷镦过程。
•模具:冷镦模具决定了最终产品的形状和尺寸精度。
•冷却装置:用于冷却金属零件,防止变形和表面质量不良。
5. 冷镦材料的要求冷镦的材料要求主要包括以下几个方面:5.1 可镦性金属材料的可镦性是指其在冷态下的变形能力。
优秀的可镦性意味着材料容易变形,而不容易断裂。
一般来说,钢材的可镦性比较好,常用于冷镦加工。
5.2 易切削性金属材料的易切削性是指其在冷镦过程中,容易切断和形成所需形状。
易切削性好的材料在加工过程中能够减少切削力和模具磨损,提高生产效率和产品的质量。
冷镦材料基础知识培训

冷镦材料基础知识培训在冷镦加工领域,对于冷镦材料的选择和了解是非常重要的。
本文将为您介绍冷镦材料的基础知识,以帮助您更好地进行相关工作。
一、冷镦材料的概述冷镦加工是指将金属材料压制成所需形状的工艺过程,需要使用特定的冷镦材料。
冷镦材料主要分为两大类:无碳钢和合金钢。
无碳钢是指含碳量较低的钢材,不含或仅含微量的合金元素。
这类材料具有较好的可塑性和可加工性,适合于加工各种形状的产品。
合金钢则是在无碳钢的基础上加入了一定的合金元素,如铬、钼、钛等。
合金钢具有优异的强度、硬度和耐磨性,适合于生产高强度和特殊工况下使用的产品。
二、常见冷镦材料冷镦加工中常见的冷镦材料包括以下几种:1. SWRCH等无碳钢:这类材料具有较低的碳含量,适合于制造普通的螺栓、螺母和紧固件等产品。
2. SACM等合金钢:这类材料添加了少量的合金元素,具有较好的强度和硬度,适用于制造高强度的螺栓、销轴和连接件等。
3. SCM等合金钢:这类材料的合金元素含量较高,具有较高的耐磨性和抗拉强度,适用于生产耐磨零件和高强度连接件等。
三、冷镦材料的选择因素在选择冷镦材料时,需要考虑以下几个因素:1. 加工要求:根据产品的要求,选择具有相应可加工性能的冷镦材料,以保证产品的品质和工艺要求。
2. 抗拉强度:根据使用环境和产品的使用要求,选择合适的冷镦材料来满足产品的强度和硬度需求。
3. 耐磨性:针对需求耐磨性的产品,选择耐磨性较好的冷镦材料,以延长产品的使用寿命。
4. 成本考虑:根据产品的市场定位和成本控制要求,选择经济实用的冷镦材料。
四、冷镦材料的处理和表面处理冷镦材料在加工前需要进行相应的处理和表面处理,以提高其加工性能和产品质量。
1. 热处理:通过控制材料的加热和冷却过程,改变材料的组织结构和性能,提高其机械性能和耐磨性。
2. 表面处理:如镀锌、镀镍、镀铬等,可以提高冷镦产品的防腐性和表面硬度,延长其使用寿命。
五、冷镦材料的应用场景冷镦材料广泛应用于汽车、摩托车、机械设备、电子产品等行业。
冷镦基础知识和工艺分析

冷镦基础知识和工艺分析冷镦是一种金属加工方法,用于在室温下通过挤压和塑造金属材料,从而使其变为中空或实心形状。
冷镦过程能够在不改变材料的化学或物理属性的情况下,改善材料的强度、硬度和耐磨性。
冷镦工艺广泛应用于汽车、电气、机械和建筑等行业,生产出各种紧固件,如螺钉、螺栓、销钉和肩销等。
1.材料选择:冷镦加工适用于多种金属材料,如碳钢、不锈钢、铜、铝等。
不同材料具有不同的加工性能和机械性能,因此在选择材料时需要考虑到工件的使用环境和要求。
2.冷镦设备:冷镦设备主要包括镦头机、滚压机和冷挤压机。
镦头机用于将材料挤压成所需形状,滚压机用于将材料滚压成螺纹或花纹,冷挤压机用于将材料从材坯中挤出成型。
3.镦钢途径:冷镦过程中,将材料送入镦头机的路径称为镦钢途径。
镦钢途径的设计和选择直接影响到工件的加工效果和形状稳定性。
4.模具设计:模具是冷镦过程中必不可少的工具,用于形成工件的形状。
模具的设计需要考虑到工件的形状、尺寸和材料特性等因素,以确保工件的质量和精度。
冷镦工艺分析:1.工件设计:在冷镦工艺中,工件的设计是关键因素之一、工件的形状和尺寸应该符合冷镦设备和模具的要求,同时考虑到材料的挤压和延展性能。
2.材料预处理:在冷镦加工之前,材料需要进行一些预处理,如清洗、除油和退火等。
这些处理可以减少材料的不均匀性、气泡和应力,提高加工的稳定性和表面质量。
3.加热处理:一些情况下,冷镦工艺需要在加热状态下进行,以提高材料的延展性和塑性。
加热温度和时间的选择需要考虑到材料的特性和工艺要求。
4.加工参数:冷镦过程中的加工参数包括挤压速度、压力和润滑剂的选择等。
这些参数的选择需要经验和试验,以确保加工的稳定性和工件的质量。
5.表面处理:冷镦工艺后,工件的表面需要进行一些处理,如退火、焊接、镀锌等。
这些处理可以进一步改善工件的力学性能和抗腐蚀性能。
总结:冷镦是一种常见的金属加工方法,通过挤压和塑造金属材料,制造出各种紧固件和零部件。
冷镦工艺介绍

冷镦工艺介绍
冷镦是一种金属成形加工技术,也称为冷挤压。
它是一种通过加压来改变金属截面形状的方法,通常应用于制造螺栓、螺钉、螺母和其他紧固件等产品。
冷镦工艺的主要过程包括:
1. 材料准备:选择适当的金属材料,并进行表面处理,以确保其表面平整和清洁。
2. 冷挤压:将金属材料放到冷挤压机中,通过挤压头施加压力,在压力的作用下,金属材料被压缩,经过变形和扭曲,最终形成所需的形状。
3. 冷拉伸:在冷挤压完成后,金属材料经过冷拉伸以进一步增加其强度。
4. 切割:将冷挤压成型的金属材料切割成所需的长度。
冷镦工艺具有高效、精度高、成本低的优点。
与传统的热镦和锻造技术相比,冷镦技术不需要加热金属材料,因此能够减少能源消耗和环境污染。
此外,冷镦还可以在生产过程中避免金属材料的氧化和退火现象,从而提高了制品质量和性能。
总之,冷镦工艺是一种重要的金属成形加工技术,广泛应用于各种工业领域,特别是在紧固件制造领域。
- 1 -。
冷镦材料基础知识培训

冷镦材料基础知识培训冷镦技术是一种重要的金属加工方法,广泛应用于汽车、机械、电子等行业。
为了更好地掌握冷镦技术,我们有必要了解冷镦材料的基础知识。
本文将详细介绍冷镦材料的选择与性能,以及冷镦材料的热处理方法,帮助读者了解和应用冷镦材料。
一、冷镦材料的选择与性能冷镦材料的选择关系到冷镦产品的质量和性能。
一般来说,常用的冷镦材料有碳钢、合金钢和不锈钢等。
在选择冷镦材料时,需要考虑以下几个方面的因素:1. 强度和韧性:冷镦产品需要同时具备较高的强度和良好的韧性。
因此,选择具有适当强度和韧性的材料非常重要。
2. 加工性能:冷镦材料需要具备良好的可加工性,包括冷镦性、切削性和冲击韧性等。
优良的加工性能可以提高冷镦的效率和成品率。
3. 耐磨性:冷镦材料在加工过程中会受到较大的冲击和磨损,因此需要具备一定的耐磨性。
耐磨性能好的材料可以延长冷镦模具的使用寿命。
4. 耐腐蚀性:冷镦产品有时会在潮湿或腐蚀环境中使用,需要具备一定的耐腐蚀性。
特别是对于不锈钢材料,其耐腐蚀性能是非常重要的考虑因素。
根据不同的使用要求,可以选择不同材料的冷镦产品,以达到最佳的加工和使用效果。
同时,在选择冷镦材料时,还需要考虑材料的成本和供应情况,确保材料的可行性和经济性。
二、冷镦材料的热处理方法热处理是冷镦材料中的重要环节,可以改变材料的组织结构和性能,提高其强度和硬度。
常见的冷镦材料热处理方法有回火、淬火和表面处理等。
1. 回火:回火是通过加热和冷却,调整冷镦材料的组织结构和性能。
回火可以去除材料中的应力,提高韧性和可加工性。
回火温度和时间需要根据具体材料的需要来确定。
2. 淬火:淬火是将冷镦材料加热到临界温度后迅速冷却,使材料快速固化,从而提高其硬度和强度。
淬火过程中需要控制温度和冷却速度,以免产生裂纹和变形。
3. 表面处理:冷镦材料的表面处理可以提高其耐磨性和耐腐蚀性。
常见的表面处理方法有镀锌、镀铬、镀锡等。
表面处理可以延长冷镦产品的使用寿命,提高其表面的美观度和光洁度。
冷镦基础知识和工艺分析

c.应力状态对塑性及变形抗力的影响 . 在外力作用下,金属内部产生内力,其单位面积之强度称之为应力。 在外力作用下,金属内部产生内力,其单位面积之强度称之为应力。 受力金属处于应力状态下。 受力金属处于应力状态下。 从变形体内分离出一个微小基元正方体,在所取的正方体上, 从变形体内分离出一个微小基元正方体,在所取的正方体上,作用有 未知大小但已知方向的应力, 未知大小但已知方向的应力,把这种表示点上主应力个数及其符号的 简图叫主应力图。 简图叫主应力图。 表示金属受力状态的主应力图共有九种,其中四个为三向主应力图, 表示金属受力状态的主应力图共有九种,其中四个为三向主应力图, 三个为平面主应力图,两个为单向主应力图,如图36-1所示。 所示。 三个为平面主应力图,两个为单向主应力图,如图 所示
1.1.3 影响金属塑性及变形抗力的主要因素 金属的塑性及变形抗力的概念:金属的塑性可理解为在外力作用下, 金属的塑性及变形抗力的概念:金属的塑性可理解为在外力作用下, 金属能稳定地改变自己的形状而质点间的联系又不被破坏的能力。 金属能稳定地改变自己的形状而质点间的联系又不被破坏的能力。并 将金属在变形时反作用于施加外力的工模具的力称为变形抗力。 将金属在变形时反作用于施加外力的工模具的力称为变形抗力。 影响金属塑性及变形抗力的主要因素包括以下几个方面: 影响金属塑性及变形抗力的主要因素包括以下几个方面: a.金属组织及化学成分对塑性及变形抗力的影响 . 金属组织决定于组成金属的化学成分,其主要元素的晶格类别, 金属组织决定于组成金属的化学成分,其主要元素的晶格类别,杂质 的性质、数量及分布情况。组成元素越少,塑性越好。 的性质、数量及分布情况。组成元素越少,塑性越好。例如纯铁具有 很高的塑性。碳在铁中呈固熔体也具有很好的塑性,而呈化合物, 很高的塑性。碳在铁中呈固熔体也具有很好的塑性,而呈化合物,则 塑性就降低。如化合物Fe3C实际上是很脆的。一般在钢中其他元素 实际上是很脆的。 塑性就降低。如化合物 实际上是很脆的 成分的增加也会降低钢的塑性。 成分的增加也会降低钢的塑性。 钢中随含碳量的增加,则钢的抗力指标(бb、бp、бs等 均增高, 钢中随含碳量的增加,则钢的抗力指标(бb、бp、бs等)均增高, 而塑性指标( 均降低。在冷变形时, 而塑性指标(ε、ψ等)均降低。在冷变形时,钢中含碳量每增加 0.1%,其强度极限бs大约增加6 бs大约增加 kg/mm2。 ??) 0.1%,其强度极限бs大约增加6~8 kg/mm2。(??) 硫在钢中以硫化铁、硫化锰存在。硫化铁具有脆性, 硫在钢中以硫化铁、硫化锰存在。硫化铁具有脆性,硫化锰在压力加 工过程中变成丝状得到拉长, 工过程中变成丝状得到拉长,因而使在与纤维垂直的横向上的机械指 数降低。所以硫在钢中是有害的杂质 含量愈少愈好。 硫在钢中是有害的杂质, 数降低。所以硫在钢中是有害的杂质,含量愈少愈好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
冷镦、冷挤压基础知识介绍冷挤压是精密塑性体积成形技术中的一个重要组成部分。
冷挤压是指在冷态下将金属毛坯放入模具模腔内,在强大的压力和一定的速度作用下,迫使金属从模腔中挤出,从而获得所需形状、尺寸以及具有一定力学性能的挤压件。
显然,冷挤压加工是靠模具来控制金属流动,靠金属体积的大量转移来成形零件的。
冷挤压技术是一种高精、高效、优质低耗的先进生产工艺技术,较多应用于中小型锻件规模化生产中。
与热锻、温锻工艺相比,可以节材30%~50%,节能40%~80%而且能够提高锻件质量,改善作业环境。
目前,冷挤压技术已在紧固件、机械、仪表、电器、轻工、宇航、船舶、军工等工业部门中得到较为广泛的应用,已成为金属塑性体积成形技术中不可缺少的重要加工手段之一。
二战后,冷挤压技术在国外工业发达国家的汽车、摩托车、家用电器等行业得到了广泛的发展应用,而新型挤压材料、模具新钢种和大吨位压力机的出现便拓展了其发展空间。
日本80年代自称,其轿车生产中以锻造工艺方法生产的零件,有30%~40%是采用冷挤压工艺生产的。
随着科技的进步和汽车、摩托车、家用电器等行业对产品技术要求的不断提高,冷挤压生产工艺技术己逐渐成为中小锻件精化生产的发展方向。
与其他加工工艺相比冷挤压有如下优点:1)节约原材料。
冷挤压是利用金属的塑性变形来制成所需形状的零件,因而能大量减少切削加工,提高材料利用率。
冷挤压的材料利用率一般可达到80%以上。
2)提高劳动生产率。
用冷挤压工艺代替切削加工制造零件,能使生产率提高几倍、几十倍、甚至上百倍。
3)制件可以获得理想的表面粗糙度和尺寸精度。
零件的精度可达IT7~IT8级,表面粗糙度可达R0.2~R0.6。
因此,用冷挤压加工的零件一般很少再切削加工,只需在要求特别高之处进行精磨。
4)提高零件的力学性能。
冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度远高于原材料的强度。
此外,合理的冷挤压工艺可使零件表面形成压应力而提高疲劳强度。
因此,某些原需热处理强化的零件用冷挤压工艺后可省去热处理工艺,有些零件原需要用强度高的钢材制造,用冷挤压工艺后就可用强度较低的钢材替用。
5)可加工形状复杂的,难以切削加工的零件。
如异形截面、复杂内腔、内齿及表面看不见的内槽等。
6)降低零件成本。
由于冷挤压工艺具有节约原材料、提高生产率、减少零件的切削加工量、可用较差的材料代用优质材料等优点,从而使零件成本大大降低。
冷挤压技术在应用中存在的难点主要有:1)对模具要求高。
冷挤压时毛坯在模具中受三向压应力而使变形抗力显著增大,这使得模具所受的应力远比一般冲压模大,冷挤压钢材时,模具所受的应力常达2000MPa~2500MPa。
例如制造一个直径38mm,壁厚5.6mm,高100mm的低碳钢杯形件为例,采用拉延方法加工时,最大变形力仅为17t,而采用冷挤压方法加工时,则需变形力132t,这时作用在冷挤压凸模上的单位压力达2300MPa以上。
模具除需要具有高强度外,还需有足够的冲击韧性和耐磨性。
此外,金属毛坯在模具中强烈的塑性变形,会使模具温度升高至250℃~300℃左右,因而,模具材料需要一定的回火稳定性。
由于上述情况,冷挤压模具的寿命远低于冲压模。
2)需要大吨位的压力机。
由于冷挤压时毛坯的变形抗力大,需用数百吨甚至几千吨的压力机。
3)由于冷挤压的模具成本高,一般只适用于大批量生产的零件。
它适宜的最小批量是5~10万件。
4)毛坯在挤压前需进行表面处理。
这不但增加了工序,需占用较大的生产面积,而且难以实现生产自动化。
5)不宜用于高强度材料加工。
6)冷挤压零件的塑性、冲击韧性变差,而且零件的残余应力大,这会引起零件变形和耐腐蚀性的降低(产生应力腐蚀)国内外冷挤压技术发展过程现代冷挤压技术是从18世纪末开始的,法国人在法国革命时代把铅从小孔中挤出制成枪弹,开始了冷挤压。
1830年在法国已经有人开始利用机械压力机,采用反挤压方法制造铅管和锡管。
1906年美国为了制造黄铜的西服纽扣,已经有人取得了正挤压空心杯形坯料的专利权。
1909年美国人获得专利的Hooker法——正向冲挤法,金属流动方向与冲挤方向相同,就是在买了1906年的专利之后发展起来的,该专利中的杯形坯料,是采用拉深法制造的。
第一次世界大战中,曾用Hooker法制造了黄铜弹壳,而在第二次世界大战以前的1934年,德国人就利用这种方法试制了钢弹壳,但因热胶着严重,没有成功。
直到第二次世界大战中期由于采用了新的表面润滑处理方法——使工件表面形成磷酸盐薄膜,挤压方法制造钢质弹壳获得成功。
自此,冷挤压技术走向实用,成为冷锻技术中应用最广泛的一种方法。
60年代,日本汽车工业的成长,为冷挤压技术的发展创造了有利的条件。
从冷挤压设备上看,自从1933年,日本会田株式会社生产了日本第一台2000kN PK型精压机(肘杆式压力机)以来,到目前为止,己生产了2000多台PK系列压力机。
随着汽车工业的发展,对高精度压力机的要求愈加迫切,会田株式会社又研制成功了各种锻造压力机。
同时,日本小松研制了以高精度和易于操作为目标的LIC、LZC系列冷锻成形压力机。
从冷挤压产品上看,日本70年代成功冷挤压启动离合器齿轮、传动轴花键、交流发电机磁极铁芯。
80年代,又成功冷挤大型高精度等速圆球外座圈、内座圈、十字轴、汽车差速器伞齿轮等高精零件。
为日本汽车的高性能化和降低生产成本做出了很大贡献。
我国的冷挤压技术与日本的起步时间相当。
70年代,我国曾在自行车、汽车电器等批量生产的产品中,推广过冷挤压生产工艺技术,也开发成功了启动齿轮的挤压成形,并投入批量生产。
但由于未从根本上解决工艺、设备、材料、模具、润滑、自动化装置以及毛坯料的原始尺寸、原始状态、后处理等一系列技术问题,因而未得到较大发展。
80年代,随着家电和汽车摩托车工业的迅速发展,对冷挤压工艺设备及生产技术的引进、消化、吸收,科研人员通过生产实践攻克了冷挤压技术的不少难题与此同时冷锻设备也有了较大发展。
目前,我国己能用冷挤压工艺生产表壳、自行车飞轮、中轴、精锻齿轮、汽车用等速万向节、内燃机用火花塞与活塞销、汽车挺杆、照相机零件、汽车启动器定向套筒、启动齿轮等,且己达到国外同等水平。
冷挤压技术的发展趋势1)随着能源危机的日趋严重,人们对环境质量将更加关注,加之市场竞争日益加剧,促使锻件生产向高效、高质、精化、节能节材方向发展。
因此用挤压成形等工艺手段所生产的精化锻件的产量,在市场竞争中将得到较大的发展。
2)汽车向轻型化、高速度、平稳性方向发展,对锻件的尺寸精度、重量精度及力学性能等都提出了较高的要求。
如轿车发动机用连杆锻件除对大小头之间的误差有要求外,对每件的重量误差也要求不大于八克。
新产品的高要求,将促进精化生产工艺的发展。
3)专业化、规模化的组织生产仍是冷挤压生产的发展方向和趋势。
在法国,以挤压成形工艺生产锻件的专业厂家1991-1994年全员劳动生产率,即每人生产挤压件的产量及产值,均高于一般生产模锻件或者自由锻件的厂家。
以1994年为例,专业厂家挤压件人均产量为51024KG,创产值775688法郎。
而同期一般性生产模锻件的厂家,其人均产量仅为39344KG,产值592384法郎,仅相当于挤压件专业生产厂家的77.1%和76.37%。
自由锻件生产厂与之相比则更低。
4) 挤压专机将成为一种发展趋势。
随着中小型锻件的精化生产发展及冷挤压、温挤压工艺的推广应用,多工位冷挤压压力机、精压机及针对某种锻件而设计制造的专机会得到大力发展。
冷温挤压的定义和分类挤压是迫使金屑块料产生塑性流动,通过凸模与凹模间的间隙或凹模出口,制造空心或断面比毛坯断面要小的零件的一种工艺方法。
如果毛坯不经加热就进行挤压,便称为冷挤压。
冷挤压是无切屑、少切屑零件加工工艺之一,所以是金屑塑性加工中一种先进的工艺方法。
如果将毛坯加热到再结晶温度以下的温度进行挤压,便称为温挤压。
温挤压仍具有少无切屑的优点。
根据挤压时金属流动方向与凸模运动方向之间的关系,常用的挤压方法可以分为以下几类。
(一)正挤压挤压时,金属的流动方向与凸横的运动方向相一致。
正挤压又分为实心件正挤压空心件正挤压两种。
正挤压法可以制造各种形状的实心件和空心件,如螺钉、心轴、管子和弹壳等。
(二)反挤压挤压时,金屑的流动方向与凸模的运动方向相反,反挤压法可以制造各种断面形状的杯形件,如仪表罩壳、万向节轴承套等。
(三)复合挤压挤压时,毛坯一部分金属流动方向与凸模的运动方向相同,而另一部分金屑流动方向则与凸模的运动方向相反,复合挤压法可以制造双杯类零件,也可以制造杯杆类零件和杆杆类零件。
(四)减径挤压变形程度较小的一种变态正挤压法,毛坯断面仅作轻度缩减。
主要用于制造直径相差不大的阶梯轴类零件以及作为深孔杯形件的修整工序。
以上几种挤压的共同特点是:金屑流动方向都与凸模轴线平行,因此可统称为轴向挤压法。
另外还有径向挤压和镦挤法。
冷挤压的主要矛盾冷挤压是在金属冷态下,而且是在强烈的三向压应力状态下变形的,因此变形抗力较大,如以制造一个直径38mm、厚5.6mm、高100mm的杯形低碳钢零件为例,采用深拉伸方法加工。
最后一次拉伸工序仅需变形力170KN而采用冷挤压加工则需变形力1320KN。
这时作用在凸模上的单位压力达到2300MP以上,相当于大气压力的23000倍。
由于变形抗力高,所以就导致以下的缺点:(1)模具易磨损,易破坏、因此要求模具材料好。
目前一般模具钢,其许用应力最大只能达2500MPa,最好的模具钢也不超过3000MPa。
为了解决冷挤压的主要矛盾,就得采取各种技术措施,在尽力降低冷挤压材料变形抗力的同时,设法提高模具的承受能力。
以利于冷挤压生产的顺利进行。
2)对挤压设备要求较高,吨位要大。
除了要求挤压设备应有较大的强度以外,还要求有较好的刚度。
此外.还要求设备具有良好的精度并具有可靠的保险装置。
冷挤压和温挤压的比较:冷挤压虽有很多优点,但变形抗力大,就限制了零件的尺寸,同时也限制了变形抗力大的材料采用冷挤压工艺。
热挤压成形法,虽然可以使材料变形抗力变小,但由于加热,产生氧化、脱碳及热膨胀等问题,降低了产品的尺寸精度和表面质量,因而一般都需要经过大量的切削加工,才能作为最后产品。
温挤压是将毛坯加热到金属再结晶温度以下某个适当的温度进行挤压。
由于金属加热,毛坯的变形抗力减小.成形容易,压力机的吨位也可以减小,而且模具的寿命延长。
但与热挤压不同,因为在低温范围内加热,氧化、脱碳的可能性小,产品的机械性能与冷挤压的产品也差别不大。
特别是在室温下难加工的材料,例如析出硬化相的不锈钢、高碳钢、含铬量高的—些钢、高温合金等,在温挤压时可能变成可以加工或容易加工。
温挤压不仅适用于变形抗力高的难加工材料,就是对于冷挤压适宜的低碳钢,也适合作为温挤压的对象,因为温挤压有便于组织连续生产的优点。