《运筹学》-期末考试-试卷A-答案
运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。
答案:运筹学在现实生活中的应用非常广泛。
例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。
此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。
总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。
2、请简述单纯形法求解线性规划的过程。
答案:单纯形法是一种求解线性规划问题的常用方法。
它通过不断迭代和修改可行解,最终找到最优解。
具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。
《运筹学》期末考试试题及参考答案

《运筹学》试题参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。
2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。
4、在图论中,称 无圈的 连通图为树。
5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺⑴⑵ ⑶ ⑷ ⑸、⑹可行解域为abcda ,最优解为b 点。
由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(11,0)T ∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:A B C 甲 9 4 3 70 乙 4 6 10 1203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分) 解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x , 2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0 x 3+0 x 4+0 x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:∴X *=(11,11,11,0,0)T∴max z =70×11100+120×11300=1143000四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x解:用大M 法,先化为等效的标准模型:max z / =-5x 1-2x 2-4x 3 s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z / =-5x 1-2x 2-4x 3-M x 6-M x 7 s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:∴x *=(32,2,0,0,0)T最优目标函数值min z =-max z / =-(-322)=322五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)1)用最小费用法求初始运输方案,并写出相应的总运费;(5分) 2)用1)得到的基本可行解,继续迭代求该问题的最优解。
《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
运筹学期末试卷A卷答案0123

运筹学 期末试卷(A 卷)系别: 工商管理学院 专业: 工商管理 考试日期: 年 月 日姓名: 学号: 成 绩:1.[12分]某公司正在制造两种产品:产品I 和产品II ,每天的产量分别为30个和120个,利润分别为500元/个和400元/个。
公司负责制造的副总经理希望了解是否可以通过改变这种产品的数量而提高公司的利润。
公司各个车间的加工能力和制造单位产品所需的加工工时如下表:(1) 假设生产的全部产品都能销售出去,试建立使公司获利最大的生产计划模型。
(2) 用图解法求出最优解。
P25 No72.[12分] 某超市实行24小时营业,各班次所需服务员和管理人员如下:何安排使得超市用人总数最少?(1) 建立线性规划模型(只建模不求具体解); (2) 写出基于Lindo 软件的源程序(代码)。
3.[10分]设xA ,xB 分别代表购买股票A 和股票B 的数量,f 代表投资风险指数,建立线性规划模型如下: 目标函数:Min f=8x A +3x B约束条件:投资总额120万元 投资回报至少6万购买量非负501001200000A B x x +≤,0A B x x ≥100300000B x ≥5460000A B x x +≥股票B 投资不少于30万元利用教材附带软件进行求解,结果如下:**********************最优解如下************************* 目标函数最优值为 : 62000变量 最优解 相差值 ------- -------- -------- x1 4000 0 x2 10000 0约束 松弛/剩余变量 对偶价格 ------- ------------- -------- 1 0 .057 2 0 -2.167 3 700000 0 目标函数系数范围 :变量 下限 当前值 上限 ------- -------- -------- -------- x1 3.75 8 无上限 x2 无下限 3 6.4 常数项数范围 :约束 下限 当前值 上限------- -------- -------- -------- 1 780000 1200000 1500000 2 48000 60000 102000 3 无下限 300000 1000000试回答下列问题:(1) 在这个最优解中,购买股票A 和股票B 的数量各为多少?这时投资风险是多少?(2) 上述求解结果中松弛/剩余变量的含义是什么?(3) 当目标函数系数在什么范围内变化时,最优购买计划不变?(4) 请对右端常数项范围的上、下限给予具体解释,应如何应用这些数据?(5) 当每单位股票A 的风险指数从8降为6,而每单位股票B 的风险指数从3升为5时,用百分一百法则能否断定其最优解是否发生变化?为什么? 4.[6分]设有矩阵对策},,{21A S S G =,其中,{}112345,,,,S ααααα=,{}212345,,,,S βββββ=2343564132421457346454126A --⎛⎫ ⎪- ⎪ ⎪=-- ⎪-- ⎪ ⎪⎝⎭求矩阵对策的最优纯策略(要求图示)。
运筹期末考试试题及答案

运筹期末考试试题及答案### 运筹学期末考试试题及答案#### 一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量均为非负B. 目标函数为最大化C. 所有约束条件为等式D. 所有变量均为正数答案:A2. 单纯形法中,如果一个变量的系数在所有约束条件中都是负数,那么这个变量:A. 可以取任意值B. 必须取0C. 可以取正值D. 可以取负值答案:B3. 下列哪个算法不是用于解决整数规划问题的?A. 分支定界法B. 割平面法C. 动态规划D. 线性规划单纯形法答案:D4. 在网络流问题中,如果从源点到汇点存在多条路径,那么流量应该:A. 均匀分配到所有路径B. 只通过最短路径C. 只通过最长路径D. 可以自由选择路径答案:A5. 动态规划中,状态转移方程的作用是:A. 确定最优解B. 描述系统状态的变化C. 计算目标函数值D. 确定初始状态答案:B#### 二、填空题(每题3分,共15分)1. 在线性规划中,如果目标函数的系数矩阵是正定的,则该线性规划问题有唯一最优解。
2. 运筹学中的“运筹”一词来源于中国古代的________,意为筹划、谋划。
3. 决策树是一种用于解决________问题的图形化工具。
4. 在排队理论中,M/M/1队列模型表示的是单服务器、________到达、________服务的排队系统。
5. 博弈论中的纳什均衡是指在非合作博弈中,每个参与者选择的策略都是对其他参与者策略的最优响应。
#### 三、简答题(每题10分,共30分)1. 描述单纯形法的基本步骤。
2. 解释什么是敏感性分析,并说明其在实际问题中的应用。
3. 简述动态规划的基本原理,并给出一个实际应用的例子。
#### 四、计算题(每题15分,共25分)1. 给定线性规划问题的标准形式,写出其对偶问题,并说明对偶问题的性质。
2. 考虑一个网络流问题,给定网络的节点和边,以及每条边的容量,求出从源点到汇点的最大流量,并说明使用的方法。
运筹学试卷及答案

运筹学试卷及答案<<运筹学>>期末试卷(A)一、不定项选择题(每小题2分共20分)1、配送是一种先进的物资管理模式,其本质是( )A、存储集中化B、存储分散化C、运输时间最短D、运送效率最低2、对系统因环境变化显示出来的敏感程度进行分析是()A、变化性分析B、灵敏度分析C、时间序列分析D、线性规划3、物流中心选址主要考虑的因素有()A、供货点到物流中心的费用B、物流中心到用户的费用C、各物流中心的容量限制D、物流中心的个数限制4、下面对AHP评价正确的是()A、本质上是一种思维方式B、是一种定性与定量相结合的的方法C、标度方法及一致性判断具有认知基础D、不是一种定性与定量相结合的的方法5、任意一个顾客的服务时间都是固定的常数B,此时服务时间的分布函数是()A、负指数分布B、正指数分布C、爱尔朗分布D、定长分布6、下列指标是评价一家图书馆的输出指标的是()A、书库面积B、工作人员数量C、图书借出数D、所在地人口7、单纯形算法的一个重要前提是()A、未知数个数不能超过3个B、线性规划问题必须是标准形式C、线性规划问题必须是非标准形式D、线性规划问题可以是标准形式或非标准形式8、运用分析中常用的数学方法有()A、线性规划B、动态规划C、最优控制D、非线性规划9、混沌的主要特征有()、整体稳定性B 、内随机性A.C、具有分形特征D、整体不稳定性10、运筹学的正确发展之路有()A、理念更新B、以实践为本C、学科交融D、以抽象的理论为主,主要用于高深的理论研究二、名词解释(每小题4分,共20分)1、运筹学2、线性规划3、经典型聚类4、系统的综合性原则5、TSP问题三、简答题(每小题7分,共28分)1、列出一些企业产品结构优化的柔性模型约束条件。
2、排队规则3、运筹学的特点。
4、神经元的功能分)8分,第四题8题3分,第10题2分,第6题1(第四、应用题。
.1、货物从仓库送到销售点1、2、3、4、5。
《运筹学》 期末考试 试卷A 答案
《运筹学》试题样卷(一)一、判断题(共计10分,每小题1分,对的打√,错的打X )1. 无孤立点的图一定是连通图。
2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。
3. 如果一个线性规划问题有可行解,那么它必有最优解。
4.对偶问题的对偶问题一定是原问题。
5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0>j σ对应的变量都可以被选作换入变量。
6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。
7. 度为0的点称为悬挂点。
8. 表上作业法实质上就是求解运输问题的单纯形法。
9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。
二、建立下面问题的线性规划模型(8分)某农场有100公顷土地及15000元资金可用于发展生产。
农场劳动力情况为秋冬季3500人日;春夏季4000人日。
如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。
该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。
种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。
养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。
养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。
农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。
三种作物每年需要的人工及收入情况如下表所示:试决定该农场的经营方案,使年净收入为最大。
三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,x x 为(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分)(3)直接由上表写出对偶问题的最优解。
(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0五、求解下面运输问题。
运筹学期末试卷A卷答案-01-23
运筹学 期末试卷(A 卷)系别: 工商管理学院 专业: 工商管理 考试日期: 年 月 日姓名: 学号: 成 绩:1.[12分]某公司正在制造两种产品:产品I 和产品II ,每天的产量分别为30个和120个,利润分别为500元/个和400元/个。
公司负责制造的副总经理希望了解是否可以通过改变这种产品的数量而提高公司的利润。
公司各个车间的加工能力和制造单位产品所需的加工工时如下表:(1) 假设生产的全部产品都能销售出去,试建立使公司获利最大的生产计划模型。
(2) 用图解法求出最优解。
P25 No72.[12分] 某超市实行24小时营业,各班次所需服务员和管理人员如下:何安排使得超市用人总数最少?(1) 建立线性规划模型(只建模不求具体解); (2) 写出基于Lindo 软件的源程序(代码)。
3.[10分]设xA ,xB 分别代表购买股票A 和股票B 的数量,f 代表投资风险指数,建立线性规划模型如下: 目标函数:Min f=8x A +3x B约束条件:投资总额120万元 投资回报至少6万购买量非负501001200000A B x x +≤,0A B x x ≥100300000B x ≥5460000A B x x +≥股票B 投资不少于30万元利用教材附带软件进行求解,结果如下:**********************最优解如下************************* 目标函数最优值为 : 62000变量 最优解 相差值 ------- -------- -------- x1 4000 0 x2 10000 0约束 松弛/剩余变量 对偶价格 ------- ------------- -------- 1 0 .057 2 0 -2.167 3 700000 0 目标函数系数范围 :变量 下限 当前值 上限 ------- -------- -------- -------- x1 3.75 8 无上限 x2 无下限 3 6.4 常数项数范围 :约束 下限 当前值 上限------- -------- -------- -------- 1 780000 1200000 1500000 2 48000 60000 102000 3 无下限 300000 1000000试回答下列问题:(1) 在这个最优解中,购买股票A 和股票B 的数量各为多少?这时投资风险是多少?(2) 上述求解结果中松弛/剩余变量的含义是什么?(3) 当目标函数系数在什么范围内变化时,最优购买计划不变?(4) 请对右端常数项范围的上、下限给予具体解释,应如何应用这些数据?(5) 当每单位股票A 的风险指数从8降为6,而每单位股票B 的风险指数从3升为5时,用百分一百法则能否断定其最优解是否发生变化?为什么? 4.[6分]设有矩阵对策},,{21A S S G =,其中,{}112345,,,,S ααααα=,{}212345,,,,S βββββ=2343564132421457346454126A --⎛⎫ ⎪- ⎪ ⎪=-- ⎪-- ⎪ ⎪⎝⎭求矩阵对策的最优纯策略(要求图示)。
运筹学A卷参考评分标准及答案
运筹学A 卷参考评分标准及答案一、单选题(20分)1、B2、A3、D4、D5、C 评分标准:少选、多选不计分,每题4分。
二、简答题(10分)答:线性规划的数学模型含决策变量、目标函数和约束条件三部分。
变量必须是连续的,目标函数是对变量的线性函数,约束条件是含变量的线性等式或线性不等式。
评分标准:组成部分4分,特征6分。
三、(15分)解:设对偶变量为y 1, y 2, y 3 ,原线性规划问题的对偶问题为:⎪⎪⎩⎪⎪⎨⎧≥-≤+--≤-+≤++--+=0,,533461242030321321321321321y y y y y y y y y y y y y y y MaxZ评分标准:目标函数表达式3分;约束条件中每个不等式3分,计12分。
四、(16分)解:()()()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡/⇒⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⇒---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010106011060204017066201053256123994212ij x最优指派方案为:甲分配B, 乙分配A ,丙分配C ,总耗费时间为:16小时。
评分标准:第一步矩阵运算9分,x ij 矩阵取值3分,最优指派方案4分。
五、(15分)解:最短路线为:V 1 V 2 V 5 V 6,长度为:9单位。
评分标准:计算过程在图上标明10分,最短路线3分,长度2分。
六、(12分)解:{}{}{}{}{}12312320,3,181815,1101010,0,22,,18,10,22S M in S M in S M in M ax S S S -=--=--=-=---=-:::则:最优决策为S3,期望利润亏2万元。
评分标准:计算过程的每一个表达式2分,计8分;结论4分。
七、(12分)解:设产品A 、B 、C 每天的产量分别为x 1 、x 2 、x 3 该问题的线性规划模型为:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥≤≤≤≤++≤++++=0,,30026020010002.12200045.1111510321321321321321x x x x x x x x x x x x x x x MaxZ评分标准:决策变量的设置2分,目标函数表达式4分,约束条件表达式6分。
《运筹学》期末考试试题及参考答案
《运筹学》期末考试试题及参考答案《运筹学》期末考试试题及参考答案一、填空题1、运筹学是一门新兴的_________学科,它运用_________方法,研究有关_________的一切可能答案。
2、运筹学包括的内容有_______、、、_______、和。
3、对于一个线性规划问题,如果其目标函数的最优解在某个整数约束条件的约束范围内,那么该最优解是一个_______。
二、选择题1、下列哪一项不是运筹学的研究对象?( ) A. 背包问题 B. 生产组织问题 C. 信号传输问题 D. 原子核物理学2、以下哪一个不是运筹学问题的基本特征?( ) A. 唯一性 B. 现实性 C. 有解性 D. 确定性三、解答题1、请简述运筹学在日常生活中的应用实例,并就其中一个进行详细说明。
2、某企业生产三种产品,每种产品都可以选择用手工或机器生产。
假设生产每件产品手工需要的劳动时间为3小时,机器生产为2小时,卖价均为50元。
此外,手工生产每件产品的材料消耗为10元,机器生产为6元。
已知每个工人每天工作时间为24小时,可生产10件产品,每件产品的毛利润为50元。
请用运筹学方法确定手工或机器生产的数量,以达到最大利润。
参考答案:一、填空题1、交叉学科;数学;合理利用有限资源,获得最大效益2、线性规划、整数规划、动态规划、图论与网络、排队论、对策论3、整点最优解二、选择题1、D 2. A三、解答题1、运筹学在日常生活中的应用非常广泛。
例如,在背包问题中,如何在有限容量的背包中选择最有价值的物品;在生产组织问题中,如何合理安排生产计划,以最小化生产成本或最大化生产效率;在信号传输问题中,如何设计最优的信号传输路径,以确保信号的稳定传输。
以下以背包问题为例进行详细说明。
在背包问题中,给定一组物品,每个物品都有自己的重量和价值。
现在需要从中选择若干物品放入背包中,使得背包的容量恰好被填满,同时物品的总价值最大。
这是一个典型的0-1背包问题,属于运筹学的研究范畴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《运筹学》试题样卷(一) 题号 一 二 三 四 五 六 七 八 九 十 总分 得分 一、判断题(共计10分,每小题1分,对的打√,错的打X) 1. 无孤立点的图一定是连通图。 2. 对于线性规划的原问题和其对偶问题,若其中一个有最优解, 另一个也一定有最优解。 3. 如果一个线性规划问题有可行解,那么它必有最优解。 4.对偶问题的对偶问题一定是原问题。 5.用单纯形法求解标准形式(求最小值)的线性规划问题时,与0j对应的变量都可以被选作换入变量。 6.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷 多个最优解。 7. 度为0的点称为悬挂点。 8. 表上作业法实质上就是求解运输问题的单纯形法。 9. 一个图G 是树的充分必要条件是边数最少的无孤立点的图。 10. 任何线性规划问题都存在且有唯一的对偶问题。
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨
二、建立下面问题的线性规划模型(8分) 某农场有100公顷土地及15000元资金可用于发展生产。农场劳动力情况为秋冬季3500人日;春夏季4000人日。如劳动力本身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。该农场种植三种作物:大豆、玉米、小麦,并饲养奶牛和鸡。种作物时不需要专门投资,而饲养每头奶牛需投资800元,每只鸡投资3元。养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。农场现有鸡舍允许最多养1500只鸡,牛栏允许最多养200头。三种作物每年需要的人工及收入情况如下表所示:
大豆 玉米 麦子 秋冬季需人日数 春夏季需人日数 年净收入(元/公顷) 20 50 3000 35 75 4100 10 40 4600
试决定该农场的经营方案,使年净收入为最大。 三、已知下表为求解某目标函数为极大化线性规划问题的最终单纯形表,表中54,xx为松弛变量,问题的约束为 形式(共8分)
1x 2x 3x 4x 5x
3x 5/2 0 1/2 1 1/2 0
1x 5/2 1 -1/2 0 -1/6 1/3
jjzc 0 -4 0 -4 -2
(1)写出原线性规划问题;(4分) (2)写出原问题的对偶问题;(3分) (3)直接由上表写出对偶问题的最优解。(1分) 四、用单纯形法解下列线性规划问题(16分)
3212maxxxxZ
s. t. 3 x1 + x2 + x3 60 x 1- x 2 +2 x 3 10 x 1+ x 2- x 3 20 x 1, x 2 , x 3 0
五、求解下面运输问题。 (18分) 某公司从三个产地A1、A2、A3 将物品运往四个销地B1、B2、B3、B4,各产地的产量、各销地的销量和各产地运往各销地每件物品的运费如表所示: 问:应如何调运,可使得总运输费最小?
销 地 产 地 1B 2B 3B 4B 产 量
1A 2A
3A
10 8 9 5 2 3 6 7 4 7 6 8 25
25 50
销 量 15 20 30 35 100 六、灵敏度分析(共8分) 线性规划max z = 10x1 + 6x2 + 4x3 s.t. x1 + x2 + x3 100 10x1 +4 x2 + 5 x3 600 2x1 +2 x2 + 6 x3 300 x1 , x2 , x3 0 的最优单纯形表如下: 6 x2 200/3 0 5/6 1 5/3 – 1/6 0 10 x1 100/3 1 1/6 0 -2/3 1/6 0 0 x6 100 0 4 0 -2 0 1 j 0 –8/3 0 -10/3 – 2/3 0
(1)C1在何范围内变化,最优计划不变?(4分) (2)b1在什么范围内变化,最优基不变?(4分)
七、试建立一个动态规划模型。(共8分) 某工厂购进100台机器,准备生产 p1 , p2 两种产品。若生产产品 p1 ,每台机器每年可收入45万元,损坏率为65%;若生产产品 p2 ,每台机器 每年可收入35万元,损坏率为35%;估计三年后将有新 的机器出现,旧的机器将全部淘汰。试问每年应如何安排生产,使在三年内收入最多?
八、求解对策问题。(共10分) 某种子商店希望订购一批种子。据已往经验,种子的销售量可能为500,1000,1500或2000公斤。假定每公斤种子的订购价为6元,销售价为9元,剩余种子的处理价为每公斤3元。 要求: (1)建立损益矩阵;(3分) (2)用悲观法决定该商店应订购的种子数。(2分) (3)建立后悔矩阵,并用后悔值法决定商店应订购的种子数。(5分)
九、求下列网络计划图的各时间参数并找出关键问题和关键路径。(8分)
工序 代号 工序 时间 最早开 工时间 最早完 工时间 最晚开 工时间 最晚完 工时间 机动 时间
1-2 8 1-3 7
6
8 1 2 3 4 5 7 5 6 3 7 9 3
4
2 7 8 3 十、用标号法求V1 到 V6 的最短路。(6分) 运筹学样卷(一)答案 一、 判断题。共计10分,每小题1分 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ 10 X √ X √ √ √ X √ X √
二、建线性规划模型。共计8分(酌情扣分)
1-4 6 2-4 3 2-5 5 3-4 2 3-6 3 4-5 3 4-6 7 4-7 4 5-7 9 6-7 8
3 V4 V5 V3 V1 V2 V6 4 6 5 6 6 4
3 8 4 解:用321,,xxx分别表示大豆、玉米、麦子的种植公顷数;54,xx分别表示奶牛和鸡的饲养数;76,xx分别表示秋冬季和春夏季的劳动力(人日)数,则有 7654321252020900460041003000maxxxxxxxxZ
)7,,2,1(0)(1500)(200)(40003.0504017550)(35006.0100103520)(150003400)(1005.154754321654321544321jxxxxxxxxxxxxxxxxxxxxxj鸡舍限制牛栏限制劳动力限制劳动力限制资金限制土地限制
三、对偶问题。共计8分 解:(1)原线性规划问题:3211026maxxxxz
0,103522132122xxxxxxx
;……4分 (2)原问题的对偶规划问题为:
21105minyyw
0,1022632121212yyyyyyy
; ……3分 (3)对偶规划问题的最优解为:)2,4(YT 。……1分
四、单纯形表求解线性规划。共计16分 解:引入松弛变量x4、 x5、 x6,标准化得, 3212maxxxxZ
s. t. 3 x1 + x2 + x3+ x4 = 60 x 1- x 2 +2 x 3 + x5 = 10 x 1+ x 2- x 3 + x6 = 0 x 1, x 2 , x 3, x4、 x5、 x6,≥0……………3分 建初始单纯形表,进行迭代运算: ……………………… …9分
Xb b’ 2 -1 1 0 0 0 θ CB x1 x2 x3 x4 x5 x6 0 x4 60 3 1 1 1 0 0 20 0 x5 10 [1] -1 2 0 1 0 10* 0 x6 20 1 1 -1 0 0 1 20 1 0 2* -1 1 0 0 0 0 x4 30 0 4 -5 1 -3 0 7.5 2 x1 10 1 -1 2 0 1 0 --- 0 x6 10 0 [2] -3 0 -1 1 5* 2 20 0 1* -3 0 -2 0 0 x4 10 0 0 1 1 -1 -2 2 x1 15 1 0 0.5 0 0.5 0.5 -1 x2 5 0 1 -1.5 0 -0.5 0.5 3 25 0 0 -1.5 0 -1.5 -0.5 由最优单纯形表可知,原线性规划的最优解为: ( 15 , 5 , 0 )T …2分 最优值为: z*=25。………2分
五、求解运输问题。共计18分 解: (1)最小元素法:(也可以用其他方法,酌情给分) 设xij为由Ai运往Bj的运量(i=1,2,3; j=1,2,3,4), 列表如下:
销 地 产 地 1B 2B 3B 4B
产 量
1 2 3 15 20 30 25 5 5 25 25 50 销 量 15 20 30 35 100 ……………3分
所以,基本的初始可行解为:x14 =25; x22=20 ; x24 =5 ;
X31 =15; x33 =30; x34=5
其余的xij=0。 …………3分 (2)求最优调运方案: 1会求检验数,检验解的最优性:11=2;12=2;13=3; 21=1;23=5;32= - 1…………3分 2会求调整量进行调整:=5 …………2分