人教版九年级数学上册:第二十一章一元二次方程21.2解一元二次方程21.2.2公式法(有答案).docx
21.2.2 公式法第2课 根的判别式-九年级数学上册课件(人教版)

解得 m≥ 且 m≠1.
3
不解方程,判断关于 x 的方程 x 2 2 2kx k 2
解: Δ =( 2 2 k )2 − 4×1×k2 = 4k2.
∵ k2≥0,
∴ 4k2≥0,
即 Δ≥0.
∴ 原方程有两个实数根.
0 根的情况.
在等腰△ABC 中,三边长分别为 a,b,c,其中 a = 5,若关于 x 的方程
(2)方程化为 4x2 − 12x + 9 = 0,a = 4,b = −12,c = 9,
∴ Δ = b2 − 4ac = (−12)2 − 4×4×9 = 0.
∴ 方程有两个相等的实数根.
(3)方程化为 5y2 −7y + 5 = 0,a = 5,b = −7,c = 5,
∴ Δ = b2-4ac = (−7)2-4×5×5 = −51<0.
课堂练习
1.已知一元二次方程 x2 + x = 1,下列判断正确的是( B )
A. 该方程有两个相等的实数根
B. 该方程有两个不相等的实数根
C. 该方程无实数根
D. 该方程根的情况不确定
2.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范
围是( D )
A.m≥1
B.m≤1
C.m>1
则一次函数y=kx+b的大致图象可能是( B )
课堂小结
根的情况
判别式的情况
Δ= b2 − 4ac > 0
两个不相等的实数根
Δ= b2 − 4ac = 0
两个相等的实数根
Δ = b2 − 4ac< 0
没有实数根
两个实数根
Δ= b2 − 4ac≥0
注意:1.一元二次方程化为一般式
(贵州)RJ人教版 九年级数学 上册(教学设计 电子教案)第二十一章 一元二次方程(全单元教案 含反思)

第二十一章一元二次方程21.1一元二次方程1.理解一元二次方程及其相关概念,能够熟练地把一元二次方程化为一般形式.2.会应用一元二次方程的解的定义解决有关问题.3.在分析、揭示实际问题中的数量关系,并把实际问题转化为数学模型的过程中,感受方程是刻画现实世界中的数量关系的工具,增强对一元二次方程的感性认识.一、情境导入参加一次集会,如果有x个人,每两人之间都握一次手,共握了21次手,请你列出符合上述条件的方程,并判断方程是什么类型?二、合作探究探究点一:一元二次方程的概念【类型一】一元二次方程的识别下列选项中,是关于x的一元二次方程的是( )A.x2+1x2=1 B.3x2-2xy-5y2=0C.(x-1)(x-2)=3 D.ax2+bx+c=0解析:选项A中的方程分母含有未知数,所以它不是一元二次方程;选项B中的方程含有2个未知数,所以它不是一元二次方程;当a=0时,选项D中的方程不含二次项,所以它不是一元二次方程,排除A、B、D,故选C.方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.一元二次方程的三个条件:一是方程两边都是整式;二是只含有一个未知数;三是未知数的最高次数是2.上述三个条件必须同时满足,缺一不可.【类型二】利用一元二次方程的概念确定字母系数关于x的方程(k+1)x+kx+1=0是一元二次方程,则k的值为________.解析:由题意得⎩⎪⎨⎪⎧|k-1|=2,k+1≠0,∴⎩⎪⎨⎪⎧k=3或k=-1,k≠-1.∴k=3.方法总结:由一元二次方程的概念满足的条件:未知数最高次数为2,构造方程,解出字母取值,并利用二次项系数不为0排除使二次项系数为0的字母取值,从而确定字母取值.探究点二:一元二次方程的一般形式将下列方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数及常数项.(1)3x2-2=5x;(2)9x2=16;(3)2x(3x+1)=17;(4)(3x-5)(x+1)=7x-2.解析:先分别将各方程化为一般形式,再指出它们的各部分的名称.解:(1)方程化为一般形式为3x2-5x-2=0,二次项系数是3,一次项系数是-5,常数项是-2.(2)方程化为一般形式为9x2-16=0,二次项系数是9,一次项系数是0,常数项是-16.(3)方程化为一般形式为6x2+2x-17=0,二次项系数是6,一次项系数是2,常数项是-17.(4)方程化为一般形式为3x2-9x-3=0,二次项系数是3,一次项系数是-9,常数项是-3.方法总结:求一元二次方程的各项系数和常数项,必须先把方程化为一般形式,特别要注意确认各项系数和常数项一定要包括前面的符号.探究点三:列一元二次方程(2015·深圳一模)在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m2.已知床单的长是2m,宽是1.4m,求花边的宽度.请根据题意列出方程.解析:设花边的宽度为x m,则由图可知剩下部分的长为(2-2x)m,剩下部分的宽为(1.4-2x)m.∵剩下部分面积为1.6m2,∴可列方程(2-2x)(1.4-2x)=1.6.方法总结:列方程最重要的是审题,只有理解题意,才能恰当的设出未知数,准确地找出已知量和未知量之间的等量关系,正确的列出方程.探究点四:一元二次方程的解【类型一】判断一元二次方程的解方程x-2x=0的解为( )A.x1=1,x2=2 B.x1=0,x2=1C.x1=0,x2=2 D.x1=12,x2=2解析:把各选项中未知数的值分别代入方程的左右两边,只有选项C中的x1=0,x2=2都能使方程x2-2x=0的左右两边相等,所以选C.方法总结:判断一个未知数的值是否是一元二次方程的解,可以把未知数的值代入方程左右两边,能使方程左右两边相等的未知数的值就是一元二次方程的解.【类型二】利用一元二次方程的解的意义求字母或代数式的值已知1是关于x的一元二次方程(m-1)x+x+1=0的一个根,则m的值是( ) A.1 B.-1C.0 D.无法确定解析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到是一元二次方程,所以二次项系数不能等于0.由此得,(m-1)+1+1=0,解得m=-1,此时m-1=-2≠0,∴m=-1.故选B.方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目中,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.21.2.1 配方法 第1课时 直接开平方法1.学会根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.2.运用开平方法解形如(x +m )2=n 的方程.3.体验类比、转化、降次的数学思想方法,增强学习数学的兴趣.一、情境导入一个正方形花坛的面积为10,若设其边长为x ,根据正方形的面积可列出怎样的方程?用怎样的方法可以求出所列方程的解呢?二、合作探究探究点:直接开平方法【类型一】用直接开平方法解一元二次方程运用开平方法解下列方程: (1)4x 2=9;(2)(x +3)2-2=0.解析:(1)先把方程化为x 2=a (a ≥0)的形式;(2)原方程可变形为(x +3)2=2,则x +3是2的平方根,从而可以运用开平方法求解.解:(1)由4x 2=9,得x 2=94,两边直接开平方,得x =±32,∴原方程的解是x 1=32,x 2=-32.(2)移项,得(x +3)2=2.两边直接开平方,得x +3=± 2.∴x +3=2或x +3=- 2.∴原方程的解是x 1=2-3,x 2=-2-3.方法总结:由上面的解法可以看出,一元二次方程是通过降次,把一元二次方程转化为一元一次方程求解的,这是解一元二次方程的基本思想;一般地,对于形如x 2=a (a ≥0)的方程,根据平方根的定义,可解得x 1=a ,x 2=-a .【类型二】直接开平方法的应用(2014·山东济宁中考)若一元二次方程ax2=b(ab>0)的两个根分别是m+1与2m -4,则ba=________.解析:∵ax2=b,∴x=±ba,∴方程的两个根互为相反数,∴m+1+2m-4=0,解得m=1,∴一元二次方程ax2=b(ab>0)的两个根分别是2与-2,∴ba=2,∴ba=4,故答案为4.【类型三】直接开平方法与方程的解的综合应用若一元二次方程(a+2)x2-ax+a2-4=0的一个根为0,则a=________.解析:∵一元二次方程(a+2)x2-ax+a2-4=0的一个根为0,∴a+2≠0且a2-4=0,∴a=2.故答案为2.【类型四】直接开平方法的实际应用有一个边长为11cm的正方形和一个长为13cm,宽为8cm的矩形,要作一个面积为这两个图形的面积之和的正方形,边长应为多少厘米?分析:要求新正方形的边长,可先求出原正方形和矩形的面积之和,然后再用开平方计算.解:设新正方形的边长为x cm,根据题意得x2=112+13×8,即x2=225,解得x=±15.因为边长为正,所以x=-15不合题意,舍去,所以只取x=15.答:新正方形的边长应为15cm.方法总结:在解决与平方根有关的实际问题时,除了根据题意解题外,有时还要结合实际,把平方根中不符合实际情况的负值舍去.三、板书设计教学过程中,强调利用开平方法解一元二次方程的本质是求一个数的平方根的过程.同时体会到解一元二次方程过程就是一个“降次”的过程.第2课时配方法1.了解配方的概念,掌握运用配方法解一元二次方程的步骤.2.探索直接开平方法和配方法之间的区别和联系,能够熟练地运用配方法解决有关问题.一、情境导入李老师让学生解一元二次方程x2-6x-5=0,同学们都束手无策,学习委员蔡亮考虑了一下,在方程两边同时加上14,再把方程左边用完全平方公式分解因式……,你能按照他的想法求出这个方程的解吗?二、合作探究探究点:配方法【类型一】配方用配方法解一元二次方程x2-4x=5时,此方程可变形为( ) A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=9解析:由于方程左边关于x的代数式的二次项系数为1,故在方程两边都加上一次项系数一半的平方,然后将方程左边写成完全平方式的形式,右边化简即可.因为x2-4x=5,所以x2-4x+4=5+4,所以(x-2)2=9.故选D.方法总结:用配方法将一元二次方程变形的一般步骤:(1)把常数项移到等号的右边,使方程的左边只留下二次项和一次项;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【类型二】利用配方法解一元二次方程用配方法解方程:x-4x+1=0.解析:二次项系数是1时,只要先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把方程配成(x+m)2=n(n≥0)的形式再用直接开平方法求解.解:移项,得x2-4x=-1.配方,得x2-4x+(-2)2=-1+(-2)2.即(x-2)2=3.解这个方程,得x-2=± 3.∴x1=2+3,x2=2- 3.方法总结:用配方法解一元二次方程,实质上就是对一元二次方程变形,转化成开平方所需的形式.【类型三】用配方解决求值问题已知:x2+4x+y2-6y+13=0,求x-2yx2+y2的值.解:原方程可化为(x+2)2+(y-3)2=0,∴(x+2)2=0且(y-3)2=0,∴x=-2且y=3,∴原式=-2-613=-813.【类型四】用配方解决证明问题(1)用配方法证明2x-4x+7的值恒大于零;(2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式.证明:(1)2x2-4x+7=2(x2-2x)+7=2(x2-2x+1-1)+7=2(x-1)2-2+7=2(x-1)2+5.∵2(x-1)2≥0,∴2(x-1)2+5≥5,即2x2-4x+7≥5,故2x2-4x+7的值恒大于零.(2)x2-2x+3;2x2-2x+5;3x2+6x+8等.【类型五】配方法与不等式知识的综合应用证明关于x的方程(m-8m+17)x+2mx+1=0不论m为何值时,都是一元二次方程.解析:要证明“不论m为何值时,方程都是一元二次方程”,只需证明二次项系数m2-8m+17的值不等于0.证明:∵二次项系数m2-8m+17=m2-8m+16+1=(m-4)2+1,又∵(m-4)2≥0,∴(m -4)2+1>0,即m2-8m+17>0.∴不论m为何值时,原方程都是一元二次方程.三、板书设计教学过程中,强调配方法解方程就是将方程左边配成完全平方式的过程.因此需熟练掌握完全平方式的形式.21.2.2公式法1.知道一元二次方程根的判别式的概念.2.会用判别式判断一元二次方程的根的情况及根据一元二次方程的根的情况确定字母的取值范围.3.经历求根公式的推导过程并会用公式法解简单的一元二次方程.一、情境导入老师写了4个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小强突然站起来说出每个方程解的情况,你想知道他是如何判断的吗?二、合作探究探究点一:一元二次方程的根的情况【类型一】判断一元二次方程根的情况不解方程,判断下列方程的根的情况.(1)2x2+3x-4=0;(2)x2-x+14=0;(3)x2-x+1=0.解析:根据根的判别式我们可以知道当b2-4ac≥0时,方程才有实数根,而b2-4ac<0时,方程没有实数根.由此我们不解方程就能判断一元二次方程根的情况.解:(1)2x2+3x-4=0,a=2,b=3,c=-4,∴b2-4ac=32-4×2×(-4)=41>0.∴方程有两个不相等的实数根.(2)x2-x+14=0,a=1,b=-1,c=14.∴b2-4ac=(-1)2-4×1×14=0.∴方程有两个相等的实数根.(3)x2-x+1=0,a=1,b=-1,c=1.∴b2-4ac=(-1)2-4×1×1=-3<0.∴方程没有实数根.方法总结:给出一个一元二次方程,不解方程,可由b2-4ac的值的符号来判断方程根的情况.当b2-4ac>0时,一元二次方程有两个不相等的实数根;当b2-4ac=0时,一元二次方程有两个相等的实数根;当b2-4ac<0时,一元二次方程无实数根.【类型二】由一元二次方程根的情况确定字母系数的取值已知关于x的一元二次方程(a-1)x-2x+1=0有两个不相等的实数根,则a的取值范围是( )A.a>2 B.a<2C.a<2且a≠1 D.a<-2解析:由于一元二次方程有两个不相等的实数根,判别式大于0,得到一个不等式,再由二次项系数不为0知a-1不为0.即4-4(a-1)>0且a-1≠0,解得a<2且a≠1.选C.方法总结:若方程有实数根,则b2-4ac≥0.由于本题强调说明方程是一元二次方程,所以,二次项系数不为0.因此本题还是一道易错题.【类型三】说明含有字母系数的一元二次方程根的情况已知:关于x的方程2x+kx-1=0,求证:方程有两个不相等的实数根.证明:Δ=k2-4×2×(-1)=k2+8,无论k取何值,k2≥0,所以k2+8>0,即Δ>0,∴方程2x2+kx-1=0有两个不相等的实数根.方法总结:要说明一个含字母系数的一元二次方程的根的情况,只需求出该方程根的判别式,分析其正、负情况,即可得出结论.【类型四】一元二次方程的根的情况的实际应用小林准备进行如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.小峰对小林说:“这两个正方形的面积之和不可能等于48cm2”,他的说法对吗?请说明理由.解:假设能围成.设其中一个正方形的边长为x,则另一个正方形的边长是(10-x),由题可得,x2+(10-x)2=48.化简得x2-10x+26=0.因为b2-4ac=(-10)2-4×1×26=-4<0,所以此方程没有实数根.所以小峰的说法是对的.探究点二:公式法解一元二次方程【类型一】用公式法解一元二次方程用公式法解下列方程:(1)2x2+x-6=0;(2)x2+4x=2;(3)5x2-4x+12=0;(4)4x2+4x+10=1-8x.解析:方程(1)(3)是一元二次方程的一般形式,可以直接确定a,b,c的值,并计算b2-4ac的值,然后代入求根公式,即可求出方程的根;方程(2)(4)则需要先化成一般形式,再求解.解:(1)这里a=2,b=1,c=-6,b2-4ac=12-4×2×(-6)=1+48=49.∴x=-b±b2-4ac2a=-1±492×2=-1±74,即原方程的解是x1=-2,x2=32.(2)将方程化为一般形式,得x2+4x-2=0.∵b2-4ac=24,∴x=-4±242=-2± 6.∴原方程的解是x1=-2+6,x2=-2- 6.(3)∵b2-4ac=-224<0,∴原方程没有实数根.(4)整理,得4x 2+12x +9=0.∵b 2-4ac =0,∴x 1=x 2=-32.方法总结:用公式法解一元二次方程时,一定要先将方程化为一般形式,再确定a ,b ,c 的值.【类型二】一元二次方程解法的综合运用三角形的两边分别为2和6,第三边是方程x 2-10x +21=0的解,则第三边的长为( )A .7B .3C .7或3D .无法确定解析:解一元二次方程x 2-10x +21=0,得x 1=3,x 2=7.根据三角形三边的关系,第三边还应满足4<x <8.所以第三边的长x =7.故选A.方法总结:解题的关键是正确求解一元二次方程,并会运用三角形三边的关系进行取舍.三、板书设计教学过程中,强调用判别式去判断方程根的情况,首先需把方程化为一般形式.同时公式法的得出是通过配方法来的,用公式法解方程∴前提是Δ≥0.21.2.3因式分解法1.认识用因式分解法解方程的依据.2.会用因式分解法解一些特殊的一元二次方程.一、情境导入我们知道ab=0,那么a=0或b=0,类似的解方程(x+1)(x-1)=0时,可转化为两个一元一次方程x+1=0或x-1=0来解,你能求出(x+3)(x-5)=0的解吗?二、合作探究探究点一:用因式分解法解一元二次方程【类型一】利用提公因式法分解因式解一元二次方程用因式分解法解下列方程:(1)x2+5x=0;(2)(x-5)(x-6)=x-5.解析:变形后方程右边是零,左边是能分解的二次三项式,可用因式分解法.解:(1)原方程转化为x(x+5)=0,∴x=0或x+5=0,∴原方程的解为x1=0,x2=-5;(2)原方程转化为(x-5)(x-6)-(x-5)=0,∴(x-5)[(x-6)-1]=0,∴(x-5)(x -7)=0,∴x-5=0或x-7=0,∴原方程的解为x1=5,x2=7.【类型二】利用公式法分解因式解一元二次方程用因式分解法解下列方程:(1)x2-6x=-9;(2)4(x-3)2-25(x-2)2=0.解:(1)原方程可变形为:x2-6x+9=0,则(x-3)2=0,∴x-3=0,因此原方程的解为:x1=x2=3.(2)[2(x-3)]2-[5(x-2)]2=0,[2(x-3)+5(x-2)][2(x-3)-5(x-2)]=0,(7x-16)(-3x+4)=0,∴7x-16=0或-3x+4=0,∴原方程的解为x1=167,x2=43.方法总结:因式分解法解一元二次方程的一般步骤是:①将方程的右边化为0;②将方程的左边分解为两个一次因式的乘积;③令每一个因式分别为零,就得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.探究点二:用因式分解法解决问题若a、b、c为△ABC的三边,且a、b、c满足a2-ac-ab+bc=0,试判断△ABC 的形状.解析:先分解因式,确定a,b,c的关系,再判断三角形的形状.解:∵a2-ac-ab+bc=0,∴(a-b)(a-c)=0,∴a-b=0或a-c=0,∴a=c或a =b,∴△ABC为等腰三角形.三、板书设计利用因式分解法解一元二次方程,能否分解是关键,因此,要熟练掌握因式分解的知识,提高用分解因式法解方程的能力.在使用因式分解法时,先考虑有无公因式,如果没有再考虑公式法.*21.2.4一元二次方程的根与系数的关系1.探索一元二次方程的根与系数的关系.2.会不解方程利用一元二次方程的根与系数解决问题.一、情境导入一般地,对于关于x的方程x2+px+q=0(p,q为已知常数,p2-4q≥0),试用求根公式求出它的两个解x1、x2,算一算x1+x2、x1·x2的值,你能得出什么结果?二、合作探究探究点:一元二次方程根与系数的关系【类型一】利用一元二次方程根与系数的关系求关于方程根的代数式的值已知m、n是方程2x2-x-2=0的两实数根,则1m+1n的值为( ) A.-1 B.12C.-12D.1解析:根据根与系数的关系,可以求出m+n和mn的值,再将原代数式变形后,整体代入计算即可.因为m、n是方程2x2-x-2=0的两实数根,所以m+n=12,mn=-1,1m+1n=n+mmn=12-1=-12.故选C.方法总结:解题时先把代数式变形成与两根和、积有关的形式,注意前提:方程有两个实数根时,判别式大于或等于0.【类型二】根据方程的根确定一元二次方程已知一元二次方程的两根分别是4和-5,则这个一元二次方程是( ) A.x2-6x+8=0 B.x2+9x-1=0C.x2-x-6=0 D.x2+x-20=0解析:∵方程的两根分别是4和-5,设两根为x1,x2,则x1+x2=-1,x1·x2=-20.如果令方程ax2+bx+c=0中,a=1,则-b=-1,c=-20.∴方程为x2+x-20=0.故选D.方法总结:先把所构造的方程的二次项系数定为1,利用一元二次方程根与系数的关系确定一元二次方程一次项系数和常数项.【类型三】根据根与系数的关系确定方程的解(2014·云南曲靖)已知=4是一元二次方程x2-3x+c=0的一个根,则另一个根为________.解析:设另一根为x1,则由根与系数的关系得x1+4=3,∴x1=-1.故答案为x=-1.方法总结:解决这类问题时,利用一元二次方程的根与系数的关系列出方程即可解决.【类型四】利用一元二次方程根与系数的关系确定字母系数5,则a的值是( )A.-1或5 B.1C.5 D.-1解析:将两根平方和转化为用两根和、积表示的形式,从而利用一元二次方程根与系数的关系解决.设方程两根为x1,x2,由题意,得x21+x22=5.∴(x1+x2)2-2x1x2=5.∵x1+x2=a,x1x2=2a,∴a2-2×2a=5.解得a1=5,a2=-1.又∵Δ=a2-8a,当a=5时,Δ<0,此时方程无实数根,所以舍去a=5.当a=-1时,Δ>0,此时方程有两实数根.所以取a =-1.故选D.方法总结:解答此类题的关键是将与方程两根有关的式子转化为用两根和、积表示的形式,从而利用一元二次方程根与系数的关系解决问题.注意不要忽略题目中的隐含条件Δ≥0,导致解答不全面.【类型五】一元二次方程根与系数的关系和根的情况的综合应用已知x1、x2是一元二次方程(a-6)x+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.解:(1)根据题意,得Δ=(2a)2-4×a(a-6)=24a≥0.解得a≥0.又∵a-6≠0,∴a ≠6.由根与系数关系得:x1+x2=-2aa-6,x1x2=aa-6.由-x1+x1x2=4+x2得x1+x2+4=x1x2,∴-2aa-6+4=aa-6,解得a=24.经检验a=24是方程-2aa-6+4=aa-6的解.即存在a=24,使-x1+x1x2=4+x2成立.(2)原式=x1+x2+x1x2+1=-2aa-6+aa-6+1=66-a为负整数,则6-a为-1或-2,-3,-6.解得a=7或8,9,12.三、板书设计教学过程中,强调一元二次方程的根与系数的关系是通过求根公式得到的,在利用此关系确定字母的取值时,一定要记住Δ≥0这个前提条件.21.3实际问题与一元二次方程第1课时传播问题与一元二次方程1.会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题中的实际意义,检验所得的结果是否合理.2.联系实际,让学生进一步经历“问题情境——建立模型——求解——解释与应用”的过程,获得更多运用数学知识分析、解决实际问题的方法和经验,进一步掌握解应用题的步骤和关键.一、情境导入某细菌利用二分裂方式繁殖,每次一个分裂成两个,那么五次繁殖后共有多少个细菌呢?二、合作探究探究点:传播问题与一元二次方程【类型一】疾病传染问题有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了多少个人?(2)如果不及时控制,第三轮将又有多少人被传染?解析:设每轮传染中平均一个人传染了x个人,根据题意可知,在第一轮,有x个人被传染,此时,共有(1+x)人患了流感;到了第二轮,患流感的(1+x)人作为“传染源”,每个人又传染给了x个人,这样,在第二轮中新增加的患了流感的人有x(1+x)人,根据等量关系可列一元二次方程解答.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9(不合题意,舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:又将有448人被传染.方法总结:建立数学模型,利用一元二次方程来解决实际问题.读懂题意,正确的列出方程是解题的关键.【类型二】分裂增长问题月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?解:设每个支干长出x个小分支,根据题意得:1+x+x2=73,解得:x1=8,x2=-9(舍去).答:每个支干长出8个小分支.三、板书设计教学过程中,强调利用一元二次方程解应用题的步骤和关键.特别是解有关的传播问题时,一定要明确每一轮传染源的基数.第2课时平均变化率与一元二次方程1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.一、情境导入月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?二、合作探究探究点:用一元二次方程解决增长率问题【类型一】增长率问题某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2014年产量的表达式即可解决.解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1=0.1,x2=-2.1(舍去).答:这种产品产量的年增长率为10%.(2)100×(1+10%)=110(万件).答:2014年这种产品的产量应达到110万件.方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费)解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x1=-3.2(舍),x2=0.2,所以2月,3月生产收入的月增长率为20%.(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型二】利润问题一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x=80.答:该校共购买了80棵树苗.方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型三】方案设计问题菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2=3.2,解得x1=0.2=20%,x2=1.8(舍去).∴平均每次下调的百分率为20%;(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.三、板书设计教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.。
数学人教版九年级上册《21.2.2 公式法》教学设计.2.2 公式法》教学设计

21.2.2 公式法版本:人民教育出版社 执教:甘肃省陇南市武都区两水中学 唐小平教学目标知识与技能1. 理解一元二次方程求根公式的推导过程.2. 会利用求根公式解简单数字系数的一元二次方程.过程与方法1. 经历探索求根公式的过程,激发学生的探究欲望和探究热情,培养学生的推理能力.2. 培养学生的运算能力,并让学生养成良好的运算习惯.情感态度与价值观1. 通过运用公式法解一元二次方程,提高学生的运算能力.2. 培养学生积极探索、勇于创新的精神.3. 让学生学会和他人合作,分享合作学习的乐趣、体会发现知识后的成就感,建立学好数学的自信心.重点难点重点 求根公式的推导和公式法的运用.难点 一元二次方程求根公式的推导.教学方法 启发式、探究式、讲练结合式.教具学具教具:彩笔、多媒体教学平台.学具:笔、学生学案.教材分析本节课选自2013年教育部审定通过的义务教育教科书《数学》编著开发中心中学数学课程教材研究材研究所人民教育出版社课程教的九年级上册“第二十一章 一元二次方程”第二节“21.2 解一元二次方程”第二课时“21.2.2 公式法”的内容.一元二次方程的解法在初中数学教学中占有重要的位置,也是每年中考的热点考题之一,研究它很有现实意义和探索价值,讨论它是增进学生对数学知识理解并应用的很好素材.学情分析本节课的内容继 “21.2.1 配方法”后,又在“21.2.3 因式分解法”之前,根据维果斯基的“最近发展区理论”,学生已经掌握了用配方法解具体的数字系数的一元二次方程,对于一般形式的一元二次方程,02=++c bx ax 学生可以根据用配方法解具体数字系数的一元二次方程的经验可能化成22244)2(aac b a b x -=+的形式(即学生可能的发展水平),至于要用到分类讨论的数学思想,这要通过教师引导、启发学生才能获得这方面的能力.所以本节课估计学生在学习过程中感到困难之处是:讨论当,042>-ac b ,042=-ac b042<-ac b 时,一元二次方程02=++c bx ax 的实数根的情况.教学环节一、创设情境 导入新课1.用配方法解方程.08922=+-x x2.能否也可以用配方法解一般形式的一元二次方程02=++c bx ax 呢?(设计意图:通过复习引入,让学生先回忆配方法的解题思路,并通过练习题巩固所学知识,同时为本节课的学习做好铺垫.)二、探究新知 进行新课根据用配方法解具体数字系数的一元二次方程的经验解一般形式的一元二次方程 .02=++c bx ax二次项系数化为1,得.02=++ac x a b x 移项,得.2ac x a b x -=+ 配方,得,)2()2(222a b a c a b x a b x +-=++即 .44)2(222aac b a b x -=+ ① 因为,0≠a 所以.042>a 式子ac b 42-的值有以下三种情况:(1)当042>-ac b 时,,04422>-a ac b 由①得 .2422aac b a b x -±=+ 方程有两个不相等的实数根.24,242221aac b b x a ac b b x ---=-+-=(2) 当042=-ac b 时,,04422=-a ac b 由①可知方程有两个相等的实数根 .221ab x x -== (3)当042<-ac b 时,,04422<-a ac b 由①可知,0)2(2<+a b x 而x 取任何实数都不能使,0)2(2<+ab x 因此方程无实数根. 一般地,对于一元二次方程02=++c bx ax ,当042≥-ac b 时,它的实数根是aac b b x 242-±-= 这个式子叫做一元二次方程02=++c bx ax 的求根公式.利用求根公式解一元二次方程的方法叫做公式法.用公式法解一元二次方程时需要注意两点:①必须是一般形式的一元二次方程;02=++c bx ax ② .042≥-ac b(设计意图:让学生亲自动手实验,探究结论,激发兴趣.培养学生爱动脑思考的好习惯.)三、运用新知 巩固新课例1 用公式法解方程.12452=-x x (2016·中考)例2 用公式法解方程.8110442x x x -=++例 3 用公式法解方程.01252=+-x x(设计意图:加深对一元二次方程02=++c bx ax 求根公式的理解.)思考:以上三个例题中方程的根有什么规律?一元二次方程02=++c bx ax 的根有三种情况:当042>-ac b 时,方程)0(02≠=++a c bx ax 有两个不相等的实数根;当042=-ac b 时,方程)0(02≠=++a c bx ax 有两个相等的实数根;当042<-ac b 时,方程)0(02≠=++a c bx ax 无实数根.一般地,式子ac b 42-叫做一元二次方程02=++c bx ax 根的判别式,通常用希腊字母”“∆表示它,即.42ac b -=∆四、回顾内容 小结新课师:通过这节课的学习,同学们都有哪些收获?生1:……生2:………………………………………………………………………………………………………………师:……用公式法解一元二次方程的一般步骤:①把方程化成一般形式,并写出 c b a ,,的值;②求出ac b 42-的值(特别注意:当042<-ac b 时无实数解);③代入求根公式;a ac b b x 242-±-= ④写出方程的解.21x x ,(设计意图:梳理学习内容、方法、思路,养成系统整理知识的习惯,形成知识体系.)五、布置作业 结束新课1. 预习教材第12----14页;2. 课外作业教材第17页习题21.2第4,5题.3. m 取什么值时,方程04)12(22=-+++m x m x 有两个实数根.4. 关于x 的一元二次方程,02=++c bx ax 当c b a ,,满足什么条件时,方程的两个实数根互为相反数?(设计意图:教师分层要求,学生课下完成,巩固所学知识.)六、教后反思本节课的教学采取了以学生为主体、教师为主导的方式,让学生尽可能地参与到教学的全过程中.通过学生的观察、发现、学生与学生的讨论交流、教师与学生的密切合作,有意识地培养了学生的一些能力(如口头表达能力、运算能力、归纳总结能力等);通过多媒体辅助教学,教学内容与中考题挂钩,启发、引导学生勤于思考问题,激发了学生的探究欲望、探究热情和求知欲望,另外,教师给学生逐步设疑,组织学生积极回答、学习,然后肯定其成绩,这样,学生既有成就感,也能加深其印象,更能增强他们学习数学的信心,学习效果比教师硬塞给学生现成的结论要好得多.七、板书设计。
21.2.2一元二次方程的解法——求根公式法(2)

例1. 解方程:
2
b b 4ac 2 x b 4ac 0 2a
2
(1)x(2)
2 -7x+2x =4
2 (4) 2x -9x+8=0
用公式法解一元二次方程的步骤: (1)化:把一元二次方程化为一般形式; (2)定:确定a、b、c的值; 2 (3)判:求出b -4ac的值,判断根的情况; 2 (4)代:若b -4ac≥0,则把a、b、c及 2 b -4ac代入求根公式,求出x1, 2 x2;若b -4ac<0,则方程无解.
(4)写:写出x1,x2
2. 用公式法解下列方程:
(1) 3x 1 2 3x
2
(2) 0.2 x 1.2x 0.55 0
2
2 2 1 (3) x x 1 0 3 2
(4) (x-1)(6-x)=6
3. 用公式法解下列方程:
x(x+1)+7(x-1)=2(x+2)
2 2 2
(3)在b -4ac≥0的前提下,将a、b、c的 值代入求根公式求解.
拓展与提高
2 1.x是什么值时,y=x -5x+4
的值分别是0,4?
2.解下列关于x的方程: 2 2 2x -mx-m =0
拓展与提高
求差
3.试比较代数式2x2-x-5与x-7 的值的大小。
2 解:2x -x-5-(x-7)
2 =2x -2x+2
2 =2(x -
2 2 x+0.5 -0.5 )+2
2 =2(x-0.5) -0.5+2
2 =2(x-0.5) +1.5
7 145 7 145 方程的根x1= , x2= . 6 6
数学人教版九年级上册解一元二次方程——公式法

21.2.2 公式法教学内容1.一元二次方程求根公式的推导过程;2.公式法的概念;3.利用公式法解一元二次方程.教学目标1.理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.2.经历复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)•的求根公式的推导公式,并应用公式法解一元二次方程.重难点关键1.重点:求根公式的推导和公式法的应用.2.难点与关键:一元二次方程求根公式法的推导.教学过程一、复习引入1.用配方法解下列方程2x2-12x+10=02. 用配方法解一元二次方程的步骤(1)化1:把二次项系数化为1(方程两边都除以二次项系数);(2)移项:把常数项移到方程的右边;(3)配方:方程两边都加上一次项系数绝对值一半的平方;(4)变形:方程左边分解因式,右边合并同类;(5)开方:根据平方根意义,方程两边开平方;(6)求解:解一元一次方程;(7)定解:写出原方程的解.二、探索新知用配方法解方程(1)ax2-7x+3 =0 (2)ax2+bx+3=0(3)如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题. 问题:已知ax 2+bx+c=0(a ≠0),试推导它的两个根x 1=2b a -,x 2=2b a -(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-c a配方,得:x 2+b a x+(2b a )2=-c a+(2b a )2 即(x+2b a )2=2244b ac a - ∵4a 2>0,4a2>0, 当b 2-4ac ≥0时2244b ac a -≥0 ∴(x+2b a)2)2 直接开平方,得:x+2b a =±2a 即x=2b a-± ∴x 1x 2 由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,•将a 、b 、c 代入式子x=2b a-就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
人教版九年级数学上册21.2解一元二次方程因式分解法 课件(共19张PPT)

新知探究
(1)因式分解法的条件是方程左边易于分解,而右边等于零,关键是熟练 掌握分解因式的知识,理论依旧是“如果两个因式的积等于零,那么至少 有一个因式等于零.” (2)因式分解法,突出了转化的思想方法,鲜明地显示了“二次”转化为 “一次”的过程. (3)在解一元二次方程的时候,要具体情况具体分析,选择合适的解一元 二次方程的方法.
公式 x= b b2 4ac 就可得到方程的根.
2a
学习目标 1.理解因式分解法解一元二次方程的推导过程. 2.理解并掌握用因式分解法解一元二次方程.
课堂导入
根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛,那么
物体经过x s离地面的高度(单位:m)为
10x-4.9x2.
根据上述规律,物体经过多少秒落回地面(结果保留小数点后两位)?
新知探究
解下列方程: (1) x2+x=0;
(2) x2 2 3x 0;
(3) 3x2-6x=-3.
新知探究
解下列方程: (1) x2+x=0;
(2) x2 2 3x 0;
(3) 3x2-6x=-3.
随堂练习
用因式分解法解下列方程: (1) 3x2-12x=-12;
x1=x2=2.
(2) 3x(x-1)=2(x-1). x1=1 x2=2/3.
新知探究
例1 解方程:x(x-2)+x-2=0. 解: 因式分解,得
(x-2)(x+1)=0. 于是得
x-2=0,或x+1=0, x1=2,x2=-1.
转化为两个一元 一次方程
新知探究
例2 解方程:5x2 2x 1 x2 2x 3 .
4
4
新知探究
用因式分解法解一元二次方程的步骤: 1.移项:将方程化为一般形式; 2.分解:将方程的左边分解为两个一次式的乘积; 3.转化:令每一个一次式分别为0,得到两个一元一次方程; 4.求解:解这两个一元一次方程,它们的解就是一元二次方程的解.
公式法解一元二次方程
一元二次方程的根的情况
ax bx c 0 (a 0) 2 (1)当 b 4ac 0时,有两个不等的实数根。
2
b b 4ac b b 4ac x1 , x2 ; 2a 2a 2 (2)当 b 4ac 0 时,有两个相等的实数根。 b x1 x 2 ; 2a (3)当 b 2 4ac 0 时,没有实数根。
m 1
注意:一元二次方程有实根, 说明方程可能有两个不等实根 或两个相等实根的两种情况。
2、关于x的一元二次方程kx2-2x-1=0有两 个不等的实根,则k的取值范围是 ( B ) A.k>-1 B. k>-1 且k≠ 0
C. k<1
D. k<1 且k≠0
2 2 b 4 ac ( 2 ) 4k (1) 4 4k >0 解:∵
2 ax bx c 0 (a 0). 由上可知,一元二次方程
的根由方程的系数a,b,c确定.因此,解一 元二次方程时,可以先将方程化为一般形式 2 2 ,当 b 4ac 0 ax bx c 0 时,将a,b,c 代入式子 就得到方程的根,这个式子叫做一元二次方程 的求根公式,利用它解一元二次方程的方法叫 做公式法,由求根公式可知,一元二次方程最 多有两个实数根。
2 2
一般的,式子 b2-4ac 叫做一元二次方程根的判别 式,通常用希腊字母“∆”来表示,即∆=b2-4ac
b b 2 4ac x 2a
例2 用公式法解下列方程: (1)x2 - 4x -7=0 解: a=1, b= -4 ,c= -7
∆=b2 - 4ac =12 - 4×1×(7)=44>0
ax bx c 0 (a 0)
21.2.2公式法解一元二次方程(两课时)
2.确定系数:用 a,b,c写出各项系 数; 3.计算: b2-4ac 的值; 4.代入:把有关数 值代入公式计算; 5.定根:写出原方 程的根.
用公式法解一元二次方程的一般步骤:
b c 的值。 1、把方程化成一般形式,并写出 a、、
2、求出 = b 4ac 的值,
2
特别注意:当
=
b 4ac 0
2
2a
2a
此时,方程有两个相等的实数根 b x1 x2 2a
即 因为a≠0,所以4 a >0
2
2
b b 4ac x 2a 4a 2
2
2
2
式子 b 4ac的值有以下三种情况:
2 2
b 而x取任何实数都不可能使 ( x ) 2a
因此方程无实数根
4ac b (3) b 4ac 0, 这时 0 4a
9 ∴m> 8 9 2 (2)若方程有两个相等的实数根,则b -4ac=0即8m+9=0 ∴m= 8
(1)若方程有两个不相等的实数根,则b2-4ac>0,即8m+9>0 (3)若方程没有实数根,则b2-4ac<0即8m+9<0 ∴当m>
9 方程有两个相等的实数根;当m< 时,方程没有实数根 8
2
0
,
一般地,式子b 4 ac 叫做方程
2
根的判别式,通常用希腊字母△表示它,即
ax bx c 0
2
△= b 4ac
2
心动
2
不如行动
公式法
ax2+bx+c=0(a≠0)
一般地,对于一元二次方程
当 b 4ac 0时, 它的根是 :
人教版初中数学九年级上册 第二十一章 因式分解法
21.2 解一元二次方程/
21.2 解一元二次方程
21.2.3 因式分解法
导入新知
21.2 解一元二次方程/
1. 解一元二次方程的方法有哪些?
直接开平方法: x2=a (a≥0)
配方法:
(x+m)2=n (n≥0)
公式法:
x= b b2 4ac(b2-4ac≥0)
2a
因式分解得(x﹣3)(2﹣3x)=0,
x﹣3=0或2﹣3x=0,
解得:x1=3,
x2=
2 3
.
课堂检测
21.2 解一元二次方程/
基础巩固题
1.解下列方程: (1)x2+4x-9=2x-11; 解:x2+2x+2=0,
(2)x(x+4)=8x+12. 解:x2-4x-12=0,
(x+1)2=-1.
(x-2)2=16.
探究新知
(3)3x2=4x+1;
21.2 解一元二次方程/
(4)y2-15=2y;
(3)移项,得 3x2-4x-1=0.
(4)移项,得 y2-2y-15=0.
∵a=3,b=-4,c=-1,
把方程左边因式分解,
∴x=--4±
-24×2-3 4×3×-1=2±3
7 .
得(y-5)(y+3)=0.
∴x1=2+3
③x2-3x=0;
∴b2-4ac=9-4=5>0.∴x=3±2
5 .
④x2-2x=4.
∴x1=3+2
5,x2=3-2
5 .
课堂检测
21.2 解一元二次方程/
若选择②, ②适合直接开平方法, ∵(x-1)2=3,
21.2.2_一元二次方程的解法-公式法
怎样用配方法解形如一般形式 ax2+bx+c=0(a≠0)的一元二次方程:
一般的,式子 b 2 4ac 叫做一元二次方程 2 ax bx c 0(a 0) 根的判别式,通常用希 腊字母 △ 表示,
即
b 4ac
2
归纳:
由上可知, 当△>0时,方程 ax2+bx+c=0 (a≠0)有两个不相等 的实数根; 当△=0时,方程 ax2 +bx+c=0 (a≠0)有两个相等的 实数根;
1、(09成都)若关于
的一元二次方程
有两个不相等的实数根,则 的取值范围是 ( B A. C. B. D. ) 且 且
2、关于x的一元二次方程 只有一解(相同解算一解),则a的值为( ) A. B. C. D. 或
已知一元二次方程证明根的情况
已知关于x 的一元二次方程
x kx k 2 0
作业:
1、 关于x的方程
有两个不相等的实数根.求k的取值范围。 2.m取何值时,方程 x2+(2m+1)x+m2-4=0有两 个相等的实数根?
当△<0时,方程 ax2 +bx+c=0 (a≠0)无实数根。
1.练习:不解方程,判断下列一元二次方程的根 的情况
2x 6x 3
2
3x( x 2) 7
x 4x 4 0
2
已知方程及其根的情况,求字母的取值范围
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马鸣风萧萧 马鸣风萧萧 初中数学试卷 马鸣风萧萧 21.2.2公式法 预习要点: 1.一般地,式子 叫做一元二次方程ax2+bx+c=0根的判别式,通常用希腊字母“Δ”表示它,即 。
(1)当Δ>0时,方程有 的实数根; (2)当Δ=0时,方程有 的实数根; (3)当Δ<0时,方程 实数根。 2.用公式法解一元二次方程3x2-2x+3=0时,首先要确定a、b、c的值,下列叙述正确的是( ) A.a=3,b=2,c=3 B.a=-3,b=2,c=3 C.a=3,b=2,c=-3 D.a=3,b=-2,c=3 3.用公式法解方程6x-8=5x2时,a、b、c的值分别是( ) A.5、6、-8 B.5、-6、-8 C.5、-6、8 D.6、5、-8 4.关于x的一元二次方程ax2+bx+c=0(a≠0,b2-4ac>0)的根是( )
A.b±b2−4ac2a B.−b+b2−4ac2a C.−b±b2−4ac2 D.−b±b2−4ac2a 5.(2016•桂林)若关于x的一元二次方程方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )
A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5 6.(2016•邵阳)一元二次方程2x2-3x+1=0的根的情况是( ) 马鸣风萧萧 马鸣风萧萧 A.有两个相等的实数根 B.有两个不相等的实数根 C.只有一个实数根 D.没有实数根 7.(2016•丰台区一模)小明同学用配方法推导关于x的一元二次方程ax2+bx+c=0的求根公式时,对于b2-4ac>0的情况,他是这样做的:
小明的解法从第 步开始出现错误;这一步的运算依据应是 . 8.利用求根公式解一元二次方程时,首先要把方程化为 ,确定 的值,当 时,把a,b,c的值代入公式,x1,x2= 求得方程的解.
9.(2016•上海)如果关于x的方程x2-3x+k=0有两个相等的实数根,那么实数k的值是 . 10.(2016•泰州二模)关于x的方程(a-6)x2-8x+6=0有实数根,则整数a的最大值是 .
同步小题12道 一.选择题 1.用公式法解方程x2-x=2时,求根公式中的a,b,c的值分别是( )
A.a=1,b=1,c=2 B.a=1,b=-1,c=-2 C.a=1,b=1,c=-2 D.a=1,b=-1,c=2 2.(2016•丽水)下列一元二次方程没有实数根的是( ) 马鸣风萧萧 马鸣风萧萧 A.x2+2x+1=0 B.x2+x+2=0 C.x2-1=0 D.x2-2x-1=0 3.用公式解方程-3x2+5x-1=0,正确的是( )
A.x=−5±136 B.x=−5±133 C.x=5±136 D.x=5±133 4.(2016•昆明)一元二次方程x2-4x+4=0的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.无法确定 5.(2016•河北)a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是( ) A.有两个相等的实数根 B.有两个不相等的实数根 C.无实数根 D.有一根为0 6.(2016•自贡)已知关于x的一元二次方程x2+2x-(m-2)=0有实数根,则m的取值范围是( ) A.m>1 B.m<1 C.m≥1 D.m≤1 二.填空题 7.(2016•长春)关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是 .
8.(2016•河南)若关于x的一元二次方程x2+3x-k=0有两个不相等的实数根,则k的取值范围是 .
9.(2016•青岛)已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为 . 10.(2015秋•闸北区期中)方程x2-5x=4的根是 . 三.解答题 11.解方程:
(1)x2-3x-1=0. (2)x2+4x-2=0. (3)x2-6x+3=0. 马鸣风萧萧
马鸣风萧萧 12.(2016•北京)关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根. (1)求m的取值范围; (2)写出一个满足条件的m的值,并求此时方程的根.
答案: 21.2.2公式法 预习要点: 1.b2-4ac Δ=b2-4ac (1)两个不等(2)两个相等(3)无 2.【分析】首先找出a、b、c的值,进一步比较得出答案即可. 【解答】解:3x2-2x+3=0,a=3,b=-2,c=3. 故选:D 3.【分析】将原方程化为一般式,然后再判断a、b、c的值. 【解答】解:原方程可化为:5x2-6x+8=0;∴a=5,b=-6,c=8; 马鸣风萧萧 马鸣风萧萧 故选C
4.【分析】熟记求根公式x=−b±b2−4ac2a ,进行选择即可. 【解答】解:当a≠0,b2-4ac>0时,一元二次方程的求根公式为x=−b±b2−4ac2a , 故选D 5.【分析】根据方程为一元二次方程且有两个不相等的实数根,结合一元二次方程的定义以及根的判别
式即可得出关于k的一元一次不等式组,解不等式组即可得出结论.
【解答】解:∵关于x的一元二次方程方程(k-1)x2+4x+1=0有两个不相等的实数根,
∴ k−1≠0 △>0 ,即
k−1≠0 42−4(k−1)>0 ,解得:k<5且k≠1.
故选B 6.【分析】代入数据求出根的判别式△=b2-4ac的值,根据△的正负即可得出结论. 【解答】解:∵△=b2-4ac=(-3)2-4×2×1=1>0,∴该方程有两个不相等的实数根. 故选B 7.四 正数平方根的求解 8.【分析】根求根公式的解题步骤进行填空. 【解答】解:利用求根公式解一元二次方程时,首先要把方程化为一般式方程,确定a,b,c的值,当△>0时,把a,b,c的值代入公式,x1,x2=−b±b2−4ac2a 求得方程的解.
故答案是:一般式方程;a,b,c;△>0;−b±b2−4ac2a . 9.【分析】根据方程有两个相等的实数根结合根的判别式,即可得出关于k的一元一次方程,解方程即可得出结论.
【解答】解:∵关于x的方程x2-3x+k=0有两个相等的实数根,∴△=(-3)2-4×1×k=9-4k=0,解得:k=94 . 答案:94 . 10.【分析】分两种情况进行讨论,①a=6,②a≠6得出△≥0这一条件,然后解不等式即可. 马鸣风萧萧 马鸣风萧萧 【解答】解:①若a=6,则方程有实数根,②若a≠6,则△≥0,∴64-4×(a-6)×6≥0,整理得:a≤263 ,∴a的最大值为8.
同步小题12道 1.【分析】方程整理为一般形式,找出a,b,c的值即可. 【解答】解:将方程整理得:x2-x-2=0,这里a=1,b=-1,c=-2, 故选B 2.【分析】求出每个方程的根的判别式,然后根据判别式的正负情况即可作出判断. 【解答】解:A、△=22-4×1×1=0,方程有两个相等实数根,此选项错误;B、△=12-4×1×2=-7<0,方程没有实数根,此选项正确;C、△=0-4×1×(-1)=4>0,方程有两个不等的实数根,此选项错误;D、△=(-2)2-4×1×(-1)=8>0,方程有两个不等的实数根,此选项错误;
故选:B 3.【分析】求出b2-4ac的值,再代入公式求出即可.
【解答】解:-3x2+5x-1=0,b2-4ac=52-4×(-3)×(-1)=13,x=−5±132×(−3) =5±136 , 故选C 4.【分析】将方程的系数代入根的判别式中,得出△=0,由此即可得知该方程有两个相等的实数根. 【解答】解:在方程x2-4x+4=0中,△=(-4)2-4×1×4=0,∴该方程有两个相等的实数根. 故选B 5.【分析】利用完全平方的展开式将(a-c)2展开,即可得出ac<0,再结合方程ax2+bx+c=0根的判别式
△=b2-4ac,即可得出△>0,由此即可得出结论.
【解答】解:∵(a-c)2=a2+c2-2ac>a2+c2,∴ac<0.在方程ax2+bx+c=0中,△=b2-4ac≥-4ac>0,∴方程ax2+bx+c=0有两个不相等的实数根.
故选B 6.【分析】根据关于x的一元二次方程x2+2x-(m-2)=0有实数根,可知△≥0,从而可以求得m的取值范围. 马鸣风萧萧 马鸣风萧萧 【解答】解:∵关于x的一元二次方程x2+2x-(m-2)=0有实数根,∴△=b2-4ac=22-4×1×[-(m-2)]≥0,解得m≥1,
故选C 7.【分析】由于关于x的一元二次方程x2+2x+m=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.
【解答】解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22-4m=0,∴m=1, 答案:1. 8.【分析】由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于k的一元一次不等式,解不等式即可得出结论.
【解答】解:∵关于x的一元二次方程x2+3x-k=0有两个不相等的实数根,∴△=32-4×1×(-k)=9+4k>0,解得:k>-94 .
答案:k>-94 9.【分析】将一次函数解析式代入到二次函数解析式中,得出关于x的一元二次方程,由两函数图象只有一个交点可得知该方程有两个相同的实数根,结合根的判别式即可得出关于c的一元一次方程,解方程即可得出结论.
【解答】解:将正比例函数y=4x代入到二次函数y=3x2+c中,得:4x=3x2+c,即3x2-4x+c=0.
∵两函数图象只有一个交点,∴方程3x2-4x+c=0有两个相等的实数根,∴△=(-4)2-4×3c=0,解得:c=43 . 答案:43 . 10.【分析】先把给出的方程进行整理,找出a,b,c的值,再代入求根公式进行计算即可.
【解答】解:∵x2-5x=4,∴x2-5x-4=0,∵a=1,b=-5,c=-4,∴x=−b±b2−4ac2a =5±25+162 =5±412 ,∴x1=5+412 ,x2=5−412 .
答案:x1=5+412 ,x2=5−412 . 11.解:(1)∵a=1,b=-3,c=-1,