代数式求值(精选初一七年级上代数式求值32道题)(可编辑修改word版)
初一代数式计算题50道

初一代数式计算题50道一、整式的加减1.化简:3x + 2x - 5x。
2.化简:4y - 3y + 2y。
3.化简:2a + 3b - a + 2b。
4.化简:5m - 3n - 2m + 4n。
5.化简:3(x + 2y) - 2(x - y)。
6.化简:2(3a - 2b) + 3(2a + b)。
7.化简:-(2x - 3y) + 4(3x - 2y)。
8.化简:5(a - b) - 2(a + 3b)。
9.化简:3x² + 2x² - 4x²。
10.化简:4y² - 3y² + 2y²。
二、整式的乘法11.计算:2x·3x。
12.计算:-3a·2a²。
13.计算:4m·(-2m²n)。
14.计算:5xy·(-3x²y)。
15.计算:(2a²b)·(-3ab³)。
16.计算:(-3x²y³)·2xy²。
17.计算:(4m²n)·(-2m³n²)。
18.计算:(-5a²b³)·(3a³b²)。
19.计算:(2x + 3)(x - 1)。
20.计算:(3x - 2)(2x + 1)。
三、整式的除法21.计算:6x²÷2x。
22.计算:-12a³b²÷(-3ab²)。
23.计算:24m³n²÷(-8m²n)。
24.计算:30x³y²÷(-5x²y)。
25.计算:(15a³b⁴c)÷(-5a²b²c)。
26.计算:(-24x⁴y⁵z²)÷(-8x²y³z)。
(完整版)代数式求值(精选初一七年级上代数式求值32道题)

代数式求值专题1:已知:m=51,n=-1,求代数式3(m 2n+mn)-2(m 2n-mn)-m 2n 的值2:已知:x+x 1=3,求代数式(x+x 1)2+x+6+x1的值3:已知当x=7时,代数式ax 5+bx-8=8,求x=7时,8225++x bx a 的值.4:已知2x =3y =4z,则代数式yz yz xy z y x 3232+++-5:已知a=3b,c=4a 求代数式cb a cb a -++-65292的值6:已知a,b 互为相反数,c,d 互为倒数,x 的绝对值等于1,求代数式a+b+x 2-cdx 的值7:设a+b+c=0,abc >0,求ac b ++b a c ++c ba +的值9:5a 2-4a 2+a -9a -3a 2-4+4a ,其中a=-12;10:5ab -92a 2b+12a 2b -114ab -a 2b -5,其中a=1,b=-2;11:(3a 2-ab+7)-(5ab -4a 2+7),其中a=2,b=13;12:12x -2(x -13y 2)+3(-12x+19y 2),其中x=-2,y=-23;13:-5abc -{2a 2b -[3abc -2(2ab 2-12a 2b )]},其中a=-2,b=-1,c=314:证明多项式16+a -{8a -[a -9-3(1-2a )]}的值与字母a 的取值无关.15:由于看错了符号,某学生把一个代数式减去x 2+6x -6误当成了加法计算,结果得到2x 2-2x+3,正确的结果应该是多少?16:当12,2x y ==时,求代数式22112x xy y +++的值。
17:已知x 是最大的负整数,y 是绝对值最小的有理数,求代数式322325315x x y xy y +--的值。
18:已知3613211⎪⎭⎫ ⎝⎛⨯⨯÷-=x ,求代数式1199719981999+++++x x x x Λ的值。
【数学七年级上】初一上册数学《代数式求值》试题及答案

【数学七年级上】初一上册数学《代数式求值》试题及答案七年级上册数学《代数式求值》试题及答案一、选择题(共12小题)1.已知m=1,n=0,则代数式m+n的值为()A.﹣1B.1C.﹣2D.2【考点】代数式求值.【分析】把m、n的值代入代数式进行计算即可得解.【解答】解:当m=1,n=0时,m+n=1+0=1.故选B.【点评】本题考查了代数式求值,把m、n的值代入即可,比较简单.2.已知x2﹣2x﹣8=0,则3x2﹣6x﹣18的值为()A.54B.6C.﹣10D.﹣18【考点】代数式求值.【专题】计算题.【分析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【解答】解:∵x2﹣2x﹣8=0,即x2﹣2x=8,∴3x2﹣6x﹣18=3(x2﹣2x)﹣18=24﹣18=6.故选B.【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.3.已知a2+2a=1,则代数式2a2+4a﹣1的值为()A.0B.1C.﹣1D.﹣2【考点】代数式求值.【专题】计算题.【分析】原式前两项提取变形后,将已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=2(a2+2a)﹣1=2﹣1=1,故选B【点评】此题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.4.在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是()A.4,2,1B.2,1,4C.1,4,2D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;B、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得:=2,把x=2代入得:=1,本选项不合题意;D、把x=2代入得:=1,把x=1代入得:3+1=4,把x=4代入得:=2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.5.当x=1时,代数式4﹣3x的值是()A.1B.2C.3D.4【考点】代数式求值.【专题】计算题.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时,原式=4﹣3=1,故选A.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.6.已知x=1,y=2,则代数式x﹣y的值为()A.1B.﹣1C.2D.﹣3【考点】代数式求值.【分析】根据代数式的求值方法,把x=1,y=2代入x﹣y,求出代数式x﹣y的值为多少即可.【解答】解:当x=1,y=2时,x﹣y=1﹣2=﹣1,即代数式x﹣y的值为﹣1.故选:B.【点评】此题主要考查了代数式的求法,采用代入法即可,要熟练掌握,解答此题的关键是要明确:求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.7.已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6B.6C.﹣2或6D.﹣2或30【考点】代数式求值.【专题】整体思想.【分析】方程两边同时乘以2,再化出2x2﹣4x求值.【解答】解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.【点评】本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2B.x=3,y=﹣3C.x=﹣4,y=2D.x=﹣3,y=﹣9【考点】代数式求值;二元一次方程的解.【专题】计算题.【分析】根据运算程序列出方程,再根据二元一次方程的解的定义对各选项分析判断利用排除法求解.【解答】解:由题意得,2x﹣y=3,A、x=5时,y=7,故A选项错误;B、x=3时,y=3,故B选项错误;C、x=﹣4时,y=﹣11,故C选项错误;D、x=﹣3时,y=﹣9,故D选项正确.故选:D.【点评】本题考查了代数式求值,主要利用了二元一次方程的解,理解运算程序列出方程是解题的关键.9.若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3B.0C.1D.2【考点】代数式求值.【专题】整体思想.【分析】把(m+n)看作一个整体并代入所求代数式进行计算即可得解.【解答】解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2×(﹣1)=1+2=3.故选:A.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.10.已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0B.﹣1C.﹣3D.3【考点】代数式求值.【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.【解答】解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.11.当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7B.3C.1D.﹣7【考点】代数式求值.【专题】整体思想.【分析】把x=1代入代数式求出a、b的关系式,再把x=﹣1代入进行计算即可得解.【解答】解:x=1时,ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时,ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选:C.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.12.如图是一个运算程序的示意图,若开始输入x的值为81,则第2014次输出的结果为()A.3B.27C.9D.1【考点】代数式求值.【专题】图表型.【分析】根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【解答】解:第1次,×81=27,第2次,×27=9,第3次,×9=3,第4次,×3=1,第5次,1+2=3,第6次,×3=1,…,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2014是偶数,∴第2014次输出的结果为1.故选:D.【点评】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.二、填空题(共18小题)13.若4a﹣2b=2π,则2a﹣b+π=2π.【考点】代数式求值.【分析】根据整体代入法解答即可.【解答】解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.【点评】此题考查代数式求值,关键是根据整体代入法计算.14.若2m﹣n2=4,则代数式10+4m﹣2n2的值为18.【考点】代数式求值.【分析】观察发现4m﹣2n2是2m﹣n2的2倍,进而可得4m﹣2n2=8,然后再求代数式10+4m﹣2n2的值.【解答】解:∵2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故答案为:18.【点评】此题主要考查了求代数式的值,关键是找出代数式之间的关系.15.若a﹣2b=3,则9﹣2a+4b的值为3.【考点】代数式求值.【专题】计算题.【分析】原式后两项提取﹣2变形后,把已知等式代入计算即可求出值.【解答】解:∵a﹣2b=3,∴原式=9﹣2(a﹣2b)=9﹣6=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.已知3a﹣2b=2,则9a﹣6b=6.【考点】代数式求值.【分析】把3a﹣2b整体代入进行计算即可得解.【解答】解:∵3a﹣2b=2,∴9a﹣6b=3(3a﹣2b)=3×2=6,故答案为;6.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.17.若a2﹣3b=5,则6b﹣2a2+2015=2005.【考点】代数式求值.【分析】首先根据a2﹣3b=5,求出6b﹣2a2的值是多少,然后用所得的结果加上2015,求出算式6b﹣2a2+2015的值是多少即可.【解答】解:6b﹣2a2+2015=﹣2(a2﹣3b)+2015=﹣2×5+2015=﹣10+2015=2005.故答案为:2005.【点评】此题主要考查了代数式的求值问题,采用代入法即可,要熟练掌握,题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.18.按照如图所示的操作步骤,若输入的值为3,则输出的值为55.【考点】代数式求值.【专题】图表型.【分析】根据运算程序列式计算即可得解.【解答】解:由图可知,输入的值为3时,(32+2)×5=(9+2)×5=55.故答案为:55.【点评】本题考查了代数式求值,读懂题目运算程序是解题的关键.19.若a﹣2b=3,则2a﹣4b﹣5=1.【考点】代数式求值.【分析】把所求代数式转化为含有(a﹣2b)形式的代数式,然后将a ﹣2b=3整体代入并求值即可.【解答】解:2a﹣4b﹣5=2(a﹣2b)﹣5=2×3﹣5=1.故答案是:1.【点评】本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a﹣2b)的值,然后利用“整体代入法”求代数式的值.20.已知m2﹣m=6,则1﹣2m2+2m=﹣11.【考点】代数式求值.【专题】整体思想.【分析】把m2﹣m看作一个整体,代入代数式进行计算即可得解.【解答】解:∵m2﹣m=6,∴1﹣2m2+2m=1﹣2(m2﹣m)=1﹣2×6=﹣11.故答案为:﹣11.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.21.当x=1时,代数式x2+1=2.【考点】代数式求值.【分析】把x的值代入代数式进行计算即可得解.【解答】解:x=1时,x2+1=12+1=1+1=2.故答案为:2.【点评】本题考查了代数式求值,是基础题,准确计算是解题的关键.22.若m+n=0,则2m+2n+1=1.【考点】代数式求值.【分析】把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解.【解答】解:∵m+n=0,∴2m+2n+1=2(m+n)+1,=2×0+1,=0+1,=1.故答案为:1.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.23.按如图所示的程序计算.若输入x的值为3,则输出的值为﹣3.【考点】代数式求值.【专题】图表型.【分析】根据x的值是奇数,代入下边的关系式进行计算即可得解.【解答】解:x=3时,输出的值为﹣x=﹣3.故答案为:﹣3.【点评】本题考查了代数式求值,准确选择关系式是解题的关键.24.按照如图所示的操作步骤,若输入x的值为2,则输出的值为20.【考点】代数式求值.【专题】图表型.【分析】根据运算程序写出算式,然后代入数据进行计算即可得解.【解答】解:由图可知,运算程序为(x+3)2﹣5,当x=2时,(x+3)2﹣5=(2+3)2﹣5=25﹣5=20.故答案为:20.【点评】本题考查了代数式求值,是基础题,根据图表准确写出运算程序是解题的关键.25.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b﹣1,例如把(3,﹣2)放入其中,就会得到32+(﹣2)﹣1=6.现将实数对(﹣1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是9.【考点】代数式求值.【专题】应用题.【分析】观察可看出未知数的值没有直接给出,而是隐含在题中,需要找出规律,代入求解.【解答】解:根据所给规则:m=(﹣1)2+3﹣1=3∴最后得到的实数是32+1﹣1=9.【点评】依照规则,首先计算m的值,再进一步计算即可.隐含了整体的数学思想和正确运算的能力.26.如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是3.【考点】代数式求值.【分析】将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b 的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.【解答】解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.27.若x2﹣2x=3,则代数式2x2﹣4x+3的值为9.【考点】代数式求值.。
七年级数学整式加减单项式多项式代数式求值练习题(附答案)

七年级数学整式加减单项式多项式代数式求值练习题一、单选题1.3-的绝对值与5的相反数的和是( )A.2B.2-C.8D.8- 2.下列运算中,结果最小的是( )A.12()--B.12--C.()12⨯-D.()12÷-3.已知空气的单位体积质量是30.001239g /cm ,则用科学记数法表示该数为( )A.331.23910g /cm -⨯B.231.23910g /cm -⨯C.230.123910g /cm -⨯ D .4312.3910g /cm -⨯4.若0a b c d <<<<,则以下四个结论中,正确的是( )A.a b c d +++一定是正数B.c d a b +--可能是负数C.d c a b ---一定是正数D.c d a b ---一定是正数5.红星队在4场足球赛中战绩是第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负,则红星队在这次比赛中总的净胜球数是( )A.1+B.1-C.2+D.2-6.把(2)(6)(5)(1)(4)--+--+-++转化成几个有理数相加的形式,正确的是( )A.(2)(6)(5)(1)(4)-+++-+-++B.(2)(6)(5)(1)(4)-+-+++-++C.(2)(6)(5)(1)(4)-++++++++D.(2)(6)(5)(1)(4)--+--+-++7.对于下列式子:①ab ;②21x xy x --;③1a ;④2211x x x ++-;⑤13m n +以下判断正确的是( ) A.①③是单项式 B.①的系数是0 C.①⑤是整式 D.②④是多项式8.已知||4,||2a b ==,且||a b a b +=+,则a b -的值等于( ) A.2 B.6 C.2或6 D.2±或6±9.如果整式252n x x --+是关于x 的三次三项式,那么n 等于( ) A.3 B.4 C.5D.6 10.下列说法正确的是( ) A.17a+是多项式 B.22243562x x y y ---是四次四项式C.61x -的项数和次数都是6D.3a b +不是多项式 11.在多项式323238143x y x y xy --++中,最高次项为( )A.323x yB.323x y -C.328x yD.328x y -12.下列各式是四次单项式的是( )A.2213b -B.28πp q -C.mnktD.22π6ab c 13.下列式子中,符合书写格式的有( ).①25a ⨯,②3526b -,③6()2x y b -÷,④52()15p q +,⑤2x y +厘米,⑥v t + A.1个 B.2个 C.3个 D.4个14.下列表述中不符合“6k ”的意义的是( ).A.6的k 倍B. k 的6倍C.6个k 相加D.6个k 相乘15.设a 是最小的自然数,b 是最小的正整数,c 是绝对值最小的数,则a b c ++的值为( )A.1-B.0C.1D.216.按照如图所示的计算机程序计算,若开始输入的x 值为2.第一次得到的结果为1,第二次得到的结果为4,第2019次得到的结果为( )A.1B.2C.3D.4二、解答题17.用单项式表示下列各数量关系,并指出它们的系数和次数(1)七(8)班同学按a 排b 列排列座次且坐满,该班的学生人数是多少?(2)已知一个长方体的宽为a ,长是宽的2倍,高与宽相等,这个长方体的体积是多少?18.请根据图示的对话解答下列问题.求:(1),a b 的值;(2)8a b c -+-的值.19.已知有理数a ,b 对应的点在数轴上的位置如图所示.(1)在数轴上表示出a ,b 的相反数对应的点;(2)若数b 对应的点与其相反数对应的点相距20个单位长度,则数b 是多少?(3)在(2)的条件下,若数a 对应的点与数b 的相反数对应的点相距5个单位长度,则数a 是多少?三、计算题20.计算:(1)211(6)()23-⨯-; (2)211108()235+⨯--÷.22.设用符号(),a b 表示,a b 两数中较小的一个数,用符号[],a b 表示,a b 两数中较大的一个数,试求下列各式的值(1)[]5,0.5,2()4--+-.(2)[]1,35()(2),,7--+---.四、填空题23.绝对值不大于3的所有整数的积是_________.24.我国古代的“河图”是由33⨯的方格构成的,每个方格内均有不同的数,每一行、每一列以及每一条对角线上的三个数之和均相等.如图,给出了“河图”中的部分数字,请你推算出“”处所对应的数是_______.25.数学兴趣活动小组的同学们用棋子摆了如图的三个“工”字形图案.依照这种规律摆放,摆第4个“工”字形图案需 个棋子;摆第n 个“工”字形图案需 个棋子。
2019-2020年七年级上册代数式的化简求值问题典型例题(含答案)

2019-2020年七年级上册代数式的化简求值问题典型例题(含答案)一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx所以 m=4将m=4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x =-2时,代数式的值为8,求当x =2时,代数式的值。
分析: 因为当x=-2时, 得到,所以146822235-=--=++c b a当x=2时,=206)14(622235-=--=-++c b a例3.当代数式的值为7时,求代数式的值.分析:观察两个代数式的系数由 得 ,利用方程同解原理,得2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 整体代人,代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。
例4. 已知,求的值.分析:解法一(整体代人):由 得所以:解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。
初中数学代数式求值精选练习题及答案

初中数学代数式求值精选练习题及答案1、已知3a-b+2c=7,5a+4b-3c=6,求代数式a+11b-12c的值;2、已知2m6+ m4= 3,求m的值;3、已知x2 −3x−27=0,求代数式1(x+4)2+(x+4)2的值;4、已知x,y,z为正数,且xy=28,yz=48,xz=84,求代数式x+2y+3z值;5、已知a= 2b−3,求代数式6ab+3a(2-3b)+3a+7的值;6、已知m a=2,m a+b=14,求代数式√m a + m b的值;7、已知x,y,z为整数,若x+y+z=3,x2+ y2+z2=5,求代数式x3+y3+ z3-10的值;8、已知m2-n2=12,(m+n)2= 16,求代数式8mn+9的值;9、已知x=√2+√3,求代数式x2−2√3x-4的值;10、已知m +n =-5,求代数式m2- 10n- n2的值。
参考答案1、已知3a-b+2c=7,5a+4b-3c=6,求代数式a+11b-12c的值;解:已知3a-b+2c=7将上式变换一下,得b=3a+2c-7---------------①将①代入5a+4b-3c=6,得5a+4(3a+2c-7)-3c =6整理,得17a+5c=34---------------②代数式a+11b-12c将①代入=a+11(3a+2c-7)-12c=34a+10c-77=2(17a+5c)-77将②代入=2×34-77=-92、已知2m6+ m4= 3,求m的值;解:2m6+ m4= 32(m2)3+ (m2)2= 3令m2=t,原式则为2t3 + t2 =32t3 + t2 -3 =02t3 + t2 -2-1 =0(2t3 - 2)+(t2 -1)=02(t3 -1)+(t2 -1)=02(t-1)(t2 +t+1)+(t+1)(t-1)=0 (t-1)〔2(t2 +t+1)+(t+1)〕=0(t-1)(2t2 +3t+3)=0因为2t2 +3t+3 =2(t+34)2+ 158>0所以2t2 +3t+3≠0故:只有t-1=0即t=1又m2=t所以m2=1,得m=±1故:m的值为±13、已知x2 −3x−27=0,求代数式1(x+4)2+(x+4)2解:x2 −3x−27=0x2 −3x−27−1= -1x2 −3x−28= -1(x+4)(x-7)= -1等号两边同时除以(x+4),得X -7= −1x+4等号两边同时乘以-1,得7-x = 1x+4-----------------①代数式1(x+4)2+(x+4)2=(1x+4)2+2×1x+4×(x+4)+(x+4)2-2=〔1x+4+(x+4)〕2-2将①带入,用7-x替换1x+4=〔(7−x)+(x+4)〕2-2 =(11)2-2=1094、已知x,y,z为正数,且xy=28,yz=48,xz=84,求代数式x+2y+3z值;解:xy=28-------------------①yz=48-------------------②xz=84-------------------③三个等式相乘,得(xyz)2= 28*48*84=(4*7)*(4*12)*(7*12)(xyz)2=(4∗7∗12)2因为x,y,z为正数所以xyz =4∗7∗12 -----④④÷①,得:z=12④÷②,得:x=7④÷③,得:y=4代数式x+2y+3z将x=7,y=4,z=12代入=7+2*4+3*12=515、已知a= 2b−3,求代数式6ab+3a(2-3b)+3a+7的值;解:a= 2b−3等式两边同时乘以b-3,得ab-3a=2上式变换一下,得ab=3a+2--------------①代数式6ab+3a(2-3b)+3a+7=6ab+6a-9ab+3a+7=-3ab+9a+7将①代入=-3(3a+2)+9a+7=-9a-6+9a+7=16、已知m a=2,m a+b=14,求代数式√m a + m b的值;解:m a+b=14m a×m b=14已知m a=2--------------①即:2 ×m b=14m b= 7-------------②代数式√m a + m b将①②代入=√2+7=37、已知x,y,z为整数,若x+y+z=3,x2+ y2+z2=5,求代数式x3+y3+ z3-10的值;解:因为x,y,z为整数且x2+ y2+z2=5若其中一个数为±3,它的平方为9,显然大于5所以:x,y,z只能取±2,±1, 0 -------------------①(A)设x= -2,因为x+y+z=3,所以y+z=5,这时y或z必定有一个取±3或±4或±5,不符合①,所以舍去;(B)设x= 2因为x+y+z=3,所以y+z=1即:y=1-z--------------------------②又x2+ y2+z2=5,所以y2+z2=1-------③将②代入③(1−z)2+z2=12z2-2z=0解得:z=0,或z=1对应的y=1或0整理得:{x=2y=0x=1或{x=2y=1z=0求代数式(x3+y3+ z3)-10=(23+03+ 13)-10=-1(C)设x= -1因为x+y+z=3,所以y+z=4,因为x,y,z只能取±2,±1, 0所以,这时只能是:y=z=2整理得:{x=−1 y=2 x=2求代数式(x3+y3+ z3)-10=(−13+23+ 23)-10=5(D)设x= 1因为x+y+z=3,所以y+z=2,即y=2- z又x2+ y2+z2=5,所以y2+z2=4将y=2- z代入(2−z)2+z2=4化简,得2z2-4z=0解得:z=0,或z=2对应y=2或y=0整理得:{x=1y=0x=2或{x=1y=2z=0求代数式(x3+y3+ z3)-10=(13+23+ 03)-10= -1(E)设x= 0因为x+y+z=3,所以y+z=3,即y=3- z又x2+ y2+z2=5,所以y2+z2=5将y=3- z代入(3−z)2+z2=5化简,得2z2-6z+4=0,即z2-3z+2=0即(z-2)(z-1)=0解得:z=2或z=1对应:y=1或y=2整理得:{x=0y=2x=1或{x=0y=1z=2求代数式(x3+y3+ z3)-10=(03+23+ 13)-10= -18、已知m2-n2=12,(m+n)2= 16,求代数式8mn+9的值;解:m2-n2=12(m +n)(m -n)=12两边同时平方,得(m + n)2(m−n)2=144将(m+n)2= 16代入16*(m−n)2=144(m−n)2=9等号左边展开:m2-2mn + n2=9------------①又(m+n)2= 16等号左边展开:m2+2mn + n2=16-----------②②-①,得4mn=7代数式8mn+9=2*4mn+9=2*7+9=239、已知x=√2+√3,求代数式x2−2√3x-4的值;解:x=√2+√3x= √2−√3(√2+√3)(√2−√3)= √2−√32−3=√2−√3−1=√3-√2--------------①x2 = (√3 − √2)2 =3+2-2√6=5-2√6---------------------②代数式x2−2√3x−4将①②代入=(5-2√6)-2√3(√3-√2)+4=5-2√6-6+2√6+4=310、已知m +n =-5,求代数式m2- 10n- n2的值。
初一代数式求值练习题及答案

初一代数式求值练习题及答案11212:已知:x+=3,求代数式+x+6+的值 xxxa5b53:已知当x=7时,代数式ax+bx-8=8,求x=7时,x?x?8的值.21:已知:m=4:已知xyzx?2y?3z==,则代数式34xy?2yz?3yz5:已知a=3b,c=4a求代数式2a?9b?2c的值a?6b?c 2-6:已知a,b互为相反数,c,d互为倒数,x的绝对值等于1,求代数式a+b+xcdx的值7:设a+b+c=0,abc>0,求b?cc?aa?b++的值 bca1;9:5a-4a+a-9a-3a-4+4a,其中a=-10:5ab-2229212112ab+ab-ab-ab-5,其中a=1,b=-2;2412211:-,其中a=2,b=;112112212:x-2+3,其中x=-2,y=-;3293122213:-5abc-{2ab-[3abc-2]},其中a=-2,b=-1,c=3.14:证明多项式16+a-{8a-[a-9-3]}的值与字母a的取值无关.15:由于看错了符号,某学生把一个代数式减去x+6x -6误当成了加法计算,结果得到2x-2x+3,正确的结果应该是多少?16:当x?2,y?2211时,求代数式x2?xy?y2?1的值。
217:已知x是最大的负整数,y是绝对值最小的有理数,求代数式2x3?5x2y?3xy2?15y3的值。
11??18:已知x1??3??,求代数式x1999?x1998?x1997x?1的值。
6??19:已知32?2a?b?3?a?b?2a?b的值。
??5,求代数式a?ba?b2a?b20:当x?7时,代数式ax3?bx?5的值为7;当x??7时,代数式ax3?bx?5的值为多少?21:已知当x?5时,代数式ax2?bx?5的值是10,求x?5时,代数式ax2?bx?5的值。
2:若xyz??,且3x?2y?z?18,求z?5y?3z的值;4523:若代数式2y2?3y?7的值是2,那么代数式4y2?6y?9的值是24:已知y?2x,z?2y,x?2,则代数式x?y?z 的值为25:设m?m?1?0,则m3?2m2?1997?______;526:当x?7时,代数式ax?bx?8?8,求当x??7时,2a5bx?x?8的值222227:已知a??2,b?0.25,求代数式9ab?3ab?5?8ab?3ab?7?7ab的值。
初中数学代数式求值经典练习题及答案

初中数学代数式求值经典练习题及答案根据已知,求下列代数式的值。
,求代数式x3的值;1、已知已知x>0,且x2=10+2√214的值;2、已知x2 +4x2= 5 ,xy=1,求代数式xx3、已知2x+1·3x= 24,2x·3x+1= 54,求代数式√(x+y)xx的值;4、已知x2= x+1,x2= y+1,且x≠y,求求代数式√x5+x5+5的值;= 4 ,求代数式x7−14x5+x3的值;5、已知x + 1x的的值;6、已知x2= √234x +1 ,求代数式x2 + 1x27、已知(x+y)3-2(x+y)2-3xy(x+y) +3xy +2(x+y) -1= 0,求代数式x+y的值;8、已知13x·9x= 4 ,求代数式1x+ 1x的值;9、已知(x2+2x)(x+y)=60,且x2 +3x+y=19,求代数式 x-y 的值;10、已知x2+2x+4=0,求代数式x4 +1的值。
参考答案1、已知已知x>0,且x2=10+2√214,求代数式x3的值。
解:x2=10+2√214x2=7 +2√21+34x2=(√7)2+ 2√21+ (√3)222x2=(√7 + √32)2因为x>0,所以 x = √7 + √32x3=x2·x= 10+2√214·√7 + √32x3= 10√7 + 10√3 + 14√3 + 6√78x3= 16√7 + 24√38x3= 2√7 +3√3故代数式x3的值是:2√7 +3√3。
2、已知x2 +4x2= 5 ,xy=1,求代数式xx的值。
解:x2 +4x2= 5可将5写为:5×1,所以上式为x2 +4x2= 5 ×1又xy=1,将式中的1用xy代替,则有x2 +4x2= 5xyx2-5xy+ 4x2=0等式两边同时除以x2,得(xy )2-5·xx+ 4 =0(xx -4)(xx-1)=0当xx -4=0 时,xx= 4当xx -1=0 时,xx= 1故代数式x3的值是:4或1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a c +a
b c
9
2
1
2
11
2
代数式求值专题
1
2 2 2 10:5ab- a b+ a b-ab-a b-5,其中 a=1,b=-2;
2 2 4
1:已知:m= ,n=-1,求代数式 3(m n+mn)-2(m n-mn)-m n 的值
5
2 2 1
11:(3a -ab+7)-(5ab-4a +7),其中 a=2,b= ;
3
1 1
2
1
2:已知:x+ =3,求代数式(x+ ) +x+6+ 的值
x x x 1 1
21 1
2
2
12:x-2(x- y )+3(-x+ y ),其中x=-2,y=-;
3:已知当 x=7 时,代数式 ax5+bx-8=8,求x=7 时,a
x5+
b
x + 8 的值.
2 3 2 9 3
2 2
2 2
1
2
13:-5abc-{2a b-[3abc-2(2ab - a b)]},其中 a=-2,b=-1,c=3
2
x y z x - 2 y + 3z
4:已知= = ,则代数式
2 3 4 xy + 2 y z + 3yz
14:证明多项式 16+a-{8a-[a-9-3(1-2a)]}的值与字母 a 的取值无关.
5:已知 a=3b,c=4a 求代数式2a - 9b + 2c
的值
5a + 6b -c
6:已知 a,b 互为相反数,c,d 互为倒数,x 的绝对值等于 1,求代数式 a+b+x2-cdx 的值15:由于看错了符号,某学生把一个代数式减去 x2+6x-6 误当成了加法计算,结果得到 2x2-2x+3,正确的结果应该是多少?
16:当x = 2, y =1 时,求代数式 1 x2+xy +y2+1 的值。
2 2
7:设a+b+c=0,abc>0,求b +c
+ +
a +b
的值
2 2 2 1
17:已知x 是最大的负整数,y 是绝对值最小的有理数,求代数式2x3+ 5x2y - 3xy2-15 y3的值
9:5a -4a +a-9a-3a -4+4a,其中a=-;
2。
18:已知 x = ⎛- 1 ÷ ⎝ 1 ⨯ 3 ⨯ 2 1 ⎫3 ⎪ 6 ⎭
,求代数式 x 1999 + x 1998 + x 1997 + + x + 1 的值。
27:已知a = -2, b = 0.25 ,求代数式9ab - 3a 2b 2 + 5 + 8ab 2 + 3a 2b 2 - 7 - 7ab 的值。
19:已知 2a - b = 5 ,求代数式
2 (2a - b ) +
3(a + b )
的值。
28:若a , b 互为相反数,求a + 3a + 5a + 7a + 9a + 2b + 4b + 5b + 6b + 8b 的值 a + b
a +
b 2a - b
.
29:若- 1 m 2n a -1 和 2
m b -1b 3 是同类项,求a b 的值.
20:当 x = 7 时,代数式ax 3 + bx - 5 的值为 7;当 x = -7 时,代数式ax 3 + bx + 5 的值为多少?
2 3
21:已知当 x = 5 时,代数式ax 2 + bx - 5 的值是 10,求 x = 5 时,代数式ax 2 + bx + 5 的值。
30:已知3x a +1 y b -2 与 2 5
x 2 是同类项,求2a 2b + 3a 2b -
1
a 2
b 的值。
2
22:若 x = y = z
,且3x - 2 y + z = 18 ,求 z + 5 y - 3z 的值;
3 4 5
31:已知a - b = 3 , b - c = 2 ;求代数式(a - c )2
+ 3a +1- 3c 的值。
23:若代数式2 y 2 + 3y + 7 的值是 2,那么代数式4 y 2 + 6 y - 9 的值是
32:已知当 x = -2 时,代数式ax 3 + bx +1的值为 5.求 x = 2 时,代数式ax 3 + bx +1的值。
24: 已知 y = 2x , z = 2 y , x = 2 ,则代数式 x + y + z 的值为
;
25:设m 2 + m - 1 = 0 ,则m 3 + 2m 2 + 1997 =
;
33:已知 A= mx²+ 2x- 1,B= 3x²- nx+ 3,且多项式 A- B 的值与 m 、n 的取值无关,试确定 m+n 的值.
26:当 x = 7 时,代数式ax 5 + bx - 8 = 8 ,求当 x = -7 时, a x 5 + b
x + 8 的值
2 2。