最新初一数学代数式知识

合集下载

初一上册数学代数式知识点

初一上册数学代数式知识点

初一上册数学代数式知识点一、代数式1. 用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或者字母也是代数式。

2. 用具体的数值代替代数式中的字母,按照代数式中指明的运算计算得出的结果,叫做这个代数式的值。

二、代数式的书写1. 代数式中如果有乘号,应写在字母的前面;2. 代数式中如果有乘方,应写在外面的括号里;3. 代数式中如果是加减运算,添括号时,括号前面是加号,括号里面不变号,括号前面是减号,括号里面要变号;4. 代数式中如果是乘方运算,加括号时要注意顺序。

先写底数,再写指数。

三、代数式的值1. 用数值代替代数式中的字母,按照代数式中的运算关系计算出来的结果叫做代数式的值。

2. 求代数式的值一般有三种方法:直接代入数值求值;变形后代入求值;变形后整体代入求值。

四、代数式的计算1. 代数式的加减运算主要是合并同类项。

合并同类项时把系数相加,字母和字母的指数不变。

2. 代数式的乘法运算主要是乘法分配律的应用。

3. 代数式的除法运算主要是乘除同一数的倒数。

五、整式的加减运算1. 整式的加减运算主要是去括号和合并同类项。

去括号时要注意:括号前面是负号,去掉括号和负号,括号里的每一项都要变号。

合并同类项时要注意系数相加,字母和字母的指数不变。

2. 整式的加减运算要按照运算顺序先做符号运算,再做乘除运算,最后做加减运算。

具体的代数式初步知识如下所示:1. 代数式用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式。

注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。

2. 列代数式的几个注意事项(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写。

(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号。

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a(4)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(5)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .3. 几个重要的代数式(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2(2)若a、b、c是正整数,则两位整数是:10a+b;则三位整数是:100a+10b+c。

初一数学:代数式知识点和题型

初一数学:代数式知识点和题型

代数式知识点和题型一、代数式的概念(非常重要)代数式:没有等号、没有不等号。

整式:首先必须是代数式,其次,分母中无字母,根号下无字母。

【字母的确定】①如果代数式中既有x, V,也有其他字母,一般只把x, y当做字母,其他的(比如a、b、c、d)当做数字②如果代数式中没有x, v,只有a、b、c、d等,这些都当做字母来看待。

③题目中明确说是关于那几个字母的代数式。

单项式:没有涉及字母的加减运算,或者合并同类项之后,没有涉及字母的加减运算。

比如:3ab、2x、2x &多项式:有涉及字母的加减运算2a 5b比如:一-——、3 4y、2x 7y单项式次数:所有字母的次数和。

单项式系数:单项式中的数字部分(包含正负号)。

多项式次数:多项式中次数最高的单项式的次数。

多项式项数:多项式中包含的单项式个数。

同类项:字母相同,同一个字母的次数也相同(合并同类项)二、题型1、列代数式(非常重要)利润问题:利润、价格、打折数字位数问题:数字x位数值(例如:1234 = 1 X 1000+2 X 100+3 X 10+4 X 1)面积体积问题:面积公式(圆、三角形、长方形、正方形、梯形),体积公式分段收费问题:2、同类项判断:已知两个单项式是同类型,计算参数值【方法:】根据同类项定义,写出等式。

(字母相同,同一个字母的次数也相同。

)例如:已知3a2m1b3和5a4b n 2是同类项,写出2m 1 4, n 2 3,计算即可(如果题目中说,两个单项式的和还是单项式,或者两个单项式可以合并成一项,本质上还是在说,这两个单项式是同类项,解题方法完全一样)几次几项式判断,方法类似。

缺项计算:先化简、缺哪一项,哪一项的系数值为零。

3、整式运算①合并同类项和加减运算。

去括号运算,括号前面是负号,去括号之后,每个数都变号。

②先化简再求值。

(非常重要)例如:先化简,再求值:(a26ab 9) 2(a2 4ab 4.5),其中|a 1| 屈一2 0【方法:】无论题目中是否明确说,先化简再求值。

初中代数知识点总结

初中代数知识点总结

初中代数知识点总结一、数的认识整数:包括正整数、零和负整数。

有理数:可以表示为两个整数的商的数,包括整数和分数。

实数:包括有理数和无理数(如π和根号下的非完全平方数)。

数的四则运算:加法、减法、乘法和除法。

二、代数式代数式:由数字、字母和运算符号组成的数学表达式。

代数式的值:将代数式中的字母替换为具体的数值后得到的结果。

代数式的简化:通过合并同类项、运用分配律等方法简化代数式。

三、方程与不等式方程:含有未知数的等式,通过解方程可以找到未知数的值。

一元一次方程:只含有一个未知数且未知数的指数为1的方程。

不等式:用不等号(如<、>、≤、≥)连接的式子,表示两个数之间的大小关系。

一元一次不等式:只含有一个未知数且未知数的指数为1的不等式。

四、函数函数:一种特殊的对应关系,其中每一个输入值(自变量)只对应一个输出值(因变量)。

函数的表示方法:解析法、列表法和图像法。

一次函数:形式为y = kx + b(k ≠ 0)的函数,其中x为自变量,y为因变量。

五、因式分解因式分解:将一个多项式表示为几个整式的乘积的形式。

常见因式分解方法:提取公因式法、公式法(如平方差公式、完全平方公式等)。

六、整式的乘法与除法整式的乘法:通过分配律进行整式的乘法运算。

整式的除法:通过长除法或合成除法进行整式的除法运算。

七、分式分式:两个整式的商,其中分母不为零。

分式的化简:通过约分等方法将分式化简为最简形式。

分式的四则运算:对分式进行加法、减法、乘法和除法运算。

以上是对初中代数知识点的简要总结,涵盖了数的认识、代数式、方程与不等式、函数、因式分解、整式的乘法与除法和分式等方面的内容。

在学习过程中,应注重理解基本概念,掌握基本方法,并通过大量练习巩固所学知识。

初中 数学代数知识点总结

初中 数学代数知识点总结

初中数学代数知识点总结一、代数式代数式是由数字、字母和运算符号组成的表达式。

代数式中的字母代表数,称为未知数或变量,代数式的值随着变量的取值而变化。

代数式包括单项式、多项式、等式和不等式等。

1. 单项式:由一个项组成的代数式,例如3x、5y、-7等都是单项式。

2. 多项式:由多个项相加(或相减)而成的代数式,例如3x+5y、2x²+3x+7等都是多项式。

3. 等式和不等式:包含等号或不等号的代数式,例如2x+3=7、4x-5≥3等都是等式和不等式。

二、代数运算代数运算是对代数式进行加法、减法、乘法、除法、乘方等运算的过程。

了解代数运算规律,可以帮助我们解决各种数学问题。

1. 加法:将两个或多个代数式相加,例如a+b、x+y+z等。

2. 减法:将一个代数式减去另一个代数式,例如a-b、x-y等。

3. 乘法:将两个或多个代数式相乘,例如a×b、x×y×z等。

4. 除法:将一个代数式除以另一个非零的代数式,例如a÷b、x÷y等。

5. 乘方:将一个数或一个代数式自己相乘若干次,例如a²、x³等。

三、方程与不等式方程和不等式是数学中常见的问题类型,通过代数表达式的运算得到的等式或不等式称为方程或不等式。

解方程和不等式是我们学习代数知识的重要内容。

1. 一元一次方程:形式为ax+b=0的方程,其中a、b为已知数,x为未知数,a≠0。

2. 一元二次方程:形式为ax²+bx+c=0的方程,其中a、b、c为已知数,x为未知数,a≠0。

3. 一元一次不等式:形式为ax+b>0、ax+b≥0、ax+b<0、ax+b≤0的不等式,其中a、b为已知数,x为未知数,a≠0。

4. 一元二次不等式:形式为ax²+bx+c>0、ax²+bx+c≥0、ax²+bx+c<0、ax²+bx+c≤0的不等式,其中a、b、c为已知数,x为未知数,a≠0。

初一数学第三章《代数式》知识点及测试题

初一数学第三章《代数式》知识点及测试题

代数式知识点总结1、代数式的有关概念.(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子.单独的一个数或者一个字母也是代数式.(2)代数式的值;用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.(3)代数式的分类2、_________和________统称为整式。

①单项式:由或的相乘组成的代数式称为单项式。

单独一个数或一个字母也是单项式,如,5 a。

·单项式的系数:单式项中的叫做单项式的系数。

·单项式的次数:单项式中叫做单项式的次数。

·对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。

例:232a b-的系数是________,次数是_______。

②多项式:几个的和叫做多项式。

其中,每个单项式叫做多项式的,不含字母的项叫做。

·多项式的次数:多项式里的次数,叫做多项式的次数。

·多项式的幂:一个多项式含有几项,就叫几项式。

所以我们就根据多项式的项数和次数来命名一个多项式。

如:42321n n-+是一个四次三项式。

·对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析例:245643a a-++是_______次________项式。

3、同类项:____________________________________ ,叫做同类项.要会判断给出的项是否同类项,知道同类项可以合并.即xbabxax)(+=+,其中的x可以代表单项式中的字母部分,代表其他式子。

判断几个单项式或项,是否是同类项,就要掌握两个条件:①所含字母相同;②相同字母的次数也相同。

在掌握合并同类项时注意:①如果两个同类项的系数互为相反数,合并同类项后,结果为______;②不要漏掉不能合并的项;③只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。

初一数学知识点(精选5篇)

初一数学知识点(精选5篇)

初一数学知识点(精选5篇)第一章有理数1.整数。

(正整数、0、负整数)2.正数和负数。

3.有理数。

(整数和分数统称有理数)4.自然数。

(非负整数)5.相反数。

(只有符号不同的两个数互为相反数)6.绝对值。

(一个数的绝对值就是表示这个数的点与原点的距离)第二章代数式1.代数式。

(用运算符号把数或表示数的字母连接起来的式子)2.代数式的值。

(求代数式的值就是给代数式中的字母个代数式确定值)第三章实数1.平方根。

(如果一个数的平方等于a,那么这个数就叫做a 的平方根)2.算数平方根。

(一个非负数的正的平方根叫做算数平方根)3.立方根。

(如果一个数的立方等于a,那么这个数就叫做a 的立方根)4.实数。

(有理数和无理数)5.实数的性质。

(实数能进行减、乘、除、加、乘方运算)6.近似数。

(通过四舍五入得到的与精确数接近的数)第四章整式和分式1.整式。

(与有理数相对的数式叫整式)2.分式。

(整式的一部分)3.分式的值为零。

(分子为零且分母不等于零)4.分式的乘除。

(乘除法转化成乘法计算)5.分式的加减。

(异分母的分式加减转化成通分后求和)6.分式方程。

(分母里含有未知数的方程叫分式方程)初一数学知识点篇21.有理数:有理数包括正整数、0和负整数。

有理数可以用分数表示。

2.数轴:数轴是一条直线,它的上面写着从0开始连续不断的点。

数轴上的0是正负数的分界线。

3.相反数:如果两个数的和为0,那么这两个数是一对相反数。

相反数包括正数和负数。

4.绝对值:一个数的绝对值是它离0的距离。

正数的绝对值是它本身,负数的绝对值是它的相反数。

5.代数式:用代数式表示出数量关系和变化规律的式子。

包括等式、不等式、方程、不等式、函数等。

6.整式:整式包括单项式和多项式。

单项式是由数字和字母组成,多项式是由几个单项式组成。

7.分式:分式包括分子和分母。

分子是由数字和字母组成,分母是由分式和整式组成。

8.方程:用方程表示出两个量之间的关系,并且这个方程是一个等式。

初一代数式课程讲解

初一代数式课程讲解

初一代数式课程讲解在初一的数学学习中,代数式是一个非常重要的概念,它是进一步学习代数知识的基础。

让我们一起来深入了解一下初一代数式的相关内容。

一、什么是代数式代数式,简单来说,就是由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。

例如,5,a,3x + 2y,m² n²等等都是代数式。

需要注意的是,单独的一个数或者一个字母也称为代数式。

比如7 ,a 。

而像等式 3 + 5 = 8 ,不等式 2x > 5 就不是代数式。

二、代数式的分类代数式可以分为有理式和无理式。

有理式又包括整式和分式。

整式是指没有除法运算,或者虽有除法运算但除式中不含字母的有理式。

像 3x,a² 2b 都是整式。

整式又可以分为单项式和多项式。

单项式是指只有一个项的整式,其中数字因数叫做单项式的系数,所有字母的指数和叫做单项式的次数。

比如 5x 中,系数是 5 ,次数是1 。

多项式是指几个单项式的和或差,每个单项式叫做多项式的项,不含字母的项叫做常数项。

多项式里,次数最高项的次数,就是这个多项式的次数。

例如,多项式 2x²+ 3x 1 ,有三项,分别是 2x²,3x ,-1 ,其中 2x²的次数最高,为 2 ,所以这个多项式的次数就是 2 。

分式是指分母中含有字母的有理式。

比如,。

无理式则是指根号下含有字母的代数式。

比如。

三、代数式的书写规范在书写代数式时,有一些需要遵循的规范:1、数字与字母相乘时,数字要写在字母前面,乘号可以省略不写。

例如,5×a 可以写成 5a 。

2、字母与字母相乘时,乘号可以省略不写。

例如,a×b 可以写成ab 。

3、数字与括号相乘时,要把数字与括号内的各项都相乘。

例如,3×(x + y) = 3x + 3y 。

4、除法运算通常写成分数形式。

例如,x÷y 写成。

代数式的知识点

代数式的知识点

代数式的知识点
1. 代数式里的字母啊,那可太重要啦!就像搭积木的小块,能组合出各种不同的式子呢。

比如 2x+3,这里的 x 就是那个关键的小字母呀!
2. 代数式的系数呢,就好像是给字母穿上不同力量的铠甲。

比如说4y,这里 4 就是 y 的坚强后盾呀!
3. 合并同类项是不是很神奇呀?就像是把相同的小伙伴聚在一起。

比如3x+2x 不就可以合成 5x 嘛?
4. 要知道代数式的运算规则那是必须遵守的哦!这就好比玩游戏得遵守规则才能玩得开心嘛。

像(3+2)x 那就是先算括号里再相乘呀!
5. 代数式的化简可是个有趣的过程呢!这不就是给式子做个美容嘛。

例如 3x+2x-4x 化简后就是 x 呀。

6. 代数式有时候也会藏着小陷阱哦!可得小心别掉进去啦。

像看到
2(a+b) 可别直接就算 2a+2b 呀!
7. 代数式能帮我们解决好多实际问题呢!这不就像个小魔法师嘛。

比如说知道苹果一个 3 元,5 个苹果多少钱,不就是用 3x 嘛,这里 x 就是 5 呀!
8. 代数式的世界丰富多彩得很呢!就像一个大宝藏等你去发掘。

比如当x=2 时,代数式 2x+1 就等于 5 啦,多有意思呀!
我的观点结论就是:代数式看似简单,实则蕴含着无数的奇妙之处,好好去探索吧,你会发现很多乐趣和惊喜!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007222323++a a 初一数学基础知识讲义第二讲:代数式的化简求值问题一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。

它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。

2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。

注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。

二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值. 分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx 所以 m=4将m=4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x=-2时,代数式635-++cx bx ax 的值为8,求当x=2时,代数式635-++cx bx ax 的值。

分析: 因为8635=-++cx bx ax当x=-2时,8622235=----c b a 得到8622235-=+++c b a ,所以146822235-=--=++c b a当x=2时,635-++cx bx ax =206)14(622235-=--=-++c b a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值.分析:观察两个代数式的系数由7532=++x x 得232=+x x ,利用方程同解原理,得6932=+x x整体代人,42932=-+x x代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。

例4. 已知012=-+a a ,求2007223++a a 的值.分析:解法一(整体代人):由012=-+a a 得 023=-+a a a所以:20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。

由012=-+a a ,得a a -=12,所以:解法三(降次、消元):12=+a a (消元、、减项)20082007120072007)(20072007222222323=+=++=+++=+++=++a a a a a a a a a a a例5.(实际应用)A 和B 两家公司都准备向社会招聘人才,两家公司招聘条件基本相同,只有工资待遇有如下差异:A 公司,年薪一万元,每年加工龄工资200元;B 公司,半年薪五千元,每半年加工龄工资50元。

从收入的角度考虑,选择哪家公司有利?分析:分别列出第一年、第二年、第n 年的实际收入(元)第一年:A 公司 10000; B 公司 5000+5050=10050第二年:A 公司 10200; B 公司 5100+5150=10250第n 年:A 公司 10000+200(n-1);B 公司:[5000+100(n-1)]+[5000+100(n-1)+50]=10050+200(n-1)由上可以看出B 公司的年收入永远比A 公司多50元,如不细心考察很可能选错。

例6.三个数a 、b 、c 的积为负数,和为正数,且bcbc ac ac ab ab c c b b a a x +++++=, 则 123+++cx bx ax 的值是_______ 。

解:因为abc<0,所以a 、b 、c 中只有一个是负数,或三个都是负数又因为a+b+c>0,所以a 、b 、c 中只有一个是负数。

不妨设a<0,b>0,c>0则ab<0,ac<0,bc>0所以x=-1+1+1-1-1+1=0将x=0代入要求的代数式,得到结果为1。

同理,当b<0,c<0时,x=0。

另:观察代数式 bcbc ac ac ab ab c c b b a a +++++,交换a 、b 、c 的位置,我们发现代数式不改变,这样的代数式成为轮换式,我们不用对a 、b 、c 再讨论。

有兴趣的同学可以在课下查阅资料,看看轮换式有哪些重要的性质。

(1)“17”在射线 ____上,“2008”在射线___________上.(2)若n 为正整数,则射线OA 上数字的排列规律可以用含n 的代数式表示为__________________________.分析:OA 上排列的数为:1,7,13,19,…观察得出,这列数的后一项总比前一项多6,归纳得到,这列数可以表示为6n-5因为17=3×6-1,所以17在射线OE 上。

因为2008=334×6+4=335×6-2,所以2008在射线OD 上例8. 将正奇数按下表排成5列:第一列 第二列 第三列 第四列 第五列第一行 1 3 5 7第二行 15 13 11 9第三行 17 19 21 23第四行 31 29 27 25根据上面规律,2007应在A .125行,3列 B. 125行,2列 C. 251行,2列 D . 251行,5列分析:观察第二、三、四列的数的排列规律,发现第三列数规律容易寻找第三列数: 3,11,19,27, 规律为8n-5因为2007=250×8+7=251×8-1所以,2007应该出现在第一列或第五列又因为第251行的排列规律是奇数行,数是从第二列开始从小到大排列,所以2007应该在第251行第5列例9.(2006年嘉兴市)定义一种对正整数n 的“F ”运算:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为k n 2(其中k 是使k n2为奇数的正整数),并且运算重复进行.例如,取n =26,则:若n =449,则第449次“F 运算”的结果是__________. 分析:问题的难点和解题关键是真正理解“F ”的第二种运算,即当n 为偶数时,结果为k n 2(其中k 是使k n2 为奇数的正整数),要使所得的商为奇数,这个运算才能结束。

449奇数,经过“F ①”变为1352;1352是偶数,经过“F ②”变为169,169是奇数,经过“F ①”变为512,512是偶数,经过“F ②”变为1,1是奇数,经过“F ①”变为8,8是偶数,经过“F ②”变为1,我们发现之后的规律了,经过多次运算,它的结果将出现1、8的交替循环。

再看运算的次数是449,奇数次。

因为第四次运算后都是奇数次运算得到8,偶数次运算得到1,所以,结果是8。

三、小结用字母代数实现了我们对数认识的又一次飞跃。

希望同学们能体会用字母代替数后思维的扩展,体会一些简单的数学模型。

体会由特殊到一般,再由一般到特殊的重要方法。

26 13 44 11 第一次 F ② 第二次 F ① 第三次 F ② …(千字文全文带拼音,共250句,每句4字,总1000字)天地玄黄(tiān dì xuán huáng),宇宙洪荒(yǔ zhòu hóng huāng)。

日月盈昃(rì yuè yíng zè),辰宿列张(chén xiù liè zhāng)。

寒来暑往(hán lái shǔ wǎn g),秋收冬藏(qiū shōu dōng cáng)。

闰馀成岁(rùn yú chéng suì),律吕调阳(lǜ lǚ tiáo yáng)。

云腾致雨(yún téng zhì yǔ),露结为霜(lù jié wéi shuāng)。

金生丽水(jīn shēng lí shuǐ),玉出昆冈(yù chū kūn gāng)。

剑号巨阙(jiàn hào jù què),珠称夜光(zhū chēng yè guāng)。

果珍李柰(guǒ zhēn lǐ nài),菜重芥姜(cài zhòng jiè jiāng)。

海咸河淡(hǎi xián hé dàn),鳞潜羽翔(lín qián yǔ xiáng)。

龙师火帝(lóng shī huǒ dì),鸟官人皇(niǎo guān rén huáng)。

始制文字(shǐzhì wén zì )乃服衣裳(nǎi fú yī shāng)。

推位让国(tuī wèi ràng guó),有虞陶唐(yǒu yú táo táng)。

吊民伐罪(diào mín fá zuì),周发殷汤(zhōu fā yīn tāng)。

坐朝问道(zuò cháo wèn dào),垂拱平章(chuí gǒng pián zhāng)。

爱育黎首(ài yù lí shǒu),臣伏戎羌(chén fú róng qiāng)。

遐迩一体(xiá ěr yī tǐ),率宾归王(shuài bīn guī wáng)。

鸣凤在竹(míng fèng zài zhú),白驹食场(bái jū shí cháng)。

化被草木(huà bèi cǎo mù),赖及万方(lài jí wàn fāng)。

盖此身发(gài cǐ shēn fà),四大五常(sì dà wǔ cháng)。

恭惟鞠养(gōng wéi jū yǎng),岂敢毁伤(qǐ gǎn huǐ shāng)。

女慕贞洁(nǚ mù zhēn jié),男效才良(nán xiào cái liáng)。

相关文档
最新文档