圆锥曲线的范围、最值问题
圆锥曲线中的最值和范围问题

圆锥曲线中的最值和范围问题一、【基础考点】与圆锥曲线有关的最值和范围问题在高考中突出考试的知识点: (1)圆锥曲线的定义和方程;(2)点与曲线的位置关系;特别是点在曲线上,点的坐标满足方程; (3)a 、b 、c 、p 、e 的几何意义及相关关系; (4)二次函数、均值不等式及导数的应用。
基础训练:1.已知双曲线12222=-bya x(a >0,b >0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(C )A.( 1,2)B. (1,2)C.[2,)+∞D.(2,+∞)2. P 是双曲线221916xy-=的右支上一点,M 、N 分别是圆(x +5)2+y 2=4和(x -5)2+y 2=1上的点,则|PM|-|PN |的最大值为( D )A. 6B.7C.8D.9 3.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是( A )A .43B .75C .85D .34.已知双曲线22221,(0,0)xya b a b-=>>的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为:(B )(A)43 (B)53 (C)2 (D)735.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 . 326.对于抛物线y 2=4x 上任意一点Q ,点P (a ,0)都满足|PQ |≥|a |,则a 的取值范围是( B )(A )(-∞,0) (B )(-∞,2] (C )[0,2] (D )(0,2)二、【热点透析】与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决: (1)结合定义利用图形中几何量之间的大小关系; (2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。
2022年高考数学总复习第64讲:圆锥曲线中的范围、最值问题

2022年高考数学总复习第64讲:圆锥曲线中的范围、最值问题考点1 范围问题求参数范围的4种方法(1)函数法:用其他变量表示该参数,建立函数关系,利用求函数值域的方法求解.(2)不等式法:根据题意建立含参数的不等式,通过解不等式求参数范围. (3)判别式法:建立关于某变量的一元二次方程,利用判别式Δ求参数的范围.(4)数形结合法:研究该参数所表示的几何意义,利用数形结合思想求解.(2019·山师附中模拟)已知椭圆C :x 23+y 22=1,直线l :y =kx +m (m ≠0),设直线l 与椭圆C 交于A ,B 两点.(1)若|m |>3,求实数k 的取值范围;(2)若直线OA ,AB ,OB 的斜率成等比数列(其中O 为坐标原点),求△OAB 的面积的取值范围.[解] (1)联立方程x 23+y 22=1和y =kx +m , 得(2+3k 2)x 2+6kmx +3m 2-6=0, 所以Δ=(6km )2-4(2+3k 2)(3m 2-6)>0, 所以m 2<2+3k 2,所以2+3k 2>3,即k 2>13, 解得k >33或k <-33.所以实数k 的取值范围为⎝ ⎛⎭⎪⎫-∞,-33∪⎝ ⎛⎭⎪⎫33,+∞.(2)设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-6km 2+3k 2,x 1x 2=3m 2-62+3k 2.设直线OA ,OB 的斜率分别为k 1,k 2, 因为直线OA ,AB ,OB 的斜率成等比数列,所以k 1k 2=y 1y 2x 1x 2=k 2,即(kx 1+m )(kx 2+m )x 1x2=k 2(m ≠0),化简得2+3k 2=6k 2,即k 2=23.因为|AB |=1+k 2|x 1-x 2|=53⎝ ⎛⎭⎪⎫6-32m 2, 点O 到直线l 的距离h =|m |1+k2=35|m |,所以S △OAB =12|AB |·h =66·32m 2⎝ ⎛⎭⎪⎫6-32m 2≤66×32m 2+⎝ ⎛⎭⎪⎫6-32m 22=62, 当m =±2时,直线OA 或OB 的斜率不存在,等号取不到,所以△OAB 的面积的取值范围为⎝⎛⎭⎪⎫0,62.本例求解采用了学生熟知的两种方法:不等式法和判别式法,利用判别式构建目标不等式的核心是抓住直线与圆锥曲线的位置关系和判别式Δ的关系建立目标不等式.[教师备选例题](2019·江南十校联考)已知右焦点为F 2(c ,0)的椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点⎝ ⎛⎭⎪⎫1,32,且椭圆C 关于直线x =c 对称的图形过坐标原点. (1)求椭圆C 的方程;(2)过点⎝ ⎛⎭⎪⎫12,0作直线l 与椭圆C 交于E ,F 两点,线段EF 的中点为M ,点A 是椭圆C 的右顶点,求直线MA 的斜率k 的取值范围.[解] (1)∵椭圆C 过点⎝ ⎛⎭⎪⎫1,32,∴1a 2+94b 2=1,①∵椭圆C 关于直线x =c 对称的图形过坐标原点, ∴a =2c ,∵a 2=b 2+c 2,∴b 2=34a 2,② 由①②得a 2=4,b 2=3,1.如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围.[解] (1)证明:设P (x 0,y 0),A ⎝ ⎛⎭⎪⎫14y 21,y 1,B ⎝ ⎛⎭⎪⎫14y 22,y 2.因为P A ,PB 的中点在抛物线上, 所以y 1,y 2为方程⎝⎛⎭⎪⎫y +y 022=4·14y 2+x 02, 即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0, 所以PM 垂直于y 轴. (2)由(1)可知⎩⎨⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 2, 所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0, |y 1-y 2|=22(y 20-4x 0). 所以△P AB 的面积S △P AB =12|PM |·|y 1-y 2|=324()y 20-4x 032.因为x 20+y 24=1(-1≤x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],所以△P AB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104. 2.已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的焦距为4,且过点(2,-2). (1)求椭圆C 的方程;(2)过椭圆焦点的直线l 与椭圆C 分别交于点E ,F ,求OE →·OF →的取值范围.[解] (1)椭圆C :y 2a 2+x 2b 2=1(a >b >0)的焦距是4,所以焦点坐标是(0,-2),(0,2),2a =2+0+2+(2+2)2=42, 所以a =22,b =2, 即椭圆C 的方程是y 28+x 24=1. (2)若直线l 垂直于x 轴,则点E (0,22),F (0,-22),OE →·OF →=-8. 若直线l 不垂直于x 轴,设l 的方程为y =kx +2,点E (x 1,y 1),F (x 2,y 2), 将直线l 的方程代入椭圆C 的方程得到: (2+k 2)x 2+4kx -4=0, 则x 1+x 2=-4k 2+k 2,x 1x 2=-42+k 2,所以OE →·OF →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+2k (x 1+x 2)+4=-4-4k 22+k 2+-8k 22+k 2+4=202+k 2-8, 因为0<202+k 2≤10,所以-8<OE →·OF →≤2, 综上所述,OE →·OF →的取值范围是[-8,2]. 考点2 最值问题圆锥曲线中最值问题的解决方法(1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形性质数形结合求解.(2)代数法:若题目中的条件和结论能体现一种明确的函数关系,或者不等关系,或者已知参数与新参数之间的等量关系等,则利用代数法求参数的范围.利用基本不等式求最值 已知椭圆C :x 2+2y 2=4. (1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.[解] (1)由题意,椭圆C 的标准方程为x 24+y 22=1, 所以a 2=4,b 2=2,从而c 2=a 2-b 2=2. 因此a =2,c = 2.故椭圆C 的离心率e =c a =22.(2)设点A ,B 的坐标分别为(t ,2),(x 0,y 0),其中x 0≠0. 因为OA ⊥OB ,所以OA →·OB →=0, 即tx 0+2y 0=0,解得t =-2y 0x 0.又x 20+2y 20=4,所以|AB |2=(x 0-t )2+(y 0-2)2=⎝ ⎛⎭⎪⎫x 0+2y 0x 02+(y 0-2)2=x 20+y 20+4y 20x 20+4=x 2+4-x 202+2(4-x 20 )x 20+4 =x 202+8x 20+4(0<x 20≤4).因为x 202+8x 20≥4(0<x 20≤4),且当x 20=4时等号成立,所以|AB |2≥8.故线段AB 长度的最小值为2 2.已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.[解] (1)设F (c ,0),由条件知,2c =233,得c = 3. 又c a =32,所以a =2,b 2=a 2-c 2=1.故E 的方程为x 24+y 2=1. (2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1, 得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+14k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1. 所以△OPQ 的面积S △OPQ =12·d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t ≤1.当且仅当t =2,即k =±72时等号成立,且满足Δ>0. 所以当△OPQ 的面积最大时,l 的方程为2y ±7x +4=0.利用函数性质求最值在平面直角坐标系xOy 中,抛物线C :x 2=2py (p >0)的焦点为F ,点A 在C 上,若|AO |=|AF |=32.(1)求C 的方程;(2)设直线l 与C 交于P ,Q ,若线段PQ 的中点的纵坐标为1,求△OPQ 的面积的最大值.[解] (1)∵点A 在C 上,|AO |=|AF |=32,∴p 4+p 2=32,∴p =2,∴C 的方程为x 2=4y .(2)设直线方程为y =kx +b ,代入抛物线方程,可得x 2-4kx -4b =0,设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4b , ∴y 1+y 2=4k 2+2b ,∵线段PQ 的中点的纵坐标为1,∴2k 2+b =1,△OPQ 的面积S =12·b ·16k 2+16b =b 2+2b =2·b 3+b 2(0<b ≤1), 设y =b 3+b 2,y ′=3b 2+2b >0,故函数单调递增, ∴b =1时,△OPQ 的面积的最大值为2.若题目中的条件和要求的结论能体现一种明确的函数关系,则可先建立目标函数,然后根据其结构特征,构建函数模型求最值,一般情况下,可以构建二次型函数、双曲线型函数、多项式型函数等.[教师备选例题]如图,已知点F (1,0)为抛物线y 2=2px (p >0)的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2.(1)求p 的值及抛物线的准线方程; (2)求S 1S 2的最小值及此时点G 点坐标.[解] (1)由抛物线的性质可得:p2=1,∴p =2, ∴抛物线的准线方程为x =-1;(2)设A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),重心G (x G ,y G ),令y A =2t ,t ≠0,则x A =t 2,由于直线AB 过F ,故直线AB 的方程为x =t 2-12t y +1,代入y 2=4x ,得:y 2-2(t 2-1)ty -4=0,∴2ty B =-4,即y B =-2t ,∴B (1t 2,-2t ),又x G =13(x A +x B +x C ),y G =13(y A +y B +y C ),重心在x 轴上,∴2t -2t +y C =0, ∴C ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1t -t 2,2⎝ ⎛⎭⎪⎫1t -t ,G ⎝ ⎛⎭⎪⎫2t 4-2t 2+23t 2,0,∴直线AC 的方程为y -2t =2t (x -t 2),得Q (t 2-1,0), ∵Q 在焦点F 的右侧,∴t 2>2, ∴S 1S 2=12|FG |·|y A |12|QG |·|y C |=|2t 4-5t 2+23t 2|·|2t ||t 2-1-2t 4-2t 2+23t 2|·|2t -2t |=2t 4-t 2t 4-1=2-t 2-2t 4-1,令m =t 2-2,则m >0, S 1S 2=2-m m 2+4m +3=2-1m +3m+4≥2-12m ·3m +4=1+32,∴当m =3时,S 1S 2取得最小值为1+32,此时G (2,0).已知抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点.(1)若AF →=2FB →,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.[解] (1)依题意知F (1,0),设直线AB 的方程为x =my +1.将直线AB 的方程与抛物线的方程联立,消去x 得y 2-4my -4=0.设A (x 1,y 1),B (x 2,y 2), 所以y 1+y 2=4m ,y 1y 2=-4.① 因为AF →=2FB →,所以y 1=-2y 2. ② 联立①和②,消去y 1,y 2,得m =±24.所以直线AB的斜率是±2 2.(2)由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于2S△AO B.因为2S△AOB =2·12·|OF|·|y1-y2|=(y1+y2)2-4y1y2=41+m2,所以当m=0时,四边形OACB的面积最小,最小值是4.。
第50讲 圆锥曲线热点问题 第1课时 最值、范围问题

例3 [2022·陕西西安中学模拟] 已知双曲线-=1(a>0,b>0)的一条渐近线的方程为y=x,点(2,1)在双曲线上,抛物线y2=2px(p>0)的焦点F与双曲线的右焦点重合.(1)求双曲线和抛物线的标准方程;(2)过点F作互相垂直的直线l1,l2,设l1与抛物线的交点为A,B,l2与抛物线的交点为D,E,求|AB|+|DE|的最小值.
考点二 范围问题 圆锥曲线范围问题也是高考中的一类重要题型,求解方法与最值问题类似.常见方法有:(1)几何转化代数法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆、圆锥曲线的定义、图形、几何性质来解决.(2)代数法,用代数法求范围问题,常需要根据条件构造关于某个变量的不等式或函数表达式,然后利用求解不等式、基本不等式、函数值域(导数与不等式、导数与方程)等方法求出范围,要特别注意变量的取值范围.
课堂考点探究
解:(1)设A(x1,y1),B(x2,y2),由题知直线l的倾斜角不可能为0,故设直线l的方程为x=my+1.由得y2-4my-4=0,Δ=16m2+16>0,∴∴·=x1x2+y1y2=+y1y2=-4=-3,∴向量,的数量积为-3.
课堂考点探究
(2)由(1)知∵=λ,∴y2=-λy1,代入得∴∴=-4m2,即4m2==λ+-2.∵f(λ)=λ+-2在[9,16]上单调递增,∴4m2∈[,],∴m2∈[,],∴m∈[-,-]∪[,],∴l在y轴上的截距-的取值范围为[-,-]∪[,].
练习3 已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,点P(-,1)在C上,且|PF1|+|PF2|=4.(1)求C的标准方程;(2)若直线l:y=kx+1与C交于A,B两点,当△OAB的面积最大时,求原点O到直线l的距离.
圆锥曲线中的最值与范围问题

圆锥曲线中的最值与范围问题圆锥曲线中的最值与范围问题是高考的考查热点,往往以圆锥曲线(包括圆)与直线为载体,结合函数、不等式及导数等知识,综合考查解题能力. 求解这类问题的基本方法有几何特征法和代数法.几何特征法几何特征法即利用圆锥曲线的几何特征蕴含的条件,如抛物线上任意一点到焦点的距离等于其到准线的距离、过椭圆焦点的所有弦中通径最短等,构造相应的函数或不等式求解.例1已知直线l:x+y+3=0和圆C:x2+y2-2x-2y-2=0,设A是直线l上一动点,直线AC交圆C于点B,若在圆C 上存在点M,使∠MAB=,则点A横坐标的取值范围为.解析:圆C:(x-1)2+(y-1)2=4. 如图1所示,过C 点作CN⊥AM于点N,则CN≤CM=2.在Rt△CNA中,∠NAC=,所以AC=2CN≤4.设A(x,-x-3),则AC2=(x-1)2+(-x-3-1)2=2x2+6x+17≤16,解得≤x≤.所以点A横坐标的取值范围为≤x≤.点评:解答例1 的关键是利用圆心到直线的距离与圆的半径的大小关系,建立不等关系求解.当直线AM与圆C相切时,N, M两点重合,CN取到最大值2;而AC可通过∠MAB与CN建立量的关系,由此构建以点A的横坐标x 为自变量、以AC为因变量的函数,进而求解.例2[2013年嘉兴市高三教学测试(一)第17题]已知抛物线y2=4x的焦点为F,若点A,B是该抛物线上的点,∠AFB=,线段AB的中点M在抛物线的准线上的射影为N,则的最大值为.解析:如图2所示,过点A,B分别作准线的垂线,垂足分别为A1,B1.设FA=t1,FB=t2,则由∠AFB=可得AB=.因为AM=MB,NM∥AA1∥BB1,所以MN=(AA1+BB1).由抛物线定义可知AA1=FA,BB1=FB,所以MN=(FA+FB)=(t1+t2),所以=.由[t1][2]+[t2][2]≥2t1t2可得2[t1][2]+2[t2][2]≥2t1t2+([t1][2]+[t2][2])=(t1+t2)2,t1+t2≤?,所以≤=,当且仅当t1=t2时取到等号,所以的最大值为.点评:例2利用抛物线的定义,将线段MN的长度与FA,FB的长度t1,t2相联系,构造了含有双变量的函数,然后利用不等式(a+b)2≤2(a2+b2)求得函数的最大值.代数法利用题目所给条件的范围或限制,如点的坐标、直线的斜率、线与线之间构成的多边形的面积等,构造相应的函数或不等式求解.例3设椭圆+=1 (a>b>0)的焦点分别为F1(-1,0),F2(1,0),直线l:x=a2交x轴于点A,且F2为F1 A的中点.(1)求椭圆的方程;(2)如图3所示,过F1,F2分别作互相垂直的两直线与椭圆分别交于D,E,M,N四点,试求四边形DMEN面积的最大值和最小值.解析:(1)由F2为F1A的中点可得F1F2=F2 A,又OF2=1,所以F2 A=2,点A的坐标为(3,0).由直线l:x=a2交x轴于点A可得a=,b==,所以椭圆方程为+=1.(2)当直线DE与x轴垂直时,MN=2a=2.由F1(-1,0),椭圆方程+=1可得点D-1,,所以DF1=,DE=2DF1=,四边形DMEN的面积S==4.同理,当MN与x轴垂直时,也可得四边形DMEN的面积S==4.当直线DE,MN均不与x轴垂直时,设直线DE:y=k (x+1),代入+=1中消去y,得(2+3k2)x2+6k2x+(3k2-6)=0.设D(x1,y1),E(x2,y2),则x1+x2=,x1x2=.所以x1-x2==,DE==?x1-x2= .设直线MN:y=-(x-1),同理可得MN=.所以四边形DMEN的面积S==??=.令u=k2+,得S==4-S≥4-=,当且仅当k2=1时取等号.所以当k=±1时,Smin=;当直线DE或MN与x轴垂直时,Smax=4.点评:与抛物线的焦点弦长的计算方法(往往利用定义,即几何特征法)不同,椭圆的焦点弦长一般利用代数法求解,以焦点弦的斜率或倾斜角为变量来表示其长度,如例3中的DE=.例3正是通过建立四边形DMEN的面积S与焦点弦的斜率k的函数关系,求得了面积S的最值.与抛物线的焦点弦长的计算方法(往往利用定义,即几何特征法)不同,椭圆的焦点弦长一般利用代数法求解,以焦点弦的斜率或倾斜角为变量来表示其长度.【练一练】[2012年嘉兴市高三教学测试(二)第9题]已知椭圆x2+my2=1的离心率e∈,1,则实数m的取值范围是(A)0 ,(B),+∞(C)0 ,∪,+∞(D),1∪1,【参考答案】解析:先将椭圆方程x2+my2=1化为标准方程:x2+=1,因方程为椭圆方程,所以m>0.又因其焦点位置不确定,所以需要分类讨论. 当01时,椭圆长半轴长a=1,短半轴长b=,所以离心率e===.由e∈,1可得1,所以. 当>1即0。
2025数学大一轮复习讲义苏教版 第八章 圆锥曲线中范围与最值问题

则 x1+x2=3+8k4k2,x1x2=-3+84k2, 直线 FQ 的方程 y-y1=xy22+-xy11(x+x1),设 G(0,yG),
则 yG-y1=yx22-+yx11·x1,yG=kxx1x2+2-xk1x21+kx1-1=x22k+x1xx21-1=-3,
S△PQG=HG|x21-x2|=|x1-x2|= x1+x22-4x1x2=
则 4 6×
4t+11t +4∈0,4
3
6,
所以△PQG
面积的取值范围为0,4
3
6.
思维升华
圆锥曲线中取值范围问题的五种常用解法 (1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参 数之间的等量关系. (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围. (5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确 定参数的取值范围.
(2)M,N是C右支上的两动点,设直线AM,AN的斜率分别为k1,k2, 若k1k2=-2,求点A到直线MN的距离d的取值范围.
显然直线MN不可能与x轴平行, 故可设直线MN的方程为x=my+n,
x=my+n, 联立3x2-y2=3, 消去 x 整理得(3m2-1)y2+6mny+3(n2-1)=0, 在条件3m2-1≠0, 下,
由题意知直线l的斜率一定存在且不为0,F(1,0),设直线l的方程为x =ty+1,t≠0, 设A(x1,y1),B(x2,y2),C(x3,y3), 易知x1=ty1+1>0,x2=ty2+1>0, 联立xy=2=ty4+x,1, 消去x得y2-4ty-4=0.
圆锥曲线中范围与最值问题

§9.10 圆锥曲线中范围与最值问题题型一 范围问题例1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝⎛⎭⎫1,32,且短轴的两个端点与右焦点构成等边三角形.(1)求椭圆C 的方程;(2)设过点M (1,0)的直线l 交椭圆C 于A ,B 两点,求|MA |·|MB |的取值范围. 解 (1)由题意,椭圆短轴的两个端点与右焦点构成等边三角形,故c =3b ,a =b 2+c 2=2b , 即椭圆C :x 24b 2+y 2b2=1, 代入P ⎝⎛⎭⎫1,32, 可得b =1,a =2.故椭圆C 的方程为x 24+y 2=1. (2)分以下两种情况讨论:①若直线l 与x 轴重合,则|MA |·|MB |=(a -1)(a +1)=a 2-1=3;②若直线l 不与x 轴重合,设直线l 的方程为x =my +1,设点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +1,x 24+y 2=1,消去x 可得(m 2+4)y 2+2my -3=0, 则Δ=4m 2+12(m 2+4)=16(m 2+3)>0恒成立,由根与系数的关系可得y 1+y 2=-2m m 2+4,y 1y 2=-3m 2+4, 由弦长公式可得|MA |·|MB |=1+m 2·|y 1|·1+m 2·|y 2| =(1+m 2)·|y 1y 2|=3(1+m 2)m 2+4=3(m 2+4)-9m 2+4=3-9m 2+4, 因为m 2+4≥4,则0<9m 2+4≤94, 所以34≤3-9m 2+4<3. 综上所述,|MA |·|MB |的取值范围是⎣⎡⎦⎤34,3. 教师备选(2022·武汉调研)过双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 1的动直线l 与Γ的左支交于A ,B 两点,设Γ的右焦点为F 2.(1)若△ABF 2可以是边长为4的正三角形,求此时Γ的标准方程;(2)若存在直线l ,使得AF 2⊥BF 2,求Γ的离心率的取值范围.解 (1)依题意得|AF 1|=2,|AF 2|=4,|F 1F 2|=2 3.∴2a =|AF 2|-|AF 1|=2,a =1,2c =|F 1F 2|=23,c =3,b 2=c 2-a 2=2,此时Γ的标准方程为x 2-y 22=1. (2)设l 的方程为x =my -c ,与x 2a 2-y 2b2=1联立, 得(b 2m 2-a 2)y 2-2b 2cmy +b 4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2b 2cm b 2m 2-a 2,y 1y 2=b 4b 2m 2-a2, 由AF 2⊥BF 2,F 2A —→·F 2B —→=0,(x 1-c )(x 2-c )+y 1y 2=0,(my 1-2c )(my 2-2c )+y 1y 2=0⇒(m 2+1)b 4-4m 2c 2b 2+4c 2(b 2m 2-a 2)=0⇒(m 2+1)b 4=4a 2c 2⇒(m 2+1)=4a 2c 2b 4≥1 ⇒4a 2c 2≥(c 2-a 2)2,∴c 4+a 4-6a 2c 2≤0⇒e 4-6e 2+1≤0,又∵e >1,∴1<e 2≤3+22,∴1<e ≤1+2,又A ,B 在左支且l 过F 1,∴y 1y 2<0,b 4b 2m 2-a 2<0⇒m 2<a 2b 2⇒m 2+1=4a 2c 2b 4<a 2b 2+1, ∴4a 2<b 2=c 2-a 2⇒e 2>5. 综上所述,5<e ≤1+ 2.思维升华 圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.跟踪训练1 从抛物线C 1:x 2=2py (p >0)和椭圆C 2:x 2a 2+y 2b 2=1(a >b >0)上各取两点,将其坐标记录于下表中:(1)求抛物线C 1和椭圆C 2的方程;(2)抛物线C 1和椭圆C 2的交点记为A ,B ,点M 为椭圆上任意一点,求MA →·MB →的取值范围.解 (1)∵C 1:x 2=2py (p >0),当y ≠0时,x 2y=2p , 根据表格的数据验证,可知⎝⎛⎭⎫-3,94,⎝⎛⎭⎫1,14满足方程x 2=2py , 解得p =2,得抛物线C 1的方程为x 2=4y .将(0,2),⎝⎛⎭⎫5,32代入椭圆C 2:x 2a 2+y 2b 2=1(a >b >0)可得a 2=8,b 2=2, 即椭圆C 2的方程为x 28+y 22=1. (2)由⎩⎪⎨⎪⎧ x 2=4y ,x 2+4y 2-8=0,解得⎩⎪⎨⎪⎧ x 1=-2,y 1=1或⎩⎪⎨⎪⎧x 2=2,y 1=1,不妨令A (-2,1),B (2,1). 设M (x 0,y 0)是C 2:x 28+y 22=1上的动点, 则x 20=8-4y 20≥0.即得-2≤y 0≤ 2.于是有MA →·MB →=(-2-x 0,1-y 0)·(2-x 0,1-y 0)=x 20+y 20-2y 0-3 =-3y 20-2y 0+5=-3⎝⎛⎭⎫y 0+132+163. ∵-2≤y 0≤ 2.即-1-22≤-3⎝⎛⎭⎫y 0+132+163≤163. 于是-1-22≤MA →·MB →≤163. 故MA →·MB →的取值范围是⎣⎡⎦⎤-1-22,163. 题型二 最值问题例2 (2022·金昌模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点A ⎝⎛⎭⎫-1,22,短轴长为2. (1)求椭圆C 的标准方程;(2)过点(0,2)的直线l (直线l 不与x 轴垂直)与椭圆C 交于不同的两点M ,N ,且O 为坐标原点.求△MON 的面积的最大值.解 (1)依题意得(-1)2a 2+⎝⎛⎭⎫222b 2=1,而b =1, 则1a 2+12=1⇒1a 2=1-12=12⇒a 2=2, 所以椭圆C 的标准方程为x 22+y 2=1. (2)因为直线l 不与x 轴垂直,则l 的斜率k 存在,l 的方程为y =kx +2,由⎩⎪⎨⎪⎧y =kx +2,x 22+y 2=1,得(2k 2+1)x 2+8kx +6=0,因为直线l 与椭圆C 交于不同的两点M ,N ,则有Δ=(8k )2-4·(2k 2+1)·6=16k 2-24>0⇒k 2>32, 即k <-62或k >62, 设点M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8k 2k 2+1, x 1x 2=62k 2+1, 所以|MN |=1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫-8k 2k 2+12-4·62k 2+1=1+k 2·8(2k 2-3)(2k 2+1)2=1+k 2·22·2k 2-32k 2+1, 而原点O 到直线l :kx -y +2=0的距离d =2k 2+1,△MON 的面积S =12·|MN |·d =12·1+k 2·22·2k 2-32k 2+1·2k 2+1=22·2k 2-32k 2+1,令t =2k 2-3⇒2k 2=t 2+3(t >0),S =22t t 2+4=22t +4t, 因为t +4t ≥2t ·4t=4, 当且仅当t =4t ,即t =2时取“=”,此时k 2=72, 即k =±142,符合要求, 从而有S ≤224=22, 故当k =±142时, △MON 的面积的最大值为22. 教师备选(2022·厦门模拟)设椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,点A ,B ,C 分别为Γ的上、左、右顶点,且|BC |=4.(1)求Γ的标准方程;(2)点D 为直线AB 上的动点,过点D 作l ∥AC ,设l 与Γ的交点为P ,Q ,求|PD |·|QD |的最大值.解 (1)由题意得2a =|BC |=4,解得a =2.又因为e =c a =32,所以c =3,则b 2=a 2-c 2=1.所求Γ的标准方程为x 24+y 2=1. (2)方法一 由(1)可得A (0,1),B (-2,0),C (2,0),则k AC =-12, 直线AB 的方程为x -2y +2=0,设直线l 的方程为y =-12x +λ. 联立⎩⎨⎧ y =-12x +λ,x 24+y 2=1,消去y ,整理得,x 2-2λx +2λ2-2=0.①由Δ>0,得-2<λ<2,联立⎩⎪⎨⎪⎧y =-12x +λ,x -2y +2=0,解得D 的坐标为⎝⎛⎭⎪⎫λ-1,λ+12, 设P (x 1,y 1),Q (x 2,y 2), 由①知⎩⎪⎨⎪⎧ x 1+x 2=2λ,x 1x 2=2λ2-2,② 又|PD |=52|x 1-(λ-1)|, |QD |=52|x 2-(λ-1)|, 所以|PD |·|QD |=54|x 1x 2-(λ-1)(x 1+x 2)+(λ-1)2|,③ 将②代入③,得|PD |·|QD |=54|λ2-1| ,λ∈(-2,2), 所以当λ=0时,|PD |·|QD |有最大值54.方法二 设AD →=λAB →=λ(-2,-1)=(-2λ,-λ),则D (-2λ,1-λ),由点斜式,可得直线l 的方程为y -(1-λ)=-12(x +2λ), 即y =-12x -2λ+1. 联立⎩⎨⎧ y =-12x -2λ+1,x 24+y 2=1,消去y ,得x 2+(4λ-2)x +8λ2-8λ=0,①由Δ=(4λ-2)2-4×(8λ2-8λ)>0, 解得1-22<λ<1+22, 设P (x 1,y 1),Q (x 2,y 2),由①得⎩⎪⎨⎪⎧ x 1+x 2=2-4λ,x 1x 2=8λ2-8λ,② 由题意可知|PD |=52|x 1+2λ|, |QD |=52|x 2+2λ|, 所以|PD |·|QD |=54|x 1x 2+2λ(x 1+x 2)+4λ2|,③ 将②代入③得|PD |·|QD |=54|4λ2-4λ| =5|λ2-λ|,当λ=12时,|PD |·|QD |有最大值54. 思维升华 圆锥曲线中最值的求法(1)几何法:若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决.(2)代数法:若题目的条件和结论能体现一种明确的函数,则可首先建立目标函数,再求这个函数的最值,求函数最值的常用方法有配方法、判别式法、基本不等式法及函数的单调性法等.跟踪训练2 如图所示,点A ,B 分别是椭圆x 236+y 220=1长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,P A ⊥PF .(1)求点P 的坐标;(2)设M 是椭圆长轴AB 上的一点,点M 到直线AP 的距离等于|MB |,求椭圆上的点到点M 的距离d 的最小值.解 (1)由已知可得点A (-6,0),F (4,0),设点P 的坐标是(x ,y ),则AP →=(x +6,y ),FP →=(x -4,y ),∵P A ⊥PF ,∴AP →·FP →=0,则⎩⎪⎨⎪⎧x 236+y 220=1,(x +6)(x -4)+y 2=0,可得2x 2+9x -18=0,得x =32或x =-6. 由于y >0,故x =32,于是y =532. ∴点P 的坐标是⎝⎛⎭⎫32,532. (2)由(1)可得直线AP 的方程是x -3y +6=0,点B (6,0).设点M 的坐标是(m ,0),则点M 到直线AP 的距离是|m +6|2,于是|m +6|2=|m -6|, 又-6≤m ≤6,解得m =2.由椭圆上的点(x ,y )到点M 的距离为d , 得d 2=(x -2)2+y 2=x 2-4x +4+20-59x 2=49⎝⎛⎭⎫x -922+15, 由于-6≤x ≤6,由f (x )=49⎝⎛⎭⎫x -922+15的图象(图略)可知, 当x =92时,d 取最小值,且最小值为15. 课时精练1.已知双曲线C 的焦点F (3,0),双曲线C 上一点B 到F 的最短距离为3- 2.(1)求双曲线的标准方程和渐近线方程; (2)已知点M (0,1),设P 是双曲线C 上的点,Q 是P 关于原点的对称点.设λ=MP →·MQ →,求λ的取值范围. 解 (1)设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0), ∵双曲线C 的焦点F (3,0),双曲线C 上一点B 到F 的最短距离为3-2,∴c =3,c -a =3-2,∴a =2,∴b 2=c 2-a 2=(3)2-(2)2=1,则双曲线的方程为x 22-y 2=1, 渐近线方程为y =±22x . (2)设P 点坐标为(x 0,y 0),则Q 点坐标为(-x 0,-y 0),∴λ=MP →·MQ →=(x 0,y 0-1)·(-x 0,-y 0-1)=-x 20-y 20+1=-32x 20+2. ∵|x 0|≥2,∴λ的取值范围是(-∞,-1].2.(2022·阳泉模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为22,P 是椭圆C 上的一个动点,当P 是椭圆C 的上顶点时,△F 1PF 2的面积为1.(1)求椭圆C 的方程;(2)设斜率存在的直线PF 2,与椭圆C 的另一个交点为Q .若存在T (t ,0),使得|TP |=|TQ |,求t 的取值范围.解 (1)由题意可知⎩⎪⎨⎪⎧ c a =22,12·b ·2c =1,b 2+c 2=a 2,解得⎩⎪⎨⎪⎧ a =2,b =1,c =1,故椭圆C 的方程为x 22+y 2=1. (2)设P (x 1,y 1),Q (x 2,y 2),线段PQ 的中点为N (x 0,y 0),直线PF 2的斜率为k , 由(1)设直线PQ 的方程为y =k (x -1).当k =0时,t =0符合题意;当k ≠0时,联立⎩⎪⎨⎪⎧y =k (x -1),x 22+y 2=1,得(1+2k 2)x 2-4k 2x +2k 2-2=0,∴Δ=16k 4-4(1+2k 2)(2k 2-2)=8k 2+8>0,x 1+x 2=4k 21+2k 2, ∴x 0=x 1+x 22=2k 21+2k 2, y 0=k (x 0-1)=-k 1+2k 2, 即N ⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2.∵|TP |=|TQ |,∴直线TN 为线段PQ 的垂直平分线,∴TN ⊥PQ ,即k TN ·k =-1. ∴-k 1+2k 22k 21+2k 2-t ·k =-1, ∴t =k 21+2k 2=12+1k 2. ∵k 2>0,∴1k 2>0 ,2+1k2>2, ∴0<12+1k 2<12, 即t ∈⎣⎡⎭⎫0,12.3.(2021·北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点A (0,-2),以四个顶点围成的四边形面积为4 5. (1)求椭圆E 的标准方程;(2)过点P (0,-3)的直线l 斜率为k ,交椭圆E 于不同的两点B ,C ,直线AB ,AC 交y =-3于点M ,N ,若|PM |+|PN |≤15,求k 的取值范围.解 (1)因为椭圆过A (0,-2),故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5, 故椭圆的标准方程为x 25+y 24=1. (2)设B (x 1,y 1),C (x 2,y 2),因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x 1y 1+2, 同理x N =-x 2y 2+2. 直线BC :y =kx -3,由⎩⎪⎨⎪⎧y =kx -3,4x 2+5y 2=20,可得(4+5k 2)x 2-30kx +25=0,故Δ=900k 2-100(4+5k 2)>0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2, 故x 1x 2>0,所以x M x N >0.又|PM |+|PN |=|x M +x N | =⎪⎪⎪⎪⎪⎪x 1y 1+2+x 2y 2+2=⎪⎪⎪⎪⎪⎪x 1kx 1-1+x 2kx 2-1 =⎪⎪⎪⎪⎪⎪2kx 1x 2-(x 1+x 2)k 2x 1x 2-k (x 1+x 2)+1 =⎪⎪⎪⎪⎪⎪⎪⎪50k4+5k 2-30k4+5k 225k 24+5k 2-30k 24+5k 2+1=5|k |, 故5|k |≤15,即|k |≤3,综上,-3≤k <-1或1<k ≤3.4.(2022·德州模拟)已知抛物线E :x 2=-2y ,过抛物线上第四象限的点A 作抛物线的切线,与x 轴交于点M .过M 作OA 的垂线,交抛物线于B ,C 两点,交OA 于点D .(1)求证:直线BC 过定点;(2)若MB →·MC →≥2,求|AD |·|AO |的最小值.(1)证明 由题意知,抛物线E :x 2=-2y ,则y =-12x 2,可得y ′=-x , 设A (2t ,-2t 2)(t >0),则k AM =-2t ,所以l AM :y +2t 2=-2t (x -2t ),即y =-2tx +2t 2,所以M (t ,0),又k OA =-2t 22t =-t ,所以k BC =1t, 所以l BC :y -0=1t (x -t ),即y =1tx -1, 所以直线BC 过定点(0,-1).(2)解 联立方程⎩⎪⎨⎪⎧y =1t x -1,x 2=-2y ,整理得x 2+2tx -2=0,设B (x 1,y 1),C (x 2,y 2), 则x 1+x 2=-2t,x 1x 2=-2, 则MB →·MC →=(x 1-t ,y 1)·(x 2-t ,y 2)=(x 1-t )(x 2-t )+y 1y 2=x 1x 2-t (x 1+x 2)+t 2+14x 21x 22=1+t 2≥2, 所以t 2≥1,又由|AD |=⎪⎪⎪⎪1t ·2t +2t 2-11+1t 2=2t 2+1t 2+1·t , |AO |=(2t )2+(-2t 2)2=2t 1+t 2, 所以|AD |·|AO |=2t 2+1t 2+1·t ·2t ·1+t 2 =⎝⎛⎭⎫2t 2+122-14, 因为2t 2≥2,所以当2t 2=2,即t =1时, |AD |·|AO |的最小值是6.。
圆锥曲线中的范围与最值问题

解:(2)由 2 =λ 1 ,
延长 BF 1, AF 2交椭圆于 C , D 两点,根据椭圆的对
称性可知,四边形 ABCБайду номын сангаас 为平行四边形,且四边形
ABF 1 F 2的面积为四边形 ABCD 的面积的一半.
由题知, BF 1的斜率不为零,
故设 BF 1的方程为 x = my - 2 ,
= 4,
(*), x 1
+ x 2=4 k , x 1 x 2=-4 b ,所以| AB |= 1 + 2 | x 1- x 2|=
1 + 2 · (1 +2 )2 − 41 2 =4 1 + 2 · 2 + .因为 x 2=4 y ,即 y =
2
1
,所以y'= ,则抛物线在点 A 处的切线斜率为 ,在点 A 处的切线方
3
3
2 2
1 2
2
2
2
2
∴b =a -c =a - a = a ,
3
3
∴椭圆的标准方程为 x 2+3 y 2= a 2.
2 + 3 2 =2 ,
2 −2
由൝
⇒ y =±
.
3
= 2
2 −2
2 3
由题可知2
=
,解得 a 2=3,
3
3
2
∴椭圆 C 的方程为 + y 2=1.
3
(2)若 A 和 B 为椭圆 C 上在 x 轴同侧的两点,且 2 =λ 1 ,求四边形
的纵坐标的最小值为( A )
D. 1
(2)设 A ( x 1, y 1), B ( x 2, y 2), M ( x 0, y 0),直线 AB 的方程为 y = kx +
圆锥曲线中的最值与范围、证明与探索性问题

点击对应数字即可跳转到对应题目
1
2
3
4
5
配套精练
1.(2024·漳州期初)已知椭圆 C:ax22+by22=1(a>b>0)的左焦点为 F1(- 3,0),且过
点
A
3,12.
(2) 不过原点 O 的直线 l 与 C 交于 P,Q 两点,且直线 OP,PQ,OQ 的斜率成等比
数列.
①求 l 的斜率; ②求△OPQ 的面积的取值范围.
圆锥曲线中的最值与范围、证明与探索性问题
研题型 能力养成
研题型 能力养成 举题说法
举题说法
目标 1 最值与范围问题
1 (2023·淮北一模节选)已知椭圆 Γ:ax22+by22=1(a >b>0),A,F 分别为 Γ 的左顶点和右焦点,O 为坐 标原点,以 OA 为直径的圆与 Γ 交于点 M(第二象限), |OM|=a2. (1) 求椭圆Γ的离心率e;
+
y2)
+
(2
-
m)2
=
9(t2+1) 3t2-1
-
12t2(2-m) 3t2-1
+
(2
-
m)2
=
(3m2-3)t23-t2-(m12-4m-5),
→→
→→
若MP·MQ为定值,则有 3m2-3=3(m2-4m-5),解得 m=-1,此时MP·MQ=0.当直
线 l 与 x 轴重合时,则 P,Q 为双曲线的两顶点,不妨设点 P(-1,0),Q(1,0).对于
2
(2023·泰安期末)已知椭圆
E:ax22+by22=1(a>b>0)过
A1,
26,B
3, 22两点.
(2) 已知 Q(4,0),过 P(1,0)的直线 l 与 E 交于 M,N 两点,求证:||MNPP||=||MNQQ||.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线的最值、范围问题与圆锥曲线有关的范围、最值问题,各种题型都有,既有对圆锥曲线的性质、曲线与方程关系的研究,又对最值范围问题有所青睐,它能综合应用函数、三角、不等式等有关知识,紧紧抓住圆锥曲线的定义进行转化,充分展现数形结合、函数与方程、化归转化等数学思想在解题中的应用,本文从下面几个方面阐述该类题型的求解方法,以引起读者注意.一、利用圆锥曲线定义求最值借助圆锥曲线定义将最值问题等价转化为易求、易解、易推理证明的问题来处理.【例1】已知(40),(2)A B ,,2是椭圆221259x y +=内的两个点,M 是椭圆上的动点,求MA MB +的最大值和最小值.【分析】很容易想到联系三角形边的关系,无论A M B 、、三点是否共线,总有MA MB AB +>,故取不到等号,利用椭圆定义合理转化可以起到柳暗花明又一村的作用.【点评】涉及到椭圆焦点的题目,应想到椭圆定义转化条件,使得复杂问题简单化. 【小试牛刀】【2017届四川双流中学高三上学期必得分训练】已知P 为抛物线x y 42=上一个动点,Q 为圆1)4(22=-+y x 上一个动点,当点P 到点Q 的距离与点P 到抛物线的准线的距离之和最小时,点P 的横坐标为()A .8179-B .89C .817D .17【分析】根据抛物线的定义,点到抛物线的准线的距离等于点到抛物线的焦点的距离,所以点P 到点Q 的距离与点P 到准线距离之和的最小值就是点P 到点Q 的距离与到抛物线焦点距离之和的最小值,因此当三点共线时,距离之和取最小值.【解析】设P 到抛物线准线的距离为d ,抛物线的焦点为F ,圆心为C ,则()()min min 171PQ d PQ PF CF r +=+=-=-,故选A.二、单变量最值问题转化为函数最值建立目标函数求解圆锥曲线的范围、最值问题,是常规方法,关键是选择恰当的变量为自变量.【例2】已知椭圆C :()222210x y a b a b+=>>的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线01=++y x 与以椭圆C 的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.(1)求椭圆的方程.(2)设P 为椭圆上一点,若过点)0,2(M 的直线l 与椭圆E 相交于不同的两点S 和T ,且满足OP t OT OS =+(O 为坐标原点),求实数t 的取值范围.【分析】(1)由题意可得圆的方程为222)(a y c x =+-,圆心到直线01=++y x 的距离=d a c =+21;根据椭圆)0(1:2222>>=+b a by a x C 的两焦点与短轴的一个端点的连线构成等腰直角三角形,b=c,c b a 22==代入*式得1b c ==,即可得到所求椭圆方程;(Ⅱ)由题意知直线L 的斜率存在,设直线L 方程为)2(-=x k y ,设()00,y x p ,将直线方程代入椭圆方程得:()028*******=-+-+k x k x k ,根据()()081628214642224>+-=-+-=∆k kkk 得到212<k ;设()11,y x S ,()22,y x T 应用韦达定理222122212128,218kk x x k k x x +-=+=+.讨论当k=0,0≠t 的情况,确定t 的不等式. 【解析】(1)由题意:以椭圆C 的右焦点为圆心,以椭圆的长半轴长为半径的圆的方程为222)(a y c x =+-,∴圆心到直线01=++y x 的距离=d a c =+21*∵椭圆)0(1:2222>>=+b a by a x C 的两焦点与短轴的一个端点的连线构成等腰直角三角形,b=c,c b a 22==代入*式得1b c ==∴22==b a故所求椭圆方程为.1222=+y x (Ⅱ)由题意知直线L 的斜率存在,设直线L 方程为)2(-=x k y ,设()00,y x p将直线方程代入椭圆方程得:()0288212222=-+-+k x k xk∴()()081628214642224>+-=-+-=∆k kk k∴212<k设()11,y x S ,()22,y x T 则222122212128,218kk x x k k x x +-=+=+………………8分 当k=0时,直线l 的方程为y=0,此时t=0,OP t OT OS =+成立,故,t=0符合题意. 当0≠t时得⎪⎩⎪⎨⎧+=+=+-=-+=+=22210221210218214)4(k k x x tx k k x x k y y ty∴,2181220k k t x +∙=202141kkt y +-∙= 将上式代入椭圆方程得:1)21(16)21(3222222224=+++k t k k t k 整理得:2222116k k t +=由212<k知402<<t 所以22t ∈-(,)【点评】确定椭圆方程需要两个独立条件,从题中挖掘关于a b c 、、的等量关系;直线和椭圆的位置关系问题,往往要善于利用韦达定理设而不求,利用点P 在椭圆上和向量式得()tf k =,进而求函数值域.【小试牛刀】【2017河南西平县高级中学12月考】已知中心在原点O ,焦点在x 轴上,离心率为32的椭圆过点2(2,)2. (1)求椭圆的方程;(2)设不过原点O 的直线l 与该椭圆交于P ,Q 两点,满足直线OP ,PQ ,OQ 的斜率依次成等比数列,求OPQ ∆面积的取值范围.【答案】(1)2214x y +=;(2)(0,1). 【解析】(1)由题意可设椭圆方程22221(0)x y a b a b+=>>,则223,2211,2c a a b ⎧=⎪⎪⎨⎪+=⎪⎩解得2,1,a b =⎧⎨=⎩所以方程为2214x y +=. (2)由题意可知,直线l 的斜率存在且不为0,故可设直线l 的方程为y kx m =+(0m ≠),11(,)P x y ,22(,)Q x y ,由22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩得222(14)84(1)0k x kmx m +++-=,则222226416(14)(1)k b k b b ∆=-+-2216(41)k m =-+0>,且122814kmx x k -+=+,21224(1)14m x x k -=+,故1212()()y y kx m kx m =++221212()k x x km x x m =+++.因直线OP ,PQ ,OQ 的斜率依次成等比数列,所以221212121212()y y k x x km x x m x x x x +++⋅=2k =, 即22228014k m m k -+=+,又0m ≠,所以214k =,即12k =±. 由于直线OP ,OQ 的斜率存在,且0∆>,得202m <<且21m ≠. 设d 为点O 到直线l 的距离,则22121||||||(2)22OPQ S d PQ x x m m m ∆1=⋅⋅=-⋅=-, 所以OPQ S ∆的取值范围为(0,1).三、二元变量最值问题转化为二次函数最值利用点在二次曲线上,将二元函数的最值问题转化为一元函数的最值问题来处理.【例2】若点O 、F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任一点,则OP PF ⋅的最大值为 【分析】设点P x y (,),利用平面向量数量积坐标表示,将OP PF ⋅用变量x y ,表示,借助椭圆方程消元,转化为一元函数的最值问题处理.【点评】注意利用“点在椭圆上”这个条件列方程.【小试牛刀】抛物线x y 82=的焦点为F ,点),(y x 为该抛物线上的动点,又已知点)0,2(-A ,则||||PF PA 的取值范围是. 【答案】]2,1[【解析】由抛物线的定义可得2||+=x PF ,又x x y x PA 8)2()2(||222++=++=,448128)2(||||22+++=+++=∴x x xx x x PF PA , 当0=x 时,1||||=PF PA ;当0≠x 时,44814481||||2+++=+++=∴xx x x x PF PA ,4424=⋅≥+xx x x ,当且仅当x x 4=即2=x 时取等号,于是844≥++x x ,∴1448≤++x x ,∴]2,1(4481∈+++xx , 综上所述||||PF PA 的取值范围是]2,1[. 四、双参数最值问题该类问题往往有三种类型:①建立两个参数之间的等量关系和不等式关系,通过整体消元得到参数的取值范围;②建立两个参数的等量关系,通过分离参数,借助一边变量的范围,确定另一个参数的取值范围;③建立两个参数的等量关系,通过选取一个参数为自变量,令一个变量为参数(主元思想),从而确定参数的取值范围.【例3】在平面直角坐标系xOy 中,已知椭圆C :22221(1)x y a b a b+=>≥的离心率32e =,且椭圆C 上一点N 到点Q 03(,)的距离最大值为4,过点3,0M ()的直线交椭圆C 于点.A B 、 (Ⅰ)求椭圆C 的方程;(Ⅱ)设P 为椭圆上一点,且满足OA OB tOP +=(O 为坐标原点),当3AB <时,求实数t 的取值范围. 【分析】第一问,先利用离心率列出表达式找到a 与b 的关系,又因为椭圆上的N 点到点Q 的距离最大值为4,利用两点间距离公式列出表达式,因为N 在椭圆上,所以22244x b y =-,代入表达式,利用配方法求最大值,从而求出21b =,所以24a =,所以得到椭圆的标准方程;第二问,先设,,A P B 点坐标,由题意设出直线AB 方程,因为直线与椭圆相交,列出方程组,消参韦达定得到两根之和、两根之积,用坐标表示OA OB tOP +=得出,x y ,由于点P 在椭圆上,得到一个表达式,再由||3AB <,得到一个表达式,2个表达式联立,得到t 的取值范围.【解析】(Ⅰ)∵2222223,4c a b e a a -===∴224,a b = 则椭圆方程为22221,4x y b b+=即22244.x y b += 设(,),N x y 则 当1y =-时,NQ 有最大值为24124,b +=解得21,b =∴24a =,椭圆方程是2214x y += (Ⅱ)设1122(,),(,),(,),A x y B x y P x y AB 方程为(3),y k x =-由22(3),1,4y k x x y =-⎧⎪⎨+=⎪⎩整得2222(14)243640k x k x k +-+-=.由24222416(91)(14)0k k k k ∆=--+>,得215k <.∴1212(,)(,),OA OB x x y y t x y +=++=则2122124()(14)k x x x t t k =+=+, 由点P 在椭圆上,得222222222(24)1444,(14)(14)k k t k t k +=++化简得22236(14)k t k =+① 又由21213,AB k x x =+-<即221212(1)()43,k x x x x ⎡⎤++-⎣⎦<将12x x +,12x x 代入得2422222244(364)(1)3,(14)14k k k k k ⎡⎤-+-⎢⎥++⎣⎦<化简,得22(81)(1613)0,k k -+> 则221810,8k k ->>,∴21185k <<②由①,得22223699,1414k t k k==-++ 联立②,解得234,t <<∴23t --<<或3 2.t <<【点评】第一问中转化为求二次函数最大值后,要注意变量取值范围;第二问利用点P 在椭圆上,和已知向量等式得变量,k t 的等量关系,和变量,k t 的不等关系联立求参数t 的取值范围.【小试牛刀】已知圆())0(2:222>=+-r r y x M ,若椭圆)0(1:2222>>=+b a by a x C 的右顶点为圆M 的圆心,离心率为22. (1)求椭圆C 的方程;(2)若存在直线kx y l =:,使得直线l 与椭圆C 分别交于B A ,两点,与圆M 分别交于H G ,两点,点G 在线段AB 上,且BH AG =,求圆M 的半径r 的取值范围.【解析】(1)设椭圆的焦距为2c ,因为1,1,22,2==∴==b c a c a 所以椭圆的方程为12:22=+y x C . 显然,若点H 也在线段AB 上,则由对称性可知,直线kx y =就是y 轴,与已知矛盾,所以要使BH AG =,只要GH AB =,所以当0=k时,2=r .当0≠k时,=+<+++=)211(2)23111(2242kk r 3,又显然2)23111(2242>+++=k k r,所以32<<r .综上,圆M 的半径r 的取值范围是)3,2[.圆锥曲线中的最值、范围问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.【迁移运用】1.【2017届湖南师大附中高三上学期月考三】已知两定点()1,0A-和()1,0B ,动点(),P x y 在直线:3l y x =+上移动,椭圆C 以,A B 为焦点且经过点P ,则椭圆C 的离心率的最大值为()A .55B .105C.255D .2105 【答案】A 【解析】()1,0A-关于直线:3l y x =+的对称点为()3,2A '-,连接A B '交直线l 于点P ,则椭圆C 的长轴长的最小值为25A B '=,所以椭圆C 的离心率的最大值为1555c a ==,故选A. 2.【2016-2017学年河北定州市高二上学期期中】过双曲线22115y x -=的右支上一点P ,分别向圆1C :22(+4)+4x y =和圆2C :22(4)1x y -+=作切线,切点分别为M ,N ,则22||||PM PN -的最小值为()A .10B .13C .16D .19 【答案】B【解析】由题可知,)1|(|)4|(|||||222122---=-PC PC PN PM ,因此=--=-3||||||||222122PC PC PN PM 121212(||||)2(||||)32||3PC PC PC PC C C -=+-≥-13=.故选B .3.【2017届湖南长沙一中高三月考五】已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为1F ,2F .这两条曲线在第一象限的交点为P ,12PF F ∆是以1PF 为底边的等腰三角形.若1||10PF =,记椭圆与双曲线的离心率分别为1e 、2e ,则12e e 的取值范围是()A.1(,)9+∞B.1(,)5+∞C.1(,)3+∞ D.(0,)+∞【答案】C4.【2016届河南省郑州市一中高三上学期联考】已知抛物线28y x =,点Q 是圆22:28130C x y x y ++-+=上任意一点,记抛物线上任意一点到直线2x =-的距离为d ,则PQ d +的最小值为()A .5B .4C .3D .2 【答案】C【解析】如图所示,由题意知,抛物线28y x =的焦点为(2,0)F ,连接PF ,则d PF =.将圆C 化为22(1)(4)4x y ++-=,圆心为(1,4)C -,半径为2r =,则PQ d PQ PF +=+,于是由PQ PF FQ+≥(当且仅当F ,P,Q 三点共线时取得等号).而FQ为圆C 上的动点Q 到定点F 的距离,显然当F ,Q,C 三点共线时取得最小值,且为22(12)(40)23CF r ---+--=,故应选C .5.【2016届重庆市巴蜀中学高三10月月考】已知12F F ,为椭圆C :22198x y +=的左、右焦点,点E 是椭圆C 上的动点,12EF EF ⋅的最大值、最小值分别为() A .9,7B .8,7C .9,8D .17,8 【答案】B6.【2016届重庆市南开中学高三12月月考】设点()()1122,,,A x y B x y 是椭圆2214x y +=上两点,若过点,A B 且斜率分别为1212,44x x y y 的两直线交于点P ,且直线OA 与直线OB 的斜率之积为14-,()6,0E ,则PE 的最小值为.【答案】226-【解析】由椭圆2214x y +=,设22A cos sin B cos sin ααββ(,),(,),对2214x y +=两边对x 取导数,可得202xyy +'=即有切线的斜率为4xy -, 由题意可得AP,BP 均为椭圆的切线,A,B 为切点,则直线AP 的方程为111142xx xcos yy ysin αα+=∴+=,,同理可得直线BP 的方程为12xcos ysin ββ+=,求得交点P 的坐标为()()()2sin sin cos cos x y sin sin βαβαβααβ--==--,,()()()2222222()()42cos sin sin cos cos si x y n sin βαβαβαβααβ-∴+==--+---, 22222,1482x x y y ∴+=∴+=,设222P cos sin θθ(,),1cos θ∴=时,226min PE =-.7.【2017届四川双流中学高三上学期必得分训练】已知BD AC ,为圆O :822=+y x 的两条相互垂直的弦,垂足为)2,1(M ,则四边形ABCD 的面积的最大值为. 【答案】13【解析】设圆心O 到,AC BD 的距离分别为12,d d ,则222123d d OM +==,则2128AC d =-,2228BD d =-,所以四边形的面积()()()22221212128816132S AC BD d d dd ==--≤-+=,故填8.【2017学年河北冀州中学上学期月考四】已知双曲线C :2213y x -=的右焦点为F ,P 是双曲线C 的左支上一点,(0,2)M ,则△PFM 周长最小值为. 【答案】242+ 【解析】()()PFM FMM F∆=∴,22,2,0,0,2 周长最小,即PF PM +最小,设左焦点为1F ,由双曲线的定义可得12PF PM PF PM ++=+,而1PF PM +的最小值为221=MF ,12PF PM ++∴的最小值为242+,故填242+.9.【2017届江西吉安一中高三周考】已知双曲线22:x 13y C -=的右焦点为,F P 是双曲线C 的左支上一点,()0,2M,则PFM ∆周长最小值为____________.【答案】242+ 【解析】1,3,2a b c ===,右焦点为()2,0F ,设左焦点为()12,0F -,三角形的周长为12PF PM MP a PF PM MP ++=+++当1,,P F M 三点共线时,周长取得最小值为242+.10.【2017届河北武邑中学高三上学期调研四】已知椭圆2222:1x y C a b +=,()0a b >>的离心率63,且过点61,3⎛⎫⎪ ⎪⎝⎭. (Ⅰ)求椭圆C 的方程; (Ⅱ)设与圆223:4O x y +=相切的直线l 交椭圆C 与A ,B 两点,求OAB ∆面积的最大值及取得最大值时直线l 的方程.【答案】(1)2213x y +=;(2)最大值为32,此时直线方程313y x =±±.【解析】(1)由题意可得:22121363ab c a⎧+=⎪⎪⎨⎪=⎪⎩(2)①当k 不存在时,33,22x y =±∴=±, ②当k 不存在时,设直线为y kx m =+,()11,A x y ,()22,B x y ,2213x y y kx m ⎧+=⎪⎨⎪=+⎩,()222136330k x km m +++-= 当且仅当2219kk =,即33k =±时等号成立 113322222OAB S AB r ∆∴=⨯≤⨯⨯=, OAB ∴∆面积的最大值为32,此时直线方程313y x =±±.11.【2017届湖南长沙一中高三月考五】如图,椭圆22221(a b 0)x y a b+=>>的左焦点为F ,过点F 的直线交椭圆于A ,B 两点,|AF|的最大值是M ,|BF |的最小值是m ,且满足234M m a =. (1)求椭圆的离心率;(2)设线段AB 的中点为G ,线段AB 的垂直平分线与x 轴、y 轴分别交于D ,E 两点,O 是坐标原点,记GFD ∆的面积为1S ,OED ∆的面积为2S ,求1222122S S S S +的取值范围. 【答案】(1)12;(2)9(0,)41. 【解析】(1)令(c,0)(c 0)F ->,则M a c =+,m a c =-.由234Mm a =,得23(a c)(a c)4a +-=,即22234a c a -=,即224a c =,214e ∴=,即12e =, 所以椭圆的离心率为12.(2)由线段AB 的垂直平分线分别与轴x 、y 轴交与点D 、E ,知AB 的斜率存在且不为0.令AB 的方程为x ty c =-.联立2222143x ty c x y c c=-⎧⎪⎨+=⎪⎩,得222(3t 4)y 690cty c +--=. 123634ct y y t ∴+=+,121228(y y )2c 34c x x t t -+=+-=+,2243(,)3434c ctG t t -∴++. 由DG AB ⊥,得2231341434D ct t c t x t -+=-++,解之得234D c x t -=+. 由Rt DGF ∆∆∽Rt DOE ,得22222221222243()()343434990()34c c ct S GD t t t t c S OD t -+++++===+>-+. 令12S p S =,则9p >,于是122212221S S S S p p =++. 而1p p +上(9+)∞,递增,1182999p p ∴+>+=.于是12221222982419S S S S <<+.又12221220S S S S >+,12221229(0,)41S S S S ∴∈+,1222122S S S S ∴+的取值范围是9(0,)41. 12.【2017届贵州遵义南白中学高三上学期联考四】如图,已知椭圆的中心在坐标原点,焦点在x 轴上,它的一个顶点为(0,2)A ,且离心率等于32,过点(0,2)M 的直线l 与椭圆相交于不同两点P ,Q ,点N 在线段PQ 上. (1)求椭圆的标准方程;(2)设||||||||PM MQ PN NQ λ==,若直线l 与y 轴不重合,试求λ的取值范围.【答案】(1)22182x y +=;(2)2λ>. 【解析】(1)设椭圆的标准方程是22221(0)x y a b a b+=>>,由于椭圆的一个顶点是(0,2)A ,故22b =,根据离心率是32得22232c a b a a -==, 解得28a =,所以椭圆的标准方程为22182x y +=. 13.【2017届福建连城县二中高三上学期期中】设直线l :(1)y k x =+与椭圆2223(0)x y a a +=>相交于A ,B两个不同的点,与x 轴相交于点C ,记O 为坐标原点.(1)证明:222313k a k >+;(2)若2AC CB =,OAB ∆的面积取得最大值时椭圆方程. 【答案】(1)证明见解析;(2)2235xy +=.【解析】(1)依题意,直线l 显然不平行于坐标轴,故(1)y k x =+可化为11x y k=-, 将11x y k =-代入2223x y a +=,整理得22212(3)10y y a k k+-+-=,① 由直线l 与椭圆相交于两个不同的点,得22221()4(3)(1)0a k k∆=--+->,化简整理即得222313k a k>+.(*)将33k =,233y =-及33k =-,233y =这两组值分别代入①, 均可解出25a=,经验证,25a =,33k=±满足(*)式. 所以,OAB ∆的面积取得最大值时椭圆方程为2235xy +=.14.【2016届黑龙江省哈尔滨师大附中高三12月考】已知椭圆M :2221(0)3x y a a +=>的一个焦点为(1,0)F -,左右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点. (Ⅰ)求椭圆方程;(Ⅱ)记ABD ∆与ABC ∆的面积分别为1S 和2S ,求12||S S -的最大值.【答案】(1)22143x y +=;(2)3.【解析】(I )因为(1,0)F -为椭圆的焦点,所以1,c =又23,b =所以24,a =所以椭圆方程为22143x y +=(Ⅱ)当直线l 无斜率时,直线方程为1x =-,此时33(1,),(1,)22D C ---,,ABD ABC ∆∆面积相等,12||0S S -= 当直线l 斜率存在(显然0k ≠)时,设直线方程为(1)(0)y k x k =+≠, 设1122(,),(,)C x y D x y和椭圆方程联立得到22143(1)x y y k x ⎧+=⎪⎨⎪=+⎩,消掉y 得2222(34)84120k x k x k +++-= 显然0∆>,方程有根,且221212228412,3434k k x x x x k k-+=-=++此时122121|||2||||||2||S S y y y y -=-=+212|(1)(1)|k x k x =+++因为0k ≠,上式1212123332124||24||||||k k k k =≤==+,(32k =±时等号成立)所以12||S S -的最大值为3另解:(Ⅱ)设直线l 的方程为:1-=my x ()R m ∈,则由⎪⎩⎪⎨⎧=+-=134122y x my x 得,()0964322=--+my y m . 设()11y ,x C,()22y ,x D ,则436221+=+m m y y ,0439221<+-=⋅m y y . 所以,2121y AB S ⋅=,1221y AB S ⋅=,当0=m 时,=-21S S 343212431222=⨯≤+=mmm m ()R m ∈. 由432=m ,得332±=m . 当0=m 时,3021<=-S S从而,当332±=m 时,21S S -取得最大值3. 15.已知椭圆)0(1:2222>>=+b a by a x C 经过点)221(,M ,其离心率为22,设直线m kx y l +=:与椭圆C 相交于B A 、两点. (Ⅰ)求椭圆C 的方程; (Ⅱ)已知直线l 与圆3222=+y x 相切,求证:OB OA ⊥(O 为坐标原点); (Ⅲ)以线段OA OB ,为邻边作平行四边形OAPB ,若点Q 在椭圆C 上,且满足OP OQ λ=(O 为坐标原点),求实数λ的取值范围.【解析】(Ⅰ)22222c e a b c a ===+离心率,,222a b ∴= 222212x y b b ∴+=椭圆方程为,将点2(1)2M ,代入,得21b =,22a =∴所求椭圆方程为2212x y +=.(Ⅱ)因为直线l 与圆2223x y +=相切,所以2||631m k=+,即222(1)3m k =+ 由22,22y kx m x y =+⎧⎨+=⎩,得222(12)4220k x kmx m +++-=.设点A 、B 的坐标分别为11(,)A x y 、22(,)B x y ,则122412kmx x k +=-+,21222212m x x k -=+,所以1212()()y y kx m kx m =++=221212()k x x km x x m +++=222212m k k -+,所以1212OA OB x x y y ⋅=+=222212m k -++222212m k k -+=22232212m k k --+=0,故OA OB ⊥, 点Q 在椭圆上,∴有222242[]2[]2(12)(12)km mk k λλ-+=++, 化简,得222224(12)(12)m k k λ+=+.2120k +≠,∴有2224(12)m k λ=+.①又222222164(12)(22)8(12)k m k m k m ∆=-+-=+-,∴由0∆>,得2212k m +>.②将①、②两式,得2224m m λ>0m ≠,24λ∴<,则22λ-<<且0λ≠.综合(ⅰ)、(ⅱ)两种情况,得实数λ的取值范围是22λ-<<且0λ≠.。