单元制动器
制动单元的作用

制动单元的作用制动单元是现代机动车辆的重要组成部分,主要作用是使车辆在行驶过程中能够准确停止,保证行车安全。
本文将详细介绍制动单元的作用、原理和分类。
制动单元的作用制动单元是汽车制动系统的核心部件,它能在行车过程中产生制动力,将车辆停止或减速。
在行车过程中,司机通过踩刹车踏板来控制制动单元的工作,从而让车辆停下或减速。
制动单元的作用是将车辆的动能转化为热能,使车辆减速或停下,从而保证行车安全。
制动单元的原理制动单元的工作原理是利用摩擦或转动阻力减速或停止车辆。
通常情况下,汽车制动系统主要使用摩擦制动原理实现制动,即通过制动盘和制动片之间的摩擦力来产生制动力。
当司机踩下刹车踏板时,制动液经过刹车系统传导到制动单元上,制动单元内部的制动活塞受到压力,将制动盘和制动片压在一起,产生摩擦力,从而减速或停止车辆。
另外,电动汽车和混合动力汽车中也有一些制动单元利用电动发电机等设备产生转动阻力,实现能量转化。
制动单元的分类根据制动单元的工作原理和结构,可以将其分为以下几类:1. 摩擦制动器摩擦制动器主要应用于传统的燃油汽车,它通过制动盘和制动片的摩擦力来产生制动力,从而减速或停止车辆。
摩擦制动器分为盘式制动器和鼓式制动器两种。
盘式制动器由制动盘和制动片组成,制动盘固定在车轮上,制动片与制动盘接触时摩擦,从而产生制动力。
鼓式制动器则是将制动片设在鼓形制动器的外部,当司机踩下刹车时,制动片通过摩擦阻止鼓形制动器的转动,产生制动力。
2. 电动制动器电动制动器是利用电动发电机或电磁力制动器产生制动力的设备,主要应用于电动汽车和混合动力汽车中。
电动制动器通过向驱动电机提供反向电流或向电机施加电磁力,使车辆产生制动效果,从而减速或停止车辆。
3. 液压制动器液压制动器是利用液体的压力将制动片向制动盘施加力的设备,主要应用于大型车辆,如卡车、货车等。
液压制动器的工作原理是,当司机踩下刹车踏板时,制动液经过刹车系统进入制动单元,通过液压作用压缩制动活塞,将制动片压在制动盘上,产生制动力。
某型出口机车用单元制动器故障原因分析及处理

图1防尘套破损及污物进入情况检查时还发现,在加强型支架的下方复位弹簧处存在较多污物(见图,这会造成运动阻力加大,导致闸瓦托复位困难。
此外,闸瓦托上安装的V 形体与调整螺杆的头部本应贴合在一起,但在故障单元制动器上却发生了完全脱离。
V 形体翻转90度,完全失去了限制调整螺杆旋转的功能。
(图3)进一步拆解制动单元,在与皮碗共同组成密封结构的气缸衬套内表面发现有沙粒、灰尘等污物存在,并有明显的划痕,这将直接导致密封失效,造成压缩空气的泄漏。
此外,在拆解中还发现呼吸器存在严重堵塞现象,其他零件未见异常。
我们将故障单元制动器解体清洗,清除污物并更换沙土进入单元制动器内部,致使皮碗和气缸衬套发生严造成制动缸漏风。
污物进入会同时导致制动缸内零件运动阻力增大,造成缓解卡滞,污物进入过多时甚至会使零件受力异常造成损坏。
因防尘套未见老化现象,所以防尘套的破损和丢失很可能是意外受到外力作用导致的。
分析造成防尘套破损的原因存在以下几种可能性:防尘套意外受到外力的直接作用造成损伤,比如尖锐物体的刮划导致破损。
呼吸器被严重堵塞会造成制动时排风不畅,进而导制动缸充风,在风压作用下制动鞲———————————————————————作者简介:王国明(1979-),男,吉林舒兰人,中车大连机车车辆高级工程师,工程硕士,研究于春生(1988-),男,辽宁林中车大连机车车辆有限公司机械装备分厂,研究方向为机械装配。
图2复位弹簧状态图3V 形体状态图4防尘套工作状态示意图风;同时污物也造成制动缸内零件运动阻力增大,造成了缓解卡滞;污物进入过多时甚至会使零件受力异常造成损坏。
该型机车用于煤炭运输,工作环境中的粉尘远大于一般线路,这也加重了污物积聚和进入单元制动器的程度。
3整改措施①首先针对防尘套受外力直接作用造成破损的情况,需用户加强对防尘套的检查维护。
日常应关注防尘套状态,检查是否有破损情况,存在防尘套破损的单元制动器一经发现应尽快修理,避免故障现象的加剧。
单元制动器生产线说明2015

设计文件单元制动器组装生产流水线方案(草案)长沙润伟机电科技有限责任公司2015年8月更改记录版本更改内容更改原因编制审核批准日期V1.0 新建文档目录目录1概述 (1)2单元制动器生产车间现状 (1)3生产线设计需求 (2)3.1生产线工序范围 (2)3.2生产线规划面积 (2)3.3产能要求 (2)3.4组装流水线设置 (2)3.5生产流水线信息化要求 (2)4单元制动器生产线方案说明 (2)4.1单元制动器生产线概述 (2)4.2适用环境 (3)4.3执行标准 (3)4.4单元制动器生产工艺流程 (5)4.5生产线工艺布置 (5)4.5.1规划区域描述 (5)4.5.2DF8B单元制动器部件组装区 (6)4.5.3DF8B单元制动器总组装区 (7)4.5.4ZYZD系统单元制动器部件组装区 (8)4.5.5ZYZD系统单元制动器总组装区 (9)4.5.6单元制动器试验区 (10)4.6单元制动器生产线组成清单 (11)4.6.1单元制动器组装流水线 (12)4.6.2配件输送线 (12)4.6.3工位工作台 (13)4.6.4组合梁式起重机 (13)4.6.5换位组装工装 (13)4.6.6蓄能缸组装工装 (14)4.6.7通用压入工装 (14)4.7MES系统 (14)4.7.1信息系统的作用 (15)4.7.2信息系统主要功能模块 (15)4.7.3信息化生产流水线工位案例 (16)4.8相关业绩 (16)4.8.1单元制动器流水线 (16)1概述我公司设计的单元制动器生产线用于完成XXXX电气有限公司ZYZD-1、ZYZD-2、ZYZD-3和DF8B型踏面单元制动器组装、试验和存放等生产过程。
单元制动器生产线为半自动化生产线,采用自动化输送线输送配件,生产线管理采用制造执行系统(MES)系统,通过与现有ERP系统的无缝对接,使物料、工艺、人员、生产计划等信息与车间制造执行系统(MES)实现实时交互,车间信息系统把生产结果自动反馈回ERP。
货车单元制动器

TMX ® (Truck Mounted Brakes)单元制动器: •由西屋位于芝加哥的 Cardwell公司设计制造; •TMX研发始于1991年,截 止2009年底,已有近 150,000台装车运营。 •制动梁可用于14度,16度 或者18度的侧架 •提供适于70、100和125吨 等转向架的制动比率 •适用于既有转向架和新设 计转向架
TMX优势及特点
Benefits 优点
• 角度矫正功能使闸瓦托保证了均匀的闸瓦磨耗 • 轻量化设计,大约每套约180kg • 易于安装和调整 • 单水平力面分布保证了闸瓦均匀磨耗和力平均分配 • 闸调器弹簧负载防止在车辆受到冲击时关闭,保证手制动的运用。 • 闸调器触发装置的直接动作驱动维持更好的活塞行程控制 • 无需特殊的承梁 • 活塞行程指示器可以从车子的两侧都可以观察到 • 气动效率约为80%,手制动效率约为70%
February 2008
Contains Information Proprietary to Wabtec
1
TMX安装示例
主要由制动缸、闸调器、 制动梁、瓦托、闸瓦、手 制动杆等组成源自February 2008
Contains Information Proprietary to Wabtec
2
Operating Features 工作特点
• 简单的双杆布置 • 适用于任何标准组合的窗式转向架承梁 • 在承梁上不需要任何特殊的制动缸安装垫或连结 • 可拆卸的闸瓦托 • 可以使用2”厚度的合成闸瓦 • 可以满足28”~38”英寸间不同的轮径范围 • 多种不同手制动系统比例 • 多种制动缸可满足不同的车重及车型的要求
Contains Information Proprietary to Wabtec
单元制动器工作原理

单元制动器工作原理
1.踏板压力传递:驾驶员通过踏板施加力量,压缩主缸内的制动液,
并通过制动管路将压力传递给制动器。
2.主缸:主缸是单元制动器的核心部件之一、它由一个或多个缸体组成,每个缸体内都有一个活塞,并且与踏板相连。
当踏板受力时,活塞会
向前移动,从而推动液体流入制动管路。
3.制动管路:制动管路是将制动液从主缸传递到制动器的管道系统。
它由高压软管和金属管组成,并且连接到车辆的各个制动器。
当制动液进
入制动管路时,它会传递给制动器以产生制动效果。
4.制动器:制动器是单元制动器的关键组件之一,它通过摩擦力将车
辆减速或停止。
制动器通常由刹车盘和刹车片构成,其中刹车盘负责与车
轮接触,而刹车片则与刹车盘发生摩擦。
当制动液进入制动器时,它会推
动一系列活塞,使刹车片碰触刹车盘,从而产生摩擦。
5.ABS系统:一些单元制动器还配备了防抱死制动系统(ABS)。
ABS
系统是一种安全装置,可防止车轮在制动时发生抱死,从而提高车辆的稳
定性和制动性能。
当车轮开始抱死时,ABS系统会通过调节制动器的制动
压力来减小抱死,并保持车轮的旋转。
通过上述步骤,单元制动器可以实现高效的制动效果。
当驾驶员踩下
刹车踏板时,制动器的活塞会受到压力迫使,从而使刹车片与刹车盘接触,并产生摩擦力。
这种摩擦力将会减少车辆的速度,并最终使车辆停止。
总之,单元制动器是一种复杂而高效的制动系统,通过结合机械、液
压和电子元素,实现了可靠的制动效果。
它是汽车行业的重要创新之一,
并为大型车辆提供了更强大更稳定的制动能力。
机车单元制动器

制动器的零部件在温度较低的条件下可能会发生性能上的改变,从而影响制动器的整机性能,因此对制动器须进行低温试验。为了模拟低温环境,制动器和风源系统均应在-40℃下保持一段时间,一般在48h以上。在低温环境下应对制动器进行所有性能试验和气密性试验。
2.3.6
型式试验是针对新研制的制动器,因此以上提到的所有试验均应涵盖在型式试验之中,同时建议型式试验还必须对关键零件的关键质量特性进行专项检
2技术标准探讨
2.1
2.1.1
当前使用的机车单元制动器的缸径规格主要有7寸,7.5寸8寸,其中以7寸缸使用最为广泛,也有采用6.5寸和8寸以上的。缸体直径的规格越少,互换性和简统化程度越高。缸体直径过小将影响制动缸的缓解和常用制动性能,而直径过大,则活塞杆过重,造成动作困难,易使皮碗变形和拉伤缸表面。因此建议制动缸的内径定为6.5寸,7寸,7.5寸,8寸等4个等级。
皮碗的结构种类较多,目前使用的L形皮碗运动阻力大,安装复杂,此结构原套用化工部标准,并不适合于单元制动器使用。国外制动器的皮碗基本上都采用钢骨架结构,其优点是安装、拆卸简便,定位精度高运动阻力小,国产JDYZ-4型制动器亦采用了这种结构,运用效果较好。建议新造制动器皮碗采用钢骨架式结构。
2
间隙调整器分为棘轮棘勾式和非自锁螺纹式两种
的安装一定要牢固、密贴,与闸瓦托的局部间隙不大于lmIn,另外还要保证在闸瓦磨耗到限后容易拆卸旧瓦和安装新瓦。由于理论上制动时闸瓦上下端存在不均匀的磨耗,必须时时保证闸瓦上下端与车轮的间隙均匀,则闸瓦托的定位应能调整闸瓦托的倾斜角度。闸瓦托安装后,与制动器箱体必须容许有少量的横动,以适应轮对与转向架构架的横动,一般情况下此值不小于2mIn。在用于三轴转向架中间轴的制动器应允许有更大的横动量,单侧制动时不小于4—5mIn,双侧制动时必须大于轮对与构架的横动量。国内就出现过因制动器横动量不足造成丝杆弯曲变形的现象,建议在技术标准中予以规定。
城市轨道交通车辆构造05制动系统

制动系统分类图
1.摩擦制动
图5-1 闸瓦制动示意图 1—制动缸 2—基础制动装置 3—闸瓦 4—车轮 5—钢轨
(1)闸瓦制动 动方式。 (2)盘形制动 所示。
闸瓦制动又称踏面制动,是最常用的一种制 盘形制动可分为轴盘式和轮盘式,如图5-2
图5-2 盘形制动 a)轴盘式 b)轮盘式
图5-3 盘形制动结构 1—轮对 2—单元制动缸 3—吊杆 4—制动夹钳
2) 具有足够的制动力,保证车组在规定的制动距离内停车。 3)对新型的城市轨道交通车辆,一般要求具有动力制动能力,并且 在正常制动过程中,应尽量充分发挥动力制动能力,以减少对城市 环境的污染和降低运行成本。 4)制动系统应保证车组在较长、较陡下坡道上运行时,其制动力不 会衰减。 5)电动车组各工况下的制动能力应尽可能一致。 6)具有紧急制动性能。
三通阀内形成以下两条通路: 制动管——充气沟7——滑阀室——副风缸; 制动缸——滑阀座r孔——滑阀底面n槽——三通阀EX口——大气。
第一条通路为充气通路,第二条通路为缓解通路,即所谓充气是指向 副风缸充气,缓解是指制动缸缓解,副风缸内压力可一直充至与制动管的 压力相等,即达到制动管定压,制动缸缓解后的最终压力为零。
空气压缩机1将压缩空气储入总风缸2内,经总风缸管3至制动阀4 。制动阀有3个不同位置:缓解位、保压位和制动位。 在缓解位时,制动管5内的压缩空气经11制动阀EX(Exhaust)排
气口排向大气; 在保压位时,制动阀保持总风缸管、制动管和EX口各不相通; 在制动位时,总风缸管压缩空气经制动阀流向制动管。
直通自动空气制动机与自动空气制动机在制动机的组成上基本相同, 只增加一个定压风缸13。但其三通阀的结构和原理与自动空气制动机的 三通阀有较大的区别。
机车单元制动器典型故障分析与处理

机车单元制动器典型故障分析与处理摘要制动装置一般含制动机、基础制动装置和手制动机三部分。
单元制动器是基础制动装置中的佼佼者,而带停放制动单元制动器更是集基础制动装置和手制动机功能于一体,结构简单,使用、维护方便,即使出现一般性故障也能快速的解决。
关键词机车;单元制动器;故障分析;故障处理1 概述内燃机车在轨道交通中主要扮演场段调车、施工作业、车辆救援等重要作业动力牵引的角色,其主要由动力系统、传动系统、走行系统、冷卻系统、电气系统、制动系统、辅助系统等组成。
制动系统乃整个机车的重中之重,该系统功能的状态直接影响内燃机车行车安全,而机车制动系统的核心部件为单元制动器。
内燃机车装配的单侧闸瓦单元制动器为JSP系列单元制动器,JSP-1型单元制动器是基本模块,仅能提供行车制动,如图1。
JSP-2型单元制动器是在基本模块基础上加装了弹簧停车制动装置,它不仅能提供行车制动,还能在机车车辆停车、无风状态下利用储能的弹簧实施一次停车制动,如图2。
2 结构原理2.1 JSP-1型单元制动器JSP-1型单元制动器主要由勾贝推杆、闸瓦间隙自动调整机构、闸瓦托、轴承、轴承支架、调整后盖、复位弹簧等组成,如图3。
当压缩空气充入制动缸时,勾贝推杆1往下运动,推动闸瓦间隙自动调整机构3和闸瓦托4向车轮运动。
制动力是通过轴承5、轴承支架2、闸瓦间隙自动调整机构3作用在闸瓦托4上实施的。
只要改变勾贝推杆的楔角角度,就可以获得不同的制动倍率,从而得到需要的制动力。
2.2 JSP-2型单元制动器JSP-2型单元制动器在JSP-1型单元制动器的基础上集成了一套弹簧停车制动装置,其主要由停车制动弹簧、弹簧缸体、活塞、调整螺杆、手动缓解装置等组成,具备JSP-1型单元制动器的行车制动功能外还具备有停车制动功能,如图4。
它的弹簧停车制动装置是利用弹簧力进行制动,用空气压力保持处于缓解状态。
3 故障现象在长期的使用过程中,单元制动器出现过闸瓦间隙过小、停放制动不缓解或者缓解过慢现象,现将一些常见故障现象以及分析处理方法整理如下,便于今后在使用、维修的过程中快速地解决类似问题(处理此类故障,机车均做了相应防护措施)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
5
结构原理图如图所示:
A
6
A
7
工作原理如下图:
制动时,压力空气P进入制动缸,克服鞲鞴复原弹簧4的作用力,推动倍率 鞲鞴3向下移动,并推动轴承托架6及间隙调整器8向前移动,推动闸瓦托1使 闸瓦与车轮踏面接触,从而达到制动效果。
A
8
踏面制动单元力的放大倍率仅与楔角角度有关, 制动倍率的计算如下:
的上部活动轴及下部齿合轴的紧固螺栓是否松动或脱落。 3、经常检查闸瓦与车轮踏面之间的间隙是否正常。 4、机车运行前,应将小闸置于制动或缓解位,检查制动单
元应能正常制动与缓解。 5、辅修时,检查制动单元间隙调整器的动作是否正常。 6、辅修时,检查弹簧停车制动器动作是否正常。
A
13
单元制动器的使用注意事项:
3、基础制动装置重量大,机械杠杆结构复杂,使制
动效率降低。
4、随着速度的提高,基础制动产生较高的噪音,以
至于污染环境。
5、动力转向架,由于电机及较多设备的安装,使转
向架设计、制动装置的布置较为困难,并影响转向架力
学性能。
A
1
踏面制动单元基本结构特性:
1、力的放大机构采用楔角放大原理,使制动单元重量轻、体积小、 输出力大且范围广。
k=p1·1/tgα=p1·n 故 n=k/p1=1/tgα 式中
n-----制动倍率 p1---------制动鞲鞴作用力 k-----制动单元输出力 α-----楔角角度
A
9
带停车弹簧的单元制动器如下图所示:
缓解位
A
正常制动位
10
停车制动位
A
手动缓解位
11
闸瓦更换方法:
更换闸瓦时需手动调整闸瓦托的进退。用扳手逆时针转动位于 箱体后部的调整套筒六方,即可使闸瓦托后退,实现更换闸瓦的操 作。更换完毕后,顺时针调整套六方,使闸瓦间隙恢复到无磨损时 的正常值范围6~8mm,机车即可投入运行。
A
2
JDYZ-5型踏面制动单元的主要技术参数:
制动缸直径 最大制动闸瓦行程 最大闸瓦间隙调整能力 闸瓦一次调整量 制动缸鞲鞴最大行程
177.8mm 18mm 125mm 10mm 72mm
闸瓦与车轮踏面正常间隙 踏面制动单元的制动倍率 停车制动缓解工作压力
A
6~8mm
3.6 450kPa
3
XFD型踏面制动单元的主要技术参数:
3、总风缸无风源时,此弹簧停车制动器只能实现一次手 动缓解,手动缓解后不能再次制动。若需再次制动,必 须再次向总风缸充风,待风压达到450kPa以上时,方可 实施二次制动。
4、分解和组装弹簧停车制动器时,必须在专业人员指导
下或经正式培训后,方可进A 行。
14
1、因总风缸无风源时,弹簧停车制动器产生制动作用, 所以动车前一定要先缓解弹簧停车制动器,方可动车, 即弹簧停车制动器未缓解前,严禁动车,否则会产生抱 闸运行现象。
2、机车和车辆在无动力回送调车或与其他车辆混编时, 可根据需要接上列车管,通过列车管向回送机车总风缸 充气,使回送机车弹簧停车制动器缓解,当列车管压力 达到450kPa以上时,方可动车。
制动缸直径
177.8mm
制动倍率
3.01
紧急制动时制动缸的压力
400~420kPa
闸瓦与车轮踏面正常间隙
6~8mm
闸瓦间隙一次调整量约
10mm
最大闸瓦间隙调整能力
125mm
A所示:
1.带弹簧停车制动的单元制动器 2.不带停车弹簧的单元制动器 3.安装座
单元制动器主要由制动缸、楔角放大机构、间隙调整器及活 动闸瓦托组成。其外形如下图所示:
2、单向间隙调整器对弹性变形的不调整性,确保闸瓦与车轮踏面 的有效间隙。
3、弧形滑块式和支点移动式径向活动闸瓦托结构,能自动保持均 匀闸瓦间隙,防止闸瓦偏磨。
4、弹簧停车制动单元具有快速缓解特性。 5、可装用带左、右手制动的制动单元,满足不同机车车辆的运用
要求。
6、采用全密封结构。制动缸鞲鞴皮碗采用Y型骨架自封结构,安装 方便,可延长检修周期。
倾角调整机构:
在制动力作用下,闸瓦托的圆柱型曲 面绕球向块转动以适应闸瓦与踏面的吻合, 同时在压簧作用下保持顶角的锁定。
此外,这种结构还有避免偏载、弯曲 和冲击载荷的传递,防止调整螺杆弯曲变 形的特点。
A
12
单元制动器的日常检查与维护: 1、经常检查制动单元与车体的联结螺栓是否松动或脱落。 2、经常检查踏面制动单元本身活动连接部件,如瓦托拐架
单元制动器是集制动缸、力的放大机构和间隙调整
器为一体的装置,它对减轻车辆重量、均匀分配制动力、
改善转向架动力学性能及减少维护量等有明显作用。
机车车辆的基础制动装置采用传统的机械杠杆传递
作用力有以下缺点:
1、机械杠杆放大制动缸输出力,使制动作用能量分
配不均匀。
2、易于产生销轴及连杆磨耗,从而增大维护量。