强度理论第十章组合变形
第10章 组合变形

10.1 组合变形的概念 工程中大多数的杆件在荷载作用下,往往同时发生两种或两种以上的变形。
在小变形的前提下,一般采用叠加原理计算组合变形的强度问题。即当杆件 承受复杂荷载作用而同时产生几种变形时,只要将荷载进行适当地分解,使 杆在各分荷载的作用下发生基本变形,再分别计算各基本变形所引起的应力, 然后将计算结果叠加,就可得到总的应力。实践证明:在线弹性、小变形的 情况下,用叠加原理所得到的结果与实际情况是相当符合的。
第10章 组合变形
【本章教学要点】 知识模块 组合变形的概念 叠加原理 掌握程度 掌握 掌握 掌握 理解 斜弯曲构件 重点掌握 偏心受压(受拉)构 件 截面核心的概念 理解 重点掌握 了解 知识要点 基本变形、组合变形 适用条件:小变形、线弹性 叠加法求解组合变形的步骤 斜弯曲概念 危险截面、危险点的确定;应力公式;强度条 件 偏心受压(受拉)概念
危险截面、危险点的确定;应力公式;强度条 件
截面核心
【本章技能要点】
技能要点
掌握程度
应用方向
斜弯曲构件计算
偏心受压(受拉)构件 计算 截面核心
掌握
掌握 了解
危险截面、危险点的判别;强度校核、截面设 计、许可荷载确定
危险截面、危险点的判别;强度校核、截面设 计、许可荷载确定 截面核心的确定
【导入案例】 工程结构的变形:单一或多样?
例10-5 试求图10.16所示偏心受拉杆的最大正应力。
7.5 I I 50
K z y I-I 截面 (b) 图 10.16
P 2kN
20
10 40 15 (a)
10.4 截面核心 10.4.1 截面核心的概念 人为地将偏心压力的作用点限制在截面形心周围的一个区域,则杆件整 个横截面上就只产生压应力而不出现拉应力,这个荷载作用的区域就称 为截面核心。 10.4.2 截面核心的确定
强度理论与组合变形ppt

通过监测桥梁的变形、裂缝等指标,及时发现 并解决潜在的安全隐患。
3
桥梁修复和加固
根据强度理论分析,针对受损或老化桥梁采取 适当的修复和加固措施。
强度理论在建筑物中的应用
建筑设计
01
考虑建筑物结构的强度、刚度和稳定性,以确保建筑物在使用
过程中的安全性。
抗震设计
02
强度理论在地震作用下用于评估建筑物的抗震性能,设计合理
02
组合变形
组合变形的定义与特点
定义
组合变形是指结构或构件在复杂受力或温度变化等作用下,由平面弯曲、拉 伸、压缩、扭转等基本变形组合而形成的变形形式。
特点
组合变形具有复杂性、多变性、综合性等特点,变形形式多种多样,影响因 素较为复杂,需要综合考虑多种因素进行分析和计算。
组合变形的影响因素
材料性质
组合变形对强度理论的影响
组合变形过程中,材料内部的应力 、应变和裂缝等状态是不断变化的 ,这些因素对强度理论的应用和验 证产生一定的影响。
VS
在复杂应力状态下,材料的强度和 稳定性受到多种因素的影响,因此 需要综合考虑各种因素来评估材料 的强度和稳定性。
强度理论与组合变形的相互作用
强度理论是组合变形的基础,它为组合变形的分析 和设计提供了重要的理论依据。
强度理论分类
根据不同的破坏特征和受力条件,强度理论可分为最大拉应 力理论、最大伸长线应变理论、最大剪切应力理论和形状改 变比能理论等。
强度理论的重要性
强度理论是工程应用中设计、制造、使用和维护各种材料的 关键依据之一,可以指导人们合理地选择材料、制定工艺和 优化结构。
强度理论能够为各种工程结构的分析、设计和优化提供理论 基础,从而提高工程结构的可靠性、安全性和经济性。
第十章 强度理论(习题解答)

10-4 求图示应力状态的第三、四强度理论的相当应力。
解:(1)由单元体可知:z 面为主面60MPa z σ=。
100MPa =15MPa =-20MPa x x y στσ=,, (3) 求梁的主应力及主平面方位角:max min 1002022101.854061.85()21.85x y MPa σσσσ+⎫-=±=±⎬⎭⎧=±=⎨-⎩故,123101.85MPa,60MPa,21.85MPa σσσ===-(2)第三强度理论相当应力313101.85(21.85)123.7MPa r σσσ=-=--=(3)第四强度理论相当应力4108.98MPa r σ===10-7图示简支梁为焊接工字钢,(1)试校核梁内的最大正应力和。
(2)试校核最大剪应力强度。
(3)试分别用第三、第四强度理论校核钢梁的强度。
M kN ·m)64+V kN)(c )(b)解:(1)外力分析,判变形:求支反力Y A =160kN (↑), Y B =40 kN (↑)梁发生平面弯曲,中性轴过形心沿水平方向。
(2)内力分析及应力分析,画内力图如图所示。
①剪应力强度危险面于梁的左段各横截面,V max =160kN ,危险面的中性轴上各点是剪应力强度的危险点。
②正应力强度危险面于集中力处截面max 64M =⋅kN m ,跨中截面的上下边缘点是正应力强度的危险点。
③按第三、四强度理论,集中力处C 的左截面也可能是危险面,C 的左截面腹板和翼板的交界处为强度理论的危险点。
(3)求截面的几何性质:336512030055.5270287.9108.79101212z I -⨯⨯=-⨯=⨯=⨯44mm m4,30012015(7.5)256500 2.565102z a S *-=⨯⨯-==⨯33mm m 4,30013512015(7.5)1359338512.5 3.3851022z S *-=⨯⨯-+⨯⨯==⨯半33mm m m mm 135.0135==a y(4)对梁进行正应力校核[]3max max 564100.150109.21608.7910b zM y I σσ-⨯=⋅=⨯==⨯Pa MPa <MPa故,满足正应力强度。
材料力学(单辉祖)第十章组合变形

弯压组合
可见,危险截面为C截面 其轴力和弯矩分别为
FNC 3 kN M c M max 4 2 8kN m
A
FAy
10kN m a x
g g f
C m
FBy
B
危险点 截面C上的最低点f 和最高点g
FN M c s A W
f
18
弯压组合
A I
4
10kN
解 首先计算折杆的支座反力 由平衡方程可得 FAx A
FAx 0, FAy 5kN, FBy 5kN
FAy
m
10kN
C 1.2m B 1.6m FBy
a x 1.6m
m
由于折杆左右对称,所以只需分析一半即可。 折杆AC部分任一截面上的内力
FN FAy sin 3 kN FS FAy cos 4 kN M xFAy cos
杆件变形分析步骤 首先, 在杆件原始尺寸上分别计算由横向力和 轴向力引起变形、应力 然后, 利用叠加原理,合成在横向力和轴向力 共同作用下杆件变形、应变和应力等物理量 若杆件抗弯刚度EI较大,轴力引起杆件的弯曲 变形较小,可以忽略
10
弯拉组合
细长杆件强度问题, 受力如图,抗弯刚度 EI,截面抗弯模量W , 横截面面积A。
n
e n
P
z b h y
30
偏心拉伸(压缩)
解: 1. 力系简化 力P对竖直杆作用等效于作 用在杆轴线上一对轴力P和 一对作用在竖直平面内力 偶mz=Pe
FN P 2000 N, M z mz Pe 120 N m
mz P
n
e n
P
mz P
可见,竖直杆发生弯拉组合变形
组合变形的强度计算

组合变形的强度计算 组合变形的概念拉伸与弯曲的组合一.组合变形的概念1.组合变形:在外力的作用下,构件若同时产生两种或两种以上基本变形的情况在小变形和线弹性的前提下,可以采用叠加原理研究组合变形问题所谓叠加原理是指若干个力作用下总的变形等于各个力单独作用下变形的总和(叠加)在复杂外载作用下,构件的变形会包含几种简单变形PRzxyPP2、组合变形的研究方法——叠加原理叠加原理应用的基本步骤:①外力分析:将载荷进行分解,得到与原载荷等效的几组载荷,使构件在每一组载荷的作用下,只产生一种基本变形.②内力分析:分析每种载荷的内力,确定危险截面.③应力分析:分别计算构件在每种基本变形情况下的危险将各基本变形情况下的应力叠加,确定最④强度计算:二.弯曲与拉伸(的组合杆件在外力作用下同时产生弯曲和拉伸(压缩)变形称为弯曲与拉伸(压缩)的组合偏心拉伸:弯曲与拉伸的组合变形链环受力立柱受力拉伸与弯曲组合的应力分析ϕϕsin p p cos p p y x ==A P x ='σy I M x l P M zy =''-=σ)(作用下:z T W M A N max max +=σzC W M A N max max -=σ危险截面处的弯矩抗弯截面模量y I M A N z +=''+'=σσσ根据叠加原理,可得x 横截面上的总应力为[]T z max max T W M A N σσ≤+=[]c zmax max C W M A N σσ≤-=强度条件为例:悬臂吊车,横梁由25 a 号工字钢制成,l =4m ,电葫芦重Q 1=4kN ,起重量Q2=20kN , α=30º, [σ]=100MPa,试校核强度。
取横梁AB为研究对象,受力如图b所示。
梁上载荷为P =Q1+Q2= 24kN,斜杆的拉力S 可分解为X B和Y B(1)外力计算横梁在横向力P和Y A、Y B作用下产生弯曲;同时在X A和X B作用下产生轴向压缩。
第十章 应力状态,强度理论与组合变形1

2 2
s
2 3
2(s1s 2
s 2s 3
s 3s1 )]
(10 11)
用主应力表示的体积改变比能为:
uV
= 1 2
6E
(s1 s 2
s 3 )2
用主应力表示的形状改变比能为:
usd
=
u
uv
=
1
6E
s 1
s2 2
s 2
s3
2
s 3
s
1
2
(10-13)
14
强度理论
问题:
复杂应力状态下 的强度?
屈服判据 s1-s3= sys Tresca条件, 1864, 法
实验验证: 很好地预测了塑性材料屈服。
设计:
强度条件: s1-s3[s]=sys/n
19
10.2.2 延性材料的屈服强度理论
四、形状改变比能理论(第四强度理论)
? ? 思考: Tresca条件与s2无关
滑移改变形状 能量
假说: 延性材料屈服取决于其形状改变比能 ud。
1 2
(s 1 s 2 )2 (s 2 s 3 )2 (s 3 s 1 )2 [s ] = s ys / n
21
强度理论汇总:
强度条件的一般形式: 工作应力许用应力
相当应力
破 s1 理论 坏
e1 理论
sr [s]
sr1 = s1 常用
脆性破坏 [s]=sb/n 塑性屈服 [s]=sys /n
5
注意到txy=tyx,解得:
sa=sxcos2a+s ysin2a-2t xy sinacosa t a=(s x-s y)sinacosa+txy(cos2a -sin2a)
上篇 工程力学部分 第10章 组合变形

返回
下一页
第二节
斜 弯 曲
外力F的作用线只通过横截面的形心而不 与截面的对称轴重合,梁弯曲后的挠曲线不再 位于梁的纵向对称平面内,这类弯曲称为斜弯 斜弯 曲。斜弯曲是两个平面弯曲的组合,下面将讨 论斜弯曲时的正应力及其强度计算。
一、正应力计算
斜弯曲时,梁的横截面上同时存在正应力和剪应力,但因剪应 力值很小,一般不予考虑。 斜弯曲梁的正应力计算的思路可以归纳为“先分后合”,具体 计算过程如下: 1.外力的分解:由图10-3(a)可知:Fy=Fcosφ,Fz=Fsinφ 2.内力的计算 距右端为l1的横截面上由Fy、Fz引起的弯矩分别是: Mz=Fya=Facosφ My=Fza=Fasinφ 3.正应力的计算 由Mz和My在该截面引起K点正应力分别为σ’=±Mzy/Iz , σ’’=±Myz/Iy Mz和My共同作用下K点的正应力为
上一页
返回
下一页
二、双向偏心压缩(拉伸)时的 双向偏心压缩(拉伸) 正应力计算
图10-7(a)所示的偏心受拉杆,平行于轴线的拉力 的作用点不在截面的任何一个对称轴上,与z轴、y轴 的距离分别为ey和ez,此变形称为双向偏心拉伸 双向偏心拉伸,当F 双向偏心拉伸 为压力时,称为双向偏心压缩 双向偏心压缩。 双向偏心压缩 双向偏心压缩(拉伸)实际上是轴向压缩(拉伸) 与两个平面弯曲的组合变形。任一点的正应力由三部 分组成,计算这类杆件任一点正应力的方法,与单向 偏心压缩(拉伸)类似。 三者共同作用下,横截面上ABCD上任意点K的总 正应力为以上三部分叠加,即 F Mz y M yz / // /// (10-6) σ = σ +σ +σ = ± ± A Iz Iy
Mz FN (b) _ h (a) +
材料力学第六版答案第10章

第十章 组合变形的强度计算10-1图示为梁的各种截面形状,设横向力P 的作用线如图示虚线位置,试问哪些为平面弯曲?哪些为斜弯曲?并指出截面上危险点的位置。
(a ) (b) (c) (d) 斜弯曲 平面弯曲 平面弯曲 斜弯曲弯心()()弯心弯心()()斜弯曲 弯扭组合 平面弯曲 斜弯曲“×”为危险点位置。
10-2矩形截面木制简支梁AB ,在跨度中点C 承受一与垂直方向成ϕ=15°的集中力P =10 kN 作用如图示,已知木材的弹性模量MPa 100.14⨯=E 。
试确定①截面上中性轴的位置;②危险截面上的最大正应力;③C 点的总挠度的大小和方向。
解:66.915cos 10cos =⨯==οϕP P y KN59.215sin 10sin =⨯==οϕP P z KN4310122015=⨯=z J 4cm 3310cm W z =335625121520cm J y =⨯=3750cm W y =25.74366.94max =⨯==l P M y z KN-M 94.14359.24m ax =⨯==l P M z y KN-MMPaW M W M yy z z 84.9107501094.110101025.763633maxmax max=⨯⨯+⨯⨯=+=--σ 中性轴:οο47.2515tan 562510tan tan tan 411=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛-=--ϕαy z J J 2849333105434.0101010104831066.948--⨯=⨯⨯⨯⨯⨯⨯==z y y EJ l P f m28933310259.010562510104831059.248--⨯=⨯⨯⨯⨯⨯⨯==y z z EJ l P f m 602.0259.05434.022=+=f cm方向⊥中性轴:ο47.25=α10-3 矩形截面木材悬臂梁受力如图示,P 1=800 N ,P 2=1600 N 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
n
4、使用条件:断裂破坏,服从胡克定律。
5、缺点:对有些材料未被实验所证实。
6
§9-3 关于屈服的强度理论 三、最大切应力理论(第三强度理论;屈雷斯加屈服准则)
杜奎特(C.Duguet)最早提出;屈雷斯加最终确立了这一理论
1、基本论点:材料发生屈服破坏的主要因素是最大切应力。
2、破坏条件: m ax jx
1
第九章 复杂应力状态强度理论
§9-1 强度理论的概念 §9-2 四种常用的强度理论 §9-3 其他强度理论
强度理论小结
第十章 组合变形
斜弯曲 轴向拉(压)与弯曲组合 偏心拉(压) 截面核心 弯曲与扭转 组合变形小结
2
§9-1 强度理论的概念(引言)
一、概述:
简单应力状态与复杂应力状态许用应力确定的区别:
0.32m
Fs
100kN
0.32m
100kN M
32kNm
7 K 88.6
11.4
X
100
Iz 2370104 mm4
Wz 237103 mm3
Iz
/
S z max
17.2cm
X 解:1、画内力图
11
2、最大正应力校核
max
M max Wz
32106 237103
135(MPa)
3、最大切应力校核
1、基本论点:材料发生屈服破坏的主要因素是最大形状改变比能。
2、破坏条件:vd vdjx
vd
1
6E
(1 2 )2 ( 2 3)2 ( 3 1)2
vdjx
1
6E
2 s2
1
2
( 1
2)2
( 2
3 )2
( 3
1)2
s
3、强度条件:
1 2
( 1
2
4、使用条件:屈服破坏。
max
F S smax zmax Izb
100103 17.2 10 7
83.1(MPa)
4、主应力校核(翼缘和腹板交界处)
x
x
My Iz
32106 88.6 2370104
119.5(MPa)
xy
Fs
m
a
xS
z
Izb
100103 107.5103 2370104 7
64.8(MPa)
3
二、材料破坏的类型: 脆性断裂;屈服破坏。
三、强度理论的概念: 关于引起材料破坏主要因素的各种假说。
四、材料破坏的主要因素: 最大拉应力;最大拉应变;最大切应力;最大形状改变比能。
五、研究的目的: 能用简单的力学实验建立复杂应力状态的强度条件。
4
§9-2 关于断裂的强度理论
一、最大拉应力理论(第一强度理论) 在17世纪伽利略由直观出发提出了第一强度理论
60
解 1、主应力的确定
50 40
max
m in
x
y
2
(
x
2
y
)2
2 xy
40 60 ( 40 60)2 (50)2
2
2
(单位:MPa)
80.7(MPa) 60.7(MPa)
σ1=80.7(MPa);σ2=0;σ3=-60.7(MPa)。
2、相当应力的确定
r3 1 3 80.7 (60.7) 141 .4(MPa) 14
2 y
塑性材料圆截面轴弯扭组合变形时用内力表示的强度条件:
M 2 T 2
r3
W
或 M 2 0.75T 2
r4
W
使用条件:屈服破坏, 2 0 。
10
例:如图所示工字型截面梁,已知〔σ〕=180MPa〔τ 〕 =100MPa 试:全面校核(主应力)梁的强度。
F
F=100kN
Z
, 5、缺点:没考虑
的影响,对无拉应力的状态无法应用。5
23
二、最大拉应变理论(第二强度理论)
马里奥特(法国)最早提出关于变形过大引起破坏的论述
1、基本论点:材料发生断裂破坏的主要因素是最大拉应变。
2、破坏条件: 1 jx
1
1 E
1
( 2
3),
jx
b
E
1 ( 2 3 ) b
3、强度条件: 1 ( 2 3)
例:求图示单元体第四强度理论的相当应力。
20 30
单位:MPa
解 1、主应力的确定 σ1=20 MPa; σ2= -20 MPa; σ3= -30 MPa。
2、相当应力的确定
2、三向受压的应力状态:采用第三、第四强度理论(屈服破坏) 3、其它的应力状态:
脆性材料采用第一、第二强度理论(断裂破坏); 塑性材料采用第三、第四强度理论(屈服破坏)。 9
强度理论的应用——
x
max
m in
x
2
( x )2
2
2 xy
1
3
xy
r3
2 x
4
2 xy
r4
x2
3
x
max ;
max .
jx ; jx
n
n
1 ; 2 ; 3 x ; y ; z ; xy; yz; zx. 1 jx ; 2 jx ; 3 jx .
简单应力状态的许用应力由简单的力学实验确定; 复杂应力状态的许用应力不能直接由简单的力学实验确定。 (材料的破坏规律→破坏原因→同一破坏类型主要破坏因素 的极值等于简单拉伸时破坏的极值)。
S
z
4 ) 2
107.5103
12
r3
x2
4
2 xy
119 .52 4 64.82
176 .3(MPa)
r4
x2
3
x
2 y
119 .52 3 64.82
163 .8(MPa)
结论——满足强度要求。
13
例:求图示单元体第三强度理论的相当应力。
1、基本论点:材料发生断裂破坏的主要因素是最大拉应力。 即不论材料处于何种应力状态,只要材料的最大拉应力达到 材料在轴向拉伸时发生断裂破坏的极限值,材料就发生破坏。
2、破坏条件: 1 jx
3、强度条件: 1
jx b 1 b
b
n
4、使用条件:二向或三向拉伸断裂破坏, 1为拉应力。
1 3 s
max
1
2
3
jx
s
2
3、强度条件: 1 3
4、使用条件:屈服破坏。
s
n
5、缺点:没有考虑“ 2 ”的影响。
优点:比较满意的解释了材料的流动现象,概念简单,
形式简单。
7
四、最大形状改变比能理论: (第四强度理论;均方根理论;歪形能理论;最大畸变能理论)
(美)麦克斯威尔最早提出了此理论
)2
(
2
3)2
(
3
1)2
s
n
8
结论: xd ( ; r )
r1 1
b, 0.2, s
n
r 2 1 ( 2 3 )
r3 1 3
r4
1 2
( 1
2)2
( 2
3 )2
( 3
1)2
各种强度理论的使用范围——
1、三向受拉的应力状态:采用第一、第二强度理论(断裂破坏)