双电源短路保护电路
施耐德万高双电源自动转换开关

施耐德万高双电源自动转换开关施耐德万高双电源自动转换开关WATSN 系列自动转换开关是施耐德万高公司生产销售的利用微机控制技术开发研制的新一代自动转换开关。
该开关以施耐德电气公司的 Multi9 系列、Compact 系列断路器或符合开关为执行元件,并配以机电一体化、带机电双重联锁的新型控制机构,特别适合用在不容许电源断电的重要供电场所即重要负荷。
为满足现场需求,自动转换开关可实现自投自复、自投不自复、互为备用三种不同的工作方式。
实现市电对市电双电源 WATSN-40 负荷隔离开关INT WATSN-63/63 3CBRX WATSNA 2P 40A WATSNA 40A/2 WATSNA 63/16 3CBR-D WATSNA 63/40-4CBR WATSNA 63/63 2CBR-C WATSNA 63/63 4CBR-D WATSNA-1004PCR WATSNA-100 4PCR INT WATSNA-100/ 4PCR WATSNA-100/100 3CBS WATSNA-100/100 3PCR WATSNA-100/100 4CBI WATSNA-100/100 4CBR WATSNA-100/100 4CBS WATSNA-100/100 4PCR WATSNA-100/100.3CBR WATSNA-100/100.4CBR WATSNA-100/100.4PCR WATSNA-100/100A 3CBR WATSNA-100/100A 4CBIF WATSN-63/63 3CBR WATSNA-100/100A 4CBR WATSNA-100/100A 4CBRXF WATSNA-100/100A 4PCR WATSNA-100/16 .3CBR WATSNA-100/25 3CBR WATSNA-100/25A 4CBR WATSNA-100/32 .3CBR WATSNA-100/32 3CBR WATSNA-100/32.4CBR WATSNA-100/40 .3CBR WATSNA-100/40 3CBR WATSNA-100/40 4CBR WATSNA-100/40 4P PCRWATSNA-100/503CBRWATSNA-100/50.4CBRWATSNA-100/50A 4CBRWATSNA-100/63 3CBRWATSNA-100/63 4CBRWATSNA-100/63 4PPCRWATSNA-100/63.3CBRWATSNA-100/63A 4CBRWATSNA-100/63A 4CBTRWATSNA-100/63A 4PCRWATSNA-100/80 4CBRWATSNA-100/80 4CBR XFWATSNA-100/80 4PCRWATSNA-100/80.3CBRWATSNA-100/80.3CBSWATSNA-100/80.4CBRWATSNA-100/80A 3CBRWATSNA-100/80A4CBRWATSNA-100/80A.3CBR-XWATSNA-100-100-3CBIWATSNA-100-100-4PCRWATSNA-100-40-3CBRSTR22SEWATSNA-100A4PCRWATSNA-125/3RWATSNA-125A/4PCRWATSNA-16/162CBRWATSNA-160.4CBRWATSNA-160/1004PCRWATSNA-160/100.4CBRWATSNA-160/100A 4CBRWATSNA-160/100A4PCRWATSNA-160/125 4CBRWATSNA-160/125.3CBRWATSNA-160/125A 4CBRWATSNA-160/125A 4PCRWATSNA-160/160 3CBIWATSNA-160/160 3CBRWATSNA-160/160 4CBRWATSNA-160/160.3CBRWATSNA-160/160.3CBSWATSNA-160/160.3CBS手柄WATSNA-160/160.3PCIF WATSNA-160/160.4CBR WATSNA-160/160.4PCR WATSNA-160/160-4CBR WATSNA-160/160A 3PCR WATSNA-160/160A 4CBR WATSNA-160/160A 4CBRXF WATSNA-160/160A 4PCR WATSNA-160-125-3CBI WATSNA-160-40-3CBI WATSNA-160A/120A 3CBR WATSNA-160N/125-3CBR WATSNA-200A/4PCR WATSNA-250/125 4CBR WATSNA-250/160 4PCR WATSNA-250/200 4PCR WATSNA-250/200.3CBR WATSNA-250/200.4CBR WATSNA-250/200.4CBS WATSNA-250/200A 4CBR WATSNA-250/250 3CBS WATSNA-250/250 4BCR WATSNA-250/250 4PCR WATSNA-250/250.4CBR WATSNA-250/250A 4CBR WATSNA-250/250A.3CBR WATSNA-250/H200A 3CBR WATSNA-250/H250A 3CBR双电源是指:一种由微处理器控制,用于电网系统中网电与网电或网电与发电机电源启动切换的装置,可使电源连续源供电。
直流双电源切换

4. 电厂直流系统的接线方式:
随着智能化电厂的普及,DC220/110V较多采用单母线分段接线,每段母线 各设一组蓄电池和一套高频充电装置,两套高频充电装置分别由保安1,2段交流 电源供电。两段直流经二极管隔离后并接在一起,其接线方式如图所示。
如上图接线方式在二组直流电源的主回路对地绝缘都正常的情况下,是 没有任何问题的,此时直流母线对地分布电容是相同的,每组直流电源正母 对地电压和负母对地电压是平衡的,也就是相等的。假如直流I段的电压 U1=115V,直流II段的电压U2=115.5V,根据二极管高通法则,D1、D2截止, D3、D4导通,直流电源II段的电压U2经二极管的压降(约0.6V)后, 到控制 设备负荷端的电压U3=115.5-0.6=114.9V。而在二组直流母线绝缘受到破坏 并降低时,正负母线对地分布电容(C1、C2、C3、C4)发生变化,使正负 母线对地电压发生偏移,从而使U1+≠U1-,U2+≠U2-。假如U1+>U1-, U2+<U2-,同样根据二极管的高通法则,直流电源I段的正极经D1流到控制 设备的负荷端,再经D4返回至直流电源II段的负极。这样,控制设备负荷端 的电压U3有了很大的抬高,即U3= U1+ + U2-,严重威胁着控制设备的安全 运行,U3电压过高时将烧毁所接的控制设备。这种情况在天荒坪抽水蓄能电 站机电设备调试和试运行期间已发生多次,负荷端直流最高电压曾到过170V, 烧毁了部分控制设备的电源装置和元件。最恶劣的情况是,一组直流母线的 正母完全接地,而另一组直流母线的负母完全接地,那么在控制设备的负荷 端两组直流电压完全曡加,即U3=U1+U2,其后果就不堪设想。
直流系统工作电压过高影响二次设备的安全运行直流系统自投运后,无论 DC220系统、DC110V系统,普遍存在实际运行电压过高的情况,尽管该运 行电压还在规范规定的范围之内,但已经达到允许运行电压范围的最高限了。 以DC110V系统为例,每组充电装置带一组蓄电池,同时带一段直流母线和 负荷浮充运行。浮充电压的整定值根据蓄电池的充电特性和数量计算而得, 即Uf = 2.23(单只电池的充电电压值)×54(蓄电池数量) = 120.42V。这一 值比规范规定的上限110%UN只低了0.58V。尽管直流母线到负荷端有一定 的线路压降和二极管压降,但压降比较大,在负荷端上实际测得的件的功耗和发热将大大增 加,从而影响二次设备的使用寿命和安全运行。DC220V系统和DC110V系 统的浮充电压整定值分别为240.84V、130.52V,也都接近于规定值的上限.
继电保护—方向过电流保护原理解析(四)

继电保护—方向过电流保护原理解析(四)一、方向过电流保护简述在电力系统中,两侧电源或单相环网的输电线路,在这样的电网中,为切除线路上的故障,线路两侧都装有断路器和相应的保护,如装设过流保护将不能保证动作的选择性。
为解决选择性的问题,在原来的电流保护的基础上装设了方向原件(功率方向继电器)。
规定:功率的方向由母线流向线路为正,由线路流向母线为负。
由功率方向继电器加以判断,当功率方向为正时动作,反之不动。
二、方向过电流保护动作分析当K1点短路,保护1、2动作,断开QF1和QF2,接在A、B、C、D母线上的用户,仍然由A侧电源和D侧电源分别供电,提高了对用户供电可靠性。
阶段式电流保护用于双侧电源的网络中,不能完全满足选择性要求。
以瞬时电流速断保护1为例,保护的动作电流为:对过电流保护,当在K1点短路时,要求:t2>t3当K2点短路时,要求:t3>t2显然,这两个要求是相互矛盾。
对于定时限过电流保护而言,利用动作时间是无法满足要求的。
结论:短路功率方向从母线指向线路时,保护动作才具有选择性。
三、方向过电流保护工作原理规定:短路功率的方向从母线指向线路为正方向。
K1点短路时,保护1、2、4、6为正方向;保护3和5反方向,不应起动。
为了满足选择性要求,保护1、3、5动作时间需进行配合;保护2、4、6动作时间需进行配合。
结论:相同动作方向保护的动作时间仍按阶梯原则进行配合t1>t3>t5,t6>t4>t23.1单相式方向过电流保护原理接线由起动元件、方向元件、时间元件和信号元件组成。
3.2功率方向继电器工作原理K1点发生短路故障时,加入保护3的电压与电流反映了一次电压和电流的相位和大小。
通过保护3的短路功率为:>0当反方向短路时,通过保护3的短路功率为功率方向继电器动作条件:动作方程表达式事实上是间接比较保护安装处母线电压与流过保护安装处电流的相位。
当加入继电器电压为零时,无法进行比相。
双电源自动转换开关控制器制作方法

双电源自动转换开关控制器制作方法一、设计电路图首先,我们需要设计双电源自动转换开关控制器的电路图。
在电路图中,需要包括输入输出电压的检测、控制逻辑电路、驱动电路等部分。
根据设计需求,使用专业电路设计软件绘制电路图。
二、选择元件根据设计的电路图,选择合适的电子元件。
需要选择的元件包括电压检测器、逻辑电路芯片、驱动管等。
在选择元件时,应考虑元件的参数、性能、耐压值等因素,以确保整个控制器的稳定性和可靠性。
三、搭建电路按照设计的电路图,搭建双电源自动转换开关控制器的电路。
在搭建电路时,应注意元件的极性、插脚顺序等细节问题,确保电路连接正确无误。
同时,应遵循电子工艺规范,合理布局元件和导线,以提高整个控制器的美观度和可靠性。
四、编写程序为了实现双电源自动转换的功能,我们需要编写控制程序。
根据控制需求,使用编程语言(如C语言)编写程序,实现电压检测、逻辑控制、驱动输出等功能。
在编写程序时,应注意程序的逻辑性和可读性,以提高程序的维护性和扩展性。
五、烧录程序将编写好的程序烧录到控制器的主控芯片中。
在烧录之前,应先确认主控芯片的型号和烧录方式,然后按照操作步骤进行烧录。
在烧录过程中,应注意数据的校验和备份,确保程序的完整性和正确性。
六、调试系统完成烧录程序后,我们需要对整个系统进行调试。
通过模拟输入输出信号,检查控制器的响应是否符合设计要求。
如果存在问题,应及时调整电路或程序,直到整个系统运行稳定可靠。
在调试过程中,应注意安全问题,避免短路或过载等危险情况的发生。
七、封装制作完成系统调试后,我们需要对控制器进行封装制作。
根据设计需求,选择合适的封装材料和工艺,将电路板和元件组装在一起。
在封装过程中,应注意保护电路板和元件,避免损坏或污染。
同时,应遵循相关标准和规范,确保整个控制器的质量和安全性。
八、测试验收最后,我们需要对双电源自动转换开关控制器进行测试验收。
通过实际测试,检查控制器是否符合设计要求和使用需求。
UC3842开关电源各功能电路详解

UC3842开关电源各功能电路详解一、开关电源的电路组成开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。
辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。
开关电源的电路组成方框图如下:二、输入电路的原理及常见电路1、AC 输入整流滤波电路原理:①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对 C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
2、 DC 输入滤波电路原理:①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
C3、C4 为安规电容,L2、L3为差模电感。
② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。
在起机的瞬间,由于 C6的存在Q2不导通,电流经RT1构成回路。
当C6上的电压充至Z1的稳压值时Q2导通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使 Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
典型低压开关柜双电源供电的自投自复电路原理介绍(附原理图)

典型低压开关柜双电源供电的自投自复电路在低压供电系统中,采用单母线分段,双电源供电,母联作备用电源自动投入装置(简称ATS)是一种常见的供电方案。
目前国内已有多家制造厂生产这种自动切换的整机装置,但产品价格较为昂贵,故以往常用继电器组合的ATS装置,仍有不少用户所采用。
对于低压ATS电路,也有标准图集可作参考,但实际应用时,不能生搬硬套,应根据现场实际情况及用户的不同要求重新进行设计。
为此笔者设计了“双电源供电的自投自复电路”。
对于单母线分段双电源供电系统,可有多种运行方式,本设计仅为二路电源同时供电,以母联作备自投的一种常用方案,其特点是当工作电源失电后,母联在满足自投条件下自动投入运行;当失电线路恢复来电时,又能自动切断母联断路器,自动恢复原线路供电。
现对本设计电路作一简要说明――1.ATS装置动作的基本条件(1).母线工作电源由人工手动切除,或保护装置动作跳闸造成母线失电,ATS装置不应动作(2).I(II)段母线工作电源断开后,II(I)段工作母线应具有60%~70%的额定电压(228V~266V)方具备自投条件。
(3).工作母线失压保护按母线额定电压的25%(95V)整定,电压继电器1KV~4KV全部按串联连接,线圈长期允许工作电压为440V。
若运行中发生B相熔丝熔断,1KV(3KV)和2KV(4KV)的电压降相同,同为190V,此时因1KV(3KV)继电器实际工作电压高于整定值,因而1KV(3KV)不会误动作,仅发生缺相报警信号,因而避免了ATS的误动作。
(4).ATS是否投入运行,由运行值班人员根据所需的运行方式决定,并由工作转换开关1SA(2SA)切换至所需工位。
2.母线初次送电I,II段母线分别由二路电源供电,转换开关1SA~3SA均在手动位置,由工人手动操作,先后合上进线断路器1QF,2QF。
3.自投过程(1).将母联断路器3QF置于热备用状态。
(2).在二路电源同时供电的情况下,操作转换开关1SA~3SA,置于自动工作位置。
双电源切换开关在电气设计中的选择与应用

双电源切换开关在电气设计中的选择与应用发布时间:2023-07-12T03:39:47.216Z 来源:《科技潮》2023年13期作者:包欣蕾[导读] 电力是社会经济发展中最重要的能源,而不间断的电力供应则是保障安全生产最重要的前提条件和满足人们日常生活的基础。
中国石油化工股份有限公司天然气分公司河南天然气销售中心河南郑州 450000摘要:电力是当今社会生活中不可缺少的重要能源,随着社会经济的快速发展和人们生活水平的不断提高,人们对电力能源供应的质量和可靠性的要求也越来越高,电力能源持续供应的重要作用越来越明显。
因此,作为保证供电可靠性的开关器件之一双电源自动切换开关的应用需求就越来越大。
本文对双电源自动切换开关的设计与应用进行分析,旨在为各行业的的应用提供参考。
关键词:双电源切换开关设计与应用1 引言电力是社会经济发展中最重要的能源,而不间断的电力供应则是保障安全生产最重要的前提条件和满足人们日常生活的基础。
高层建筑的消防系统、医院、大型商场、通信基站、各级指挥调度中心等许多重要场所都要求电力供应不能中断,否则,可能会造成严重的不良后果,因此,备用电源已经成为各类建筑中必不可少的配套设施。
在正常供电线路电力中断的情况下,能够自动切换并启动备用电源,以保证电力持续供应,而这一自动切换电源的关键设备便是双电源自动切换开关,双电源自动切换开关能够在两种电源中实现自动切换,本文对其设计和应用进行分析。
2 双电源自动切换开关2.1双电源自动切换开关概述双电源自动切换开关就是在外部电源电力供应中断的前提下,能够自动将电源开关切换到备用电源并继续向用电负荷进行供电,以保证设备正常运行的装置。
目前,双电源自动切换开关是不会产生误动的可靠性非常高的智能开关,能够实时对电网电源和发电机电源的三相电压有效值进行检测,当任何电源的任意一项出现欠压、过压、缺相等非正常现象,该装置能够自动的将非正常电源切换到正常电源并继续供电,使各种设备都能够实现正常运行;当检测到电网电源恢复正常供电后,会自动切换到电网电源并关闭备用电源[1]。
功放电路TDA2030A

虽然其内部电路略有差异,但引出脚位电源极性反接(Vsmax=12V 、负载泄放功放集成电路TDA2030详解音频功放电路TDA203Q 采用5脚单列直插式塑料封装结构,如图所示,按引脚的 形状引可分为H 型和V 型。
该集成电路广泛应用于汽车立体声收录音机、中功率音响设 备,具有体积小、输出功率大、谐波失真和交越失真小等特点。
并设有短路和过热保护 电路等,多用于高级收录机及高传真立体声扩音装置。
意大利SGS 公司、美国RCA 公司、 日本日立公司、NEC 公司等均有同类产品生产, 置及功能均相同,可以互换。
电路特点:[1] .外接元件非常少。
[2] .输出功率大,Po=18W (RL=44)。
[3] .采用超小型封装(TO-220),可提高组装密度。
[4] .开机冲击极小。
[5] .内含各种保护电路,因此工作安全可靠。
主要保护电路有:短路、过热、地线偶然开路、 电压反冲等。
极限参数:如表1所示。
表 1 TDA2003极限参数(TA=25 C )参数名称 符号参数值 单位电源电压 Vcc ± 18 V 输入电压 Vt ± 18 V 差分输入电压 Vi ± 15V 输出峰值电流I O 3.5 A 功耗 PD 20 W结温 Ti -40 〜+150 c 工作环境温度Topt -30 〜+75 c 贮存温度Tstg-40 〜+150c封装形式:TDA2030为5脚单列直插式,如上图1所示 电气参数:如表2所示54 321表2: TDA2030 电气参数(Vcc=±14V, TA=25 C)典型应用电路:06-01—2?Mu丄C7 RL衍n1.双电源供电电路2.单电源供电电路各元器件的作用:元器件推荐值作用比推荐值大时对电路的影响比推荐值小时对电路的影响R1 150K 闭环增益设置增大增益减小增益R2 4.7K 闭环增益设减小增益增大增益R3 100K 同相输入偏置增大输入阻抗减小输入阻抗R4 1 Q移相,稳定频率感性负载有振荡危险R5 R6 均100K 同相输入端偏置电源消耗增大C1 1u 输入隔直提高低频截至频率C2 22u 反相隔直提高低频截至频率C5 100u 低频退耦有振荡的危险C3 100 n 咼频退耦有振荡的危险C6 2200u 输出隔直提高低频截至频率C7 220n 移相、稳定频率有振荡的危险D1、D2输出电压正负限幅保护C5tCOJT Q%01 ,丁2乱注意事项:TDA2030具有负载泄放电压反冲保护电路,如果电源电压峰值电压40V的话,那么在5脚与电源之间必须插入LC滤波器,以保证5脚上的脉冲串维持在规定的幅度内。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双电源短路保护电路
如图是原理图
本电路采用555为核心元件,r1为1.5M欧姆,r2为1.5M欧姆,r3为1.5M欧姆,r4为4.7k 欧姆,q1和q3为p沟道场馆,而且s极接电源的正极也就是靠近开关的一边是。
Q2为8050的pnp三极管。
C1为104p的瓷电容。
Bt1是被保护电池,像外界输出电压,bt2为555提供工作电压的。
Sw是开关。
两块电池都是采用的手机电池,当然你也可以用别的电池,工作电压在五伏左右就可以。
本电路无需调试,按电路图焊接无误就可以使用。
工作原理
正常工作时555的2脚和6脚都是高电平,3脚输出低电平此时q2截至,q1截至,q3的g 极被r3拉低,q3道通。
电压正常输出。
当输出正负极直接相连之后就造成了短路,此时输出的正极会被拉低到一伏以下,555的2脚是接到输出的正极的,所以此时2脚被拉低,3脚输出高电平道通q2,所以q1也随着道通输出高电平给q3的g极,此时q3就会截止,bt1的电压就不会输出了,此时bt1被保护,此时如果想让输出再次正常,则关闭sw2就可以使输出恢复,在合上sw2则再次进入短路保护状态。
下面是实物。
这个是为一个修手机的师傅做的一个手机测试的电压原,因为经常不小心把正负极短接了而不知道,所以经常造成供电电池损毁。