电石渣处理含氟废水

合集下载

燃煤电厂含氟废水处理的研究

燃煤电厂含氟废水处理的研究

燃煤电厂含氟废水处理的研究燃煤电厂作为一种传统的能源发电方式,虽然具备较高的能源转换效率,但同时也产生了大量的废水排放问题。

其中含氟废水是燃煤电厂废水中的一个重要组成部分,对环境造成了较大的污染和潜在的生态风险。

因此,燃煤电厂含氟废水的处理研究显得尤为重要。

燃煤电厂废水中的主要含氟物质是氟化物,它主要来自于燃煤过程中矿石中的氟元素。

在电厂的燃烧过程中,大部分氟元素通过烟气排放到大气中,但仍有一部分通过烟气的冷凝和凝结形成气溶胶,随废气一起进入大气中。

这些气溶胶因为重量较轻,在空气中长期悬浮,最终沉积到地表上,形成含氟废水。

处理燃煤电厂的含氟废水包括了两个主要的环节:气溶胶的净化和水溶液的处理。

对于气溶胶的净化,主要包括湿式洗涤和干式过滤两种方法。

湿式洗涤法通过喷淋水雾的方式将气溶胶中的氟化物转化为水溶性的氟化物,从而实现废气的净化。

但由于液滴粒径的限制,该方法的氟化物去除率较低,需要较大的洗涤器体积。

干式过滤法则是通过使用过滤材料捕捉气溶胶中的氟化物,虽然去除率高,但因为洗涤器本身的成本较高,采用的机会相对较少。

对于处理水溶液的方法有许多途径,包括化学还原、离子交换、膜法等。

化学还原法是将水溶液中含氟物质逐渐还原为氟化物,从而达到净化的目的。

离子交换法则是利用固体离子交换剂将水中的氟离子与其它离子交换,最终实现废水的净化。

膜法则是利用半透膜的特性进行分离和净化,包括超滤、纳滤、逆渗透等方法。

需要注意的是,在燃煤电厂含氟废水处理过程中,充分发挥各个环节的作用,以确保废水的净化效率和环境安全。

另外,合理利用废水中的氟元素也是一个重要的方向,包括提取氟化物作为成品和废水中的氟元素的资源化利用。

总之,燃煤电厂含氟废水的处理研究是为了减少燃煤电厂对环境的污染,实现廉价、高效的处理方式。

尽管目前已有一些方法在实际应用中取得了良好的效果,但仍需继续在工程应用和经济效益方面进行深入研究和探索,以期能进一步降低处理成本,提高处理效率。

独居石冶炼碱性含氟废水处理技术

独居石冶炼碱性含氟废水处理技术

独居石冶炼碱性含氟废水处理技术独居石是一种含稀土磷酸盐矿物,是重要的稀土矿物,约占世界稀土总量的28%。

独居石一般以单体独居石和氟碳铈矿共生存在。

独居石矿化学式表示为(La~Lu,Y)PO4,同时含有ThO2和U3O8,ThO2含量可高达12%,因此具有放射性。

独居石结构稳定,在高温下也极不容易分解,工业上常采用碱溶液分解和浓硫酸分解两种方法。

碱溶液分解法可使钍和铀的氢氧化物形式分离出来,而浓硫酸分解法则是将稀土元素溶解进入溶液中,再做进一步分离。

独居石矿以碱溶液分解工艺为主,硫酸焙烧工艺存在的主要问题是焙烧过程中产生HF及SO2等有害气体。

检测发现,碱工艺冶炼独居石产生的废水中含氟量达600mg/L,超出了国家废水排放标准(10mg/L)。

碱性稀土含氟废水除氟是当前研究的热点之一。

独居石冶炼废水成分复杂、污染物种类多且严重、存在的形态容易分生变化、具有腐蚀作用、治理难度大等特点。

氟在溶液中一般认同是酸性废水中氟以HF 形式存在,碱性废水中则以F-形式存在,实际排放废水中氟含量远远大于检测数据。

目前处理含氟废水的方法主要有吸附法、电凝聚法、反渗透膜、离子交换法、化学沉淀法和混凝沉淀法等。

目前稀土矿尚未有对稀土矿独居石碱性含氟废水处理的报道。

实验采用工业废弃物电石渣处理独居石碱性含氟废水,并研究了碱性废水中氟离子浓度与pH值关系,电石渣加入量、震荡搅拌时间、不同碱度对除氟率的影响。

结果表明用电石渣处理独居石碱性含氟废水得到了比较满意的效果,成本低廉,可广泛应用于碱性含氟废水处理。

1、实验1.1 主要仪器YP2001型电子天平,PHS-3C数显台式酸度计PXS-215型离子活度计,SHA-C 水浴恒温振荡器,ESIDA-H-42电热鼓风干燥箱。

1.2 试剂盐酸(分析纯),盐酸(1∶1):分别量取250mL蒸馏水和浓盐酸置于500mL试剂瓶中,摇匀备用。

氢氧化钠(分析纯),氢氧化钠溶液(2mol/L):称取40.0g 氢氧化钠,用水定容于500mL试剂瓶中,摇匀备用。

电石渣处理含氟废水处理工艺3

电石渣处理含氟废水处理工艺3

电石渣处理含氟废水处理工艺前言电石生产工艺中产生大量含氟废水,直接排放会对环境造成严重污染,需要采用合适的处理工艺对其进行处理。

本文将介绍一种电石渣处理含氟废水的工艺方案。

工艺流程步骤一:石灰乳混合将石灰乳和含氟废水按一定比例混合,使其达到中性或碱性状态。

这一步的目的是将废水的PH值维持在一定范围内,为后续处理做好基础。

步骤二:电石渣加入将加工好的电石渣根据一定比例投入到混合液中,与含氟废水充分混合。

电石渣的作用是吸附掉废水中的氟元素,降低废水中氟元素的含量。

步骤三:沉淀分离将处理后的混合液在密闭的容器中静置一段时间,等待电石渣将氟元素吸附并与其他杂质一起沉淀到底部。

底部产生的电石渣污泥可进行固体处理,而上层液体则可以进行后续处理或直接排放。

步骤四:氟离子过滤将上层液体进行过滤,将其中的氟元素通过特定的过滤介质进行拦截,将剩余的无害液体转入废水处理厂进行二次处理或直接排放至污水管道。

工艺优势相较于传统的含氟废水处理工艺,采用电石渣处理含氟废水的工艺方案有以下优势:1.适用性广:该工艺适用于大部分电石生产厂家产生的含氟废水处理,不受处理规模的制约。

2.处理效果好:使用电石渣进行吸附处理后,废水中的氟元素含量明显减少,达到国家有关废水排放标准。

3.处理成本低:电石渣作为一种工业副产品具有可再利用的特性,采用该工艺处理含氟废水的成本低廉。

结束语电石渣处理含氟废水的工艺方案是一种简单、实用、成本低廉的废水处理技术。

开展该项技术的研究、推广和应用,能够促进电石行业的可持续发展,实现经济、社会和环境效益的协同增长。

某化工项目含氟废水处理方案

某化工项目含氟废水处理方案

某化工项目含氟废水处理方案一、背景介绍某化工项目中产生的含氟废水是一种有毒有害的工业废水。

该废水中的氟化物离子对环境和生态系统具有较大的危害,需要采取适当的处理方法进行处理,以保护环境和人民的健康。

二、废水特性该化工项目产生的含氟废水具有以下特性:1.含氟浓度高:废水中的氟化物离子浓度较高,超过了环境排放标准;2.酸碱度不稳定:废水的酸碱度波动较大,需要进行调节和稳定处理;3.有机物质含量高:废水中包含有机物质,需要适当的预处理才能进一步处理。

三、处理方案为了有效处理该化工项目产生的含氟废水,我们提出以下处理方案:1. 预处理首先,对含氟废水进行预处理。

预处理的目的是将废水中的有机物质去除,以减少后续处理过程中的负担。

常用的预处理方法包括沉淀、过滤、氧化等。

2. 调节pH值废水中酸碱度的不稳定性对后续处理工艺有很大的影响。

因此,在处理废水之前,需要对废水的pH值进行调节和稳定。

常用的pH调节剂包括氢氧化钠、氢氧化钙等。

3. 氟离子去除针对废水中的氟化物离子,我们可以采用离子交换技术来进行去除。

离子交换技术是一种常见且有效的去除氟离子的方法,可以通过树脂吸附或阳离子交换膜的选择性透过性来实现。

4. 绿色深度处理在处理废水的最后一步,我们可以采用绿色深度处理技术来进一步净化水质,以达到达标排放的要求。

绿色深度处理主要包括活性炭吸附、紫外光催化氧化、臭氧氧化等技术。

四、建设方案为了实现上述处理方案,下面是一个具体的废水处理设施建设方案:1.设立预处理单元:包括沉淀池、过滤器等设备,用于去除废水中的悬浮物和有机物质;2.设立pH调节单元:包括中和池、调节器等设备,用于调节和稳定废水的酸碱度;3.设立离子交换单元:包括离子交换器、再生装置等设备,用于去除废水中的氟离子;4.设立绿色深度处理单元:包括活性炭吸附器、紫外光催化氧化设备、臭氧氧化设备等,用于进一步净化废水;5.设立废水处理系统控制单元:包括自动控制仪表、监测仪器等设备,用于实时监测和控制废水处理过程。

氟危害那么大 含氟废水如何处理好?

氟危害那么大  含氟废水如何处理好?

氟危害那么大含氟废水如何处理好?1.氟的来源在地壳中,氟含量为544ppm,是丰度第13位的元素。

氟主要是以萤石(CaF2)、氟磷酸钙(Ca10F2(PO4)6)、冰晶石(Na3AlF6)等化合物的形式存在于自然界中。

岩石、矿物及土壤中的氟是地表水和地下水中氟的主要来源。

中国高氟水的分布如图1所示。

工业生产过程中,也会排放大量的含氟废气、废液和废渣。

造成工业氟污染的氟化物主要来源于冶金工业的炼铝、炼钢,化学工业的磷肥和氟塑料生产,硅酸盐工业的砖瓦、陶瓷、玻璃、耐火材料的生产,电力工业的燃煤发电。

2.氟的危害废气和废液会直接污染环境,而含氟废渣也会成为间接的氟污染源。

这些含氟废气、废液和废渣的特点是排放集中,引起周边人、畜中毒,引发地方性氟病。

科学讨论发觉,氟对人体中的钙、磷具有极强的亲和力,它能破坏机体钙、磷的正常代谢,并能抑制某些酶的活性,由此会引发一系列包括:氟斑牙、氟骨症、肾脏、肝脏、大脑损害、免疫功能特别、肺水肿、肺出血、儿童智力下降等疾病。

3.氟的形态氟在自然环境中的形态也是多种多样的,在空气中氟主要以氟化氢(HF)、四氟化硅(SiF4)的形式逸散在空气中,在土水系统中的氟的形态一般可分为:水溶态、可交换态、吸附态等。

水溶态氟主要指以离子或络合物存在于土壤和水体溶液中的氟,包括F-、HF2-、H2F3-、H3F4-、AlF63-等。

在水中存在着由腐植质等形成的一些有机配体,也可和氟与金属离子(Pb2+、 Hg2+、 Co2+、Zn2+等)形成简单的络合物和螯合物。

4.氟离子排放标准地表水、生活饮用水、污水及含氟工业废水的排放标准如表1所示。

表 1.不同行业氟化物排放限值5.除氟方法含氟废水的处理方法有多种,国内外常用的方法大致分为两类——沉淀法和吸附法。

除这两类方法外,还有离子交换树脂除氟法、超滤膜法、电分散法、电渗析法,由于成本高和除氟率低等缘由,这些方法至今很少推广应用于常用除氟工艺。

电石渣处理含氟废水实例分析4

电石渣处理含氟废水实例分析4

电石渣处理含氟废水实例分析背景随着工业化进程的加快,大量废水排放已经给环境造成了严重的污染。

其中,含氟废水的处理尤为棘手,因为氟元素化学稳定,难以被自然界生物分解,长期积累会影响生态环境和人类健康。

电石渣作为一种常见的废弃物,其资源化利用一直备受关注。

在处理含氟废水方面,电石渣通过其碱性和离子交换性等特性,可以起到较好的去除氟离子的作用,具有广泛的应用前景。

电石渣的基本特性电石渣,又称石灰渣或石灰石渣,是指工业上电石炉石灰石煅烧获得的一种含钙的灰白色固体废弃物,主要成分为氧化钙(CaO)、氢氧化钙(Ca(OH)2)和氧化镁(MgO)等。

电石渣具有以下基本特性:•高碱性。

由于含有氧化钙和氢氧化钙等碱性物质,使得电石渣具有较高的碱性,可用于酸性废水的中和和碱性废水的处理。

•高离子交换能力。

由于电石渣表面具有大量的负离子,可与含阳离子的有机、无机物质发生离子交换反应,从而逐渐去除废水中的离子污染物。

•易干燥。

电石渣具有较高的亲水性,但结构稳定,易于干燥和固化,适合用于制备各种型号的颗粒添加剂。

电石渣处理含氟废水的机制氟元素化学稳定,难以被自然界分解,如果直接排放到水体中,会对生态环境和人类健康造成严重的污染。

现代工业一般采用等离子体法、生化法和吸附法等技术去除废水中的氟离子。

而电石渣作为一种天然的含钙材料,其表面具有大量的负离子,可以与含有阳离子的有机、无机物质发生离子交换反应,从而去除废水中的氟离子。

电石渣处理含氟废水的机制如下:1.氟离子溶于废水中成为离子态。

2.电石渣表面带负电,吸引含阳离子的有机、无机物质,发生离子交换反应。

3.电石渣表面的负离子与离子态氟离子发生吸附作用,氟离子降解为F-。

4.在碱性环境下,氟离子和氢氧离子结合,生成弱酸性氟酸,进一步中和。

案例分析某化工厂的含氟废水处理厂,采用了电石渣处理废水的技术。

电石渣固体添加剂采用昆明某化工厂的产品。

废水经过初次隔油处理后,首先进入一级竖式曝气生物池,进行碳氮去除,然后再进入二级配水器,加入适量的电石渣。

含氟废水处理工艺

含氟废水处理工艺

含氟废水处理随着现代工业的发展,氟化物的生产企业和使用企业发展越来越多,含氟废水对环境的污染越来越引起国家和相关企业的重视。

我国对含氟废水的排放也制定了相关标准,如在《污水综合排放标准》GB8978 -1996)中规定:污水排放的氟离子浓度的一级标准为≤10mg/L。

所以,含氟废水必须经过处理、达标后,才能排放。

含氟废水分为含有机氟废水和含无机氟废水。

一、含无机氟离子废水处理工艺方法:含氟废水的除氟方法有吸附法、电凝聚法、反渗透法、离子交换法、化学沉淀法和混凝沉降法等。

常用的方法主要有三种:化学沉淀法、混凝沉淀法和吸附法。

化学沉淀法比较简单、处理方便、成本低效果好,主要用于处理高浓度含氟废水。

混凝沉降法一般只适用于含氟较低的废水处理。

吸附法主要适用于水量较小的饮用水的处理。

对含氟浓度高或流量较大的废水,若单独投加钙盐除氟,沉淀速度很慢,而单独使用絮凝剂会增加处理成本,所以常用的是先使用化学沉淀法,再用吸附剂或絮凝剂处理,使氟含量降到10 mg/L 以下。

目前沉淀法较多的是用CaCl 2 沉淀,因为CaCl 2 的溶解度高,能降低CaF 2饱和溶解度的同离子,而且它还是一种中性盐,投加后不会对pH 产生影响,之后再加入混凝剂使生成的CaF 2 小的晶体颗粒变大,降低其比表面积,加速沉淀,从而强化除氟效果。

Ⅰ、氟离子的去除机理去除氟离子的机理主要包含两部分:(1)选择形成合适、难溶的氟化物,使处理工艺从一开始就快速、大量地降低氟离子的浓度(主要氟化钙沉淀);(2)利用同离子效应,通过加入强电解质,进一步有效降低氟离子浓度,使处理后的废水稳定达到排放标准。

Ⅱ、主要方法:1、化学沉淀法:是含氟废水处理最常用的方法,在高浓度含氟废水预处理应用中尤为普遍。

沉淀法系加化学品处理,形成氟化物沉淀物或氟化物在生成的沉淀物上共沉淀,通过沉淀物的固体分离达到氟离子的去除。

因此,其处理效率取决于固液分离的效果。

常用的化学品有石灰、电石渣、磷酸钙盐、白云石或明矾等。

电石渣处理含氟废水——处理原理(2)

电石渣处理含氟废水——处理原理(2)

电石渣处理含氟废水——处理原理(2)
1. 电石渣物理化学性能
电石渣是电石和水反应生成乙炔过程中排出的浅灰色细粒沉淀物,主要来源于采用电
石法生产聚乙烯和醋酸乙烯产生的废渣。

电石渣主要成分是Ca(OH)2,是处理含氟废水的有效物质,同时含有铝、
2. 处理原理
电石渣处理含氟废水化学反应式如下:
2HF+Ca(OH)2=CaF2+2H2O
H2SiF6+Ca(OH)2 =CaSiF6+2H2O
CaSiF6+2Ca(OH)2=2CaF2+SiO2+2H2O
理论上讲,18℃时,CaF2在水中的溶解度是16.3mg/L,Ksp(18~25℃)
=2.7×10-10,折合含氟7.7mg/L,所以一般处理含氟废水,出水的极限值为7.6mg/L,但利用氯化钙的钙离子的同离子效应,可进一步降低CaF2在水中的溶解度,因而增加脱氟能力,所应生成的悬浮物经混凝沉淀后,可达标排放。

电石渣处理含氟废水的处理效果在一定程度上取决于固液分离效果。

由于电石渣中和产生的氟化钙沉淀是一种微细的结晶(粒废水小于3?m的颗粒占60%左右),不经凝聚难以沉降。

从试验结果看,
第 1 页
本文部分内容来自互联网,不为其真实性及所产生的后果负责,如有异议请联系我们及时删除。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

编号:SY-AQ-06205
( 安全管理)
单位:_____________________
审批:_____________________
日期:_____________________
WORD文档/ A4打印/ 可编辑
电石渣处理含氟废水
Treatment of fluoride containing wastewater by calcium carbide slag
电石渣处理含氟废水
导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。

在安全管
理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关
系更直接,显得更为突出。

引言(1)
含氟废水主要来自于磷肥行业、玻璃生产、有机氟生产、电子原件生产,电镀、铝制造业等,有些行业排放的废水中氟含量高达4000~12000mg/L。

含氟废水的治理一般分为沉淀法和吸附法,按药剂使用可分为石灰沉淀法,石灰铝盐法、石灰镁盐法、羟基磷灰石沉淀法、离子交换法、电渗折法。

利用电石渣处理含氟废水,效果与石灰法类似,但处理效果优于石灰法,且沉渣易于脱水和沉淀,以废治废,可以降低处理成本,具有其独特的优越性。

处理原理(2)
1.电石渣物理化学性能
电石渣是电石和水反应生成乙炔过程中排出的浅灰色细粒沉淀物,主要来源于采用电
石法生产聚乙烯和醋酸乙烯产生的废渣。

电石渣主要成分是Ca(OH)2,是处理含氟废水的有效物质,同时含有铝、
镁、铁的氧化物。

电石渣物理性能见表1,化学成分见表2,含氟废水水质与排放量见表3。

表1电石渣主要物理性能
原始
水分
(%)
密度
(g/cm2

细度/%
颗粒组成/%
4900孔/
cm2
筛余
粒径(mm)>0.1
粒径(mm)0.1~0.05 粒径(mm)0.05~0.01 粒径(mm)
92~93 2.2~2.4 4~6
4~5
15~18
60~78
6~7
表2电石渣化学成分成分CaO
MgO
AI2
O2
Fe2
O3
SiO2
烧失量
含量/%
63.93
1.27
0.50
0.96
7.90
24.30
表3含氟废水水质与年排放量
项目
指标
排放量
F-
酸度
CI-
70000t/a
3000~5000mg/L
0.53%
1.1%
2.处理原理
电石渣处理含氟废水化学反应式如下:
2HF+Ca(OH)2 =CaF2
+2H2
O
H2
SiF6
+Ca(OH)2
=CaSiF6
+2H2
O
CaSiF6
+2Ca(OH)2 =2CaF2
+SiO2
+2H2
O
理论上讲,18℃时,CaF2
在水中的溶解度是16.3mg/L
,Ksp(18~25℃)
=2.7×10-10,
,折合含氟7.7mg/L,所以一般处理含氟废水,出水的极限值为7.6mg/L,但利用氯化钙的钙离子的同离子效应,可进一步降低CaF2在水中的溶解度,因而增加脱氟能力,所应生成的悬浮物经混凝沉淀后,可达标排放。

电石渣处理含氟废水的处理效果在一定程度上取决于固液分离效果。

由于电石渣中和产生的氟化钙沉淀是一种微细的结晶(粒废水小于3?m的颗粒占60%左右),不经凝聚难以沉降。

从试验结果看,单独选用阴离子型聚丙烯酰胺(PAM)沉淀效果良好,研究认为,聚丙烯酰胺的羧酸基-COOH电离为-COO,使链状分子沿长度分布负电荷而成为阴离子型,各负电荷相互排斥而使分子伸展开来,更好地发挥粘接架桥作用;另名,中和反应产生的钙、镁等阳离子,特别过量的钙离子存在,阳离子压缩微粒扩散层,降低胶体电位,而降低相互排斥力,降低吸吸附物间
排斥力,利于吸附架桥。

处理工艺(3)
1.处理工艺流程
含氟废水进入调节池均衡水质后,送水中和反应罐,与电石渣进行反应,然后投加阴离子型聚丙烯酰胺絮凝,进入沉淀池,废水达标排放,污泥经脱水处理。

工艺流程图见图1。

图1电石渣处理含氟废水流程框图
2.工艺条件的确定
(1)处理后pH与氟化物关系曲线见图2。

图2处理后pH与氟化物关系曲线图
通过试验,确立处理后pH与氟化气关系曲线,可以看出反应pH控制在6.5~9.2之间,出水氟化物可达标。

(2)去除氟化物所需钙量与氟去除率的关系见图3。

图3钙用量与氟去除率关系曲线
(3)废水中CI-存在对除氟的影响
CI-能与Ca(OH)2迅速生成CaCI2,当CI-过量时,有利于向
生成CaCI2的方向移动,从而降低CaF2的溶解度,使反应达到最终稳定。

试验结果表明,当废水中HCI0.45%),出水中氟化物可达标,也充分证明CaCI2对CaF2的同离子效应。

(4)絮凝剂用量选择和沉淀时间确定
经试验表明,选用3%阴离子型水解聚丙烯酰胺(分子量500~700万),用量为0.2~12mg/L废水;中和反应后经絮凝剂的混合反应,进入沉淀池停留2h后基本稳定。

实例分析(4)
浙江衢化氟化学有限公司利用巨化电化厂10%的电石渣浆,采用上述确定的适宜工艺条件处理含氟废水,取得了成功,达到了设计要求。

1.处理过程特点
(1)用机械搅拌强化中和反应。

缩短中和反应时间,采用带搅拌的中和反应罐,选用钢衬HFP材质,搅拌转速200r/min,反应30min可完成。

(2)投加PAM絮凝剂,提高沉淀效率。

在进入沉淀池前设置
加药系统,确保良好的絮凝效果。

(3)电石渣浆中含少量S2-等杂质,中和反应时产生H2S等气体,影响操作环境,工艺流程设有酸雾处理塔,动力抽风,碱洗工艺处理。

2.运行效果
该套工艺自1993年投入运行以来结果表明:处理工艺合理,处理净利效果显著,出水清澈,水质指标pH、F-远低于排放标准,氟去除率达到99%以上。

处理效果及运行费用见表4、表5。

表4含氟废水处理效果
项目
进水
出水
F-
(mg/L)
酸度或pH
3104
0.53%
4.76
6~9(pH)
表5原料、动力消耗情况
项目
费用(万元/年)
PAM(3%阴离子型)
水、电
人工费
设备折旧费
5.2
6.4
23.3
50
结论(5)
利用电石渣处理含氟废水,在pH6.5~9.2,CI-浓率>0.45%条
件下,含氟废水与电石渣作用,然后用聚丙烯酰胺絮凝,处理后废水中的氟浓度可降至7.6mg/L以下。

经过工业含氟废水处理实践,排放废水含氟量完全达到国家标准。

利用电石渣处理含氟废水,其原理基本与石灰沉淀法相同,但由于其含有铝、镁、铁的氧化物和SiO2,前者是助凝剂,有利于沉淀,因而处理效果明显优于石灰法,并且以废治废,降低了运行费用。

(韩建勋贺爱国)
这里填写您的公司名字
Fill In Your Business Name Here。

相关文档
最新文档