生物陶瓷在骨组织中的应用与展望
2024年多孔聚磷酸钙生物陶瓷市场发展现状

多孔聚磷酸钙生物陶瓷市场发展现状概述多孔聚磷酸钙生物陶瓷是一种用于骨组织工程和骨修复的生物材料。
它具有良好的生物相容性和生物活性,能够促进细胞增殖和骨组织再生。
随着人群老龄化程度的提高和骨骼疾病的增加,多孔聚磷酸钙生物陶瓷市场正处于快速发展阶段。
发展趋势1. 市场规模持续扩大随着人们对健康的关注度增加,多孔聚磷酸钙生物陶瓷的需求不断上升。
其在骨组织工程和骨修复领域具有广泛的应用前景,因此市场规模不断扩大。
2. 技术不断创新随着科技的进步,多孔聚磷酸钙生物陶瓷的制备工艺和性能得到了不断改善。
新技术的引入使得多孔聚磷酸钙生物陶瓷具有更好的力学性能、生物相容性和可降解性,进一步扩大了其市场应用。
3. 应用领域逐步拓展原本多孔聚磷酸钙生物陶瓷主要用于骨组织工程和骨修复,但随着研究的深入,其在其他领域也得到了应用。
例如,多孔聚磷酸钙生物陶瓷在组织修复和再生医学领域的应用逐渐增多,拓展了市场的潜力。
4. 市场竞争加剧多孔聚磷酸钙生物陶瓷市场的快速发展吸引了越来越多的企业进入该领域,市场竞争日益加剧。
在这样的竞争环境下,企业需要通过技术创新和降低成本来提高市场竞争力。
发展挑战1. 合规要求提升随着多孔聚磷酸钙生物陶瓷市场的发展,监管部门对其合规性的要求也在提升。
企业需要加强质量控制和符合环境保护法规,以确保产品的质量和安全性。
2. 技术难题待解决尽管多孔聚磷酸钙生物陶瓷的制备工艺和性能已经取得了一定的突破,但仍然存在一些技术难题需要解决。
例如,如何提高多孔结构的均匀性和机械强度,如何实现材料的持久稳定性等。
3. 市场标准化不完善多孔聚磷酸钙生物陶瓷市场的标准化工作相对滞后,这给市场发展带来了一定的不确定性。
相关部门和企业需要加强合作,制定相关的行业标准,提高市场秩序和产品质量。
总结多孔聚磷酸钙生物陶瓷市场正处于快速发展阶段,市场规模不断扩大。
技术的创新和应用领域的拓展为市场发展提供了机遇,但也面临着合规要求提升、技术难题和市场标准化不完善等挑战。
生物陶瓷材料在人工关节中的应用

生物陶瓷材料在人工关节中的应用人工关节置换手术已经成为治疗关节疾病的主要方法之一。
为了改善置换手术的效果和延长关节寿命,科学家们不断研究开发新材料。
生物陶瓷材料由于其优异的生物相容性和力学性能,在人工关节中得到了广泛应用。
本文将探讨生物陶瓷材料在人工关节中的应用。
生物陶瓷材料是一类由无机非金属材料制成的材料,主要成分包括氧化铝(Al2O3)、氧化锆(ZrO2)和羟基磷灰石(HA)等。
这些材料具有良好的生物相容性,可以与人体组织良好结合,减少对组织的损伤和排斥反应。
同时,生物陶瓷材料具有优秀的机械性能,可以承受人体的载荷,长期稳定地发挥作用。
在人工关节中,生物陶瓷材料主要用于制作关节表面的摩擦副,以减少摩擦和磨损。
例如,在人工髋关节置换手术中,常用的摩擦副是氧化铝陶瓷头和聚乙烯酸乙酯(PE)杯。
氧化铝陶瓷头具有光滑的表面,可以减少与PE杯的摩擦,从而减少磨损和松动的风险。
同样,在人工膝关节置换手术中,常用的摩擦副是氧化锆陶瓷和聚乙烯酸乙酯(PE)材料。
这些生物陶瓷材料可以有效减少摩擦和磨损,提高关节的稳定性和持久性。
除了摩擦副,生物陶瓷材料还可以用于制作关节骨水 cements。
骨水cements是一种用于固定人工关节与骨骼之间的粘接材料。
传统的骨水cements主要使用聚甲基丙烯酸甲酯(PMMA)材料,但由于其强度较低、刺激性和肿瘤形成风险较高,科学家们开始寻找替代材料。
生物陶瓷材料成为了一个理想的选择。
例如,氢氧基磷灰石(HA)可以与骨骼良好结合,并且具有较好的力学性能,可作为骨水cements的替代材料。
生物陶瓷材料在人工关节中的应用还在不断拓展。
近年来,科学家们开始研究开发新型的生物陶瓷材料,以进一步提高人工关节的效果和寿命。
例如,碳化硅陶瓷材料具有极高的硬度和耐磨性,被认为是一种有潜力的摩擦副材料。
此外,氧化锆陶瓷材料可以通过添加不同比例的氧化铈(CeO2)来调节相变温度,提高其在不同环境下的性能。
生物医学工程中的陶瓷材料人工骨应用研究

生物医学工程中的陶瓷材料人工骨应用研究引言在医学领域,骨组织的再生和修复一直是一个重要的研究领域。
当人体出现骨骼组织受损、骨折等情况时,即使经过外科手术治疗,也可能引起一系列的骨质失调和继发性骨疾病。
钛、镁合金等材料作为传统的人工骨修复材料已经被广泛应用,但是它们也存在着自身的缺陷。
然而,陶瓷材料因为其良好的生物相容性和耐磨性能,使其得到越来越多的研究和应用。
本文将探究陶瓷材料在生物医学工程中的应用研究。
1. 陶瓷材料在生物医学工程中的应用概述不同于传统的金属和合金等人工骨材料,陶瓷材料在生物医学工程中得到广泛的应用。
目前主要应用于人工骨、人工关节和医疗器械等方面。
陶瓷材料具有良好的生物相容性、生物活性、硬度、耐磨性和耐腐蚀性等特点。
其中,氧化铝陶瓷具有良好的生物相容性和生物活性,可以促进骨组织和材料的结合。
还有氧化锆陶瓷,它不仅具有良好的生物相容性,而且具有高强度和高韧性,可以作为人工关节的材料。
此外,钙磷陶瓷因其与骨组织的相似性,现在被广泛应用于骨组织的再生和修复。
2. 氧化铝陶瓷人工骨的研究进展氧化铝陶瓷是一种具有优异生物相容性和生物活性的陶瓷材料,已经广泛应用于人工骨领域。
相对于其它的陶瓷材料,氧化铝陶瓷因其众多的优点而倍受青睐:耐腐蚀性好、硬度以及磨损性能优异、生物相容性高等。
同时,氧化铝陶瓷还可以与人体骨组织形成化学键,从而起到增强骨组织与人工骨之间结合的作用。
近年来,氧化铝陶瓷人工骨材料的研究受到了广泛的关注。
研究人员通过改变氧化铝陶瓷的配比和制备工艺,以期探究一种更加适用的人工骨材料。
例如,为提高氧化铝的延展性及热稳定性,有学者采用了碳纳米管进行增强,使得氧化铝更具生物相容性,也提高了人工骨的生物医学性能。
3. 钙磷陶瓷人工骨的研究进展钙磷陶瓷以其组织工程学的特性,即能够在体内诱导细胞生成类似于骨组织的模型而成为研究热潮。
在人工骨的研究领域中,钙磷陶瓷因其与真实骨骼相近的成分、结构和微观形貌,成为一个很受欢迎的研究领域。
生物活性陶瓷的医疗应用和优势

生物活性陶瓷的医疗应用和优势生物活性陶瓷作为一种具有生物相容性和生物活性的材料,在医疗领域中得到了广泛的应用。
其特殊的化学和物理特性使其成为治疗和修复骨组织的理想选择。
本文将讨论生物活性陶瓷在医疗领域中的应用和优势,以及其对人类健康的积极影响。
首先,生物活性陶瓷在骨修复和再生方面具有广泛的应用。
由于其与骨组织具有相似的物理和化学特性,生物活性陶瓷可以为骨细胞提供良好的支撑结构,并促进骨细胞的附着、增殖和分化。
骨缺损部位植入生物活性陶瓷能够刺激机体自然的修复过程,促进新骨的生长和血管的再生,从而实现骨折、骨缺损和骨疾病的治疗和修复。
其次,生物活性陶瓷在牙科领域中的应用也十分广泛。
生物活性陶瓷材料在牙龈和牙齿之间形成强大的连接,有助于牙周组织的生物复合,避免了牙齿松动和牙周疾病的发生。
此外,生物活性陶瓷在牙科修复中的使用也越来越多,例如作为牙冠、牙桥和牙槽骨替代物。
其高生物相容性和生物活性使得生物活性陶瓷在牙科领域中成为一种理想的选择。
生物活性陶瓷的另一个重要应用领域是人工关节置换。
在人工关节置换中,生物活性陶瓷被广泛用于替换人体关节表面,如人工髋关节和人工膝关节。
生物活性陶瓷具有优异的耐磨性和生物相容性,能够大大减少摩擦和磨损,提高人工关节的使用寿命。
此外,生物活性陶瓷能够促进骨细胞的生长和骨组织的再生,有助于人工关节的稳定性和健康。
生物活性陶瓷在医疗领域中的应用主要得益于其独特的材料特性。
首先,生物活性陶瓷具有优异的生物相容性,能够与生物体组织良好地相互作用,不会引起明显的免疫反应或排斥反应。
其次,生物活性陶瓷具有良好的生物活性,能够激活和促进生物体内的生化过程,如骨细胞的增殖和分化,从而加速组织修复和再生。
此外,生物活性陶瓷具有优异的机械性能和耐磨性。
这些特性使得生物活性陶瓷在医疗设备的制造中具有广阔的前景。
例如,生物活性陶瓷可以用于制造人工关节、人工牙齿和医疗支架等,这些器械对材料的机械强度和耐磨性要求较高。
生物医用陶瓷材料

生物医用陶瓷材料
生物医用陶瓷材料是一种在医学领域中被广泛应用的材料,它具有优异的生物
相容性和生物活性,能够与人体组织良好地结合,被用于骨科和牙科等领域。
生物医用陶瓷材料主要包括氧化锆陶瓷、氧化铝陶瓷和羟基磷灰石陶瓷等,它们在医学领域中发挥着重要作用。
首先,生物医用陶瓷材料具有优异的生物相容性。
这意味着它们可以与人体组
织接触而不引起排斥反应,不会对人体组织产生不良影响。
这一特性使得生物医用陶瓷材料成为制作植入式医疗器械的理想选择,如人工关节、牙科种植体等。
在骨科领域,生物医用陶瓷材料可以与骨组织良好结合,促进骨细胞的生长和修复,有助于骨折愈合和骨缺损修复。
其次,生物医用陶瓷材料具有优异的生物活性。
它们可以促进人体组织的再生
和修复,有助于加速伤口愈合和骨折愈合过程。
在牙科领域,生物医用陶瓷材料可以用于修复牙齿缺损,如制作牙冠、牙桥等,其具有良好的生物相容性和生物活性,能够与牙齿组织良好结合,恢复牙齿的功能和美观。
最后,生物医用陶瓷材料还具有良好的耐磨性和耐腐蚀性,能够在人体内长期
稳定地发挥作用。
它们可以承受人体内复杂的生理环境和机械力的作用,不易产生磨损和腐蚀,具有较长的使用寿命。
因此,生物医用陶瓷材料在医学领域中得到了广泛的应用,成为了不可或缺的材料之一。
总之,生物医用陶瓷材料具有优异的生物相容性、生物活性、耐磨性和耐腐蚀性,被广泛应用于骨科和牙科等领域,发挥着重要作用。
随着医学技术的不断发展和进步,相信生物医用陶瓷材料将会在医学领域中发挥越来越重要的作用,为人类健康事业做出更大的贡献。
生物材料在骨科修复中的应用

生物材料在骨科修复中的应用人体骨骼系统的健康是人类生命安全的基石,但往往因各种因素受到损伤,生物材料的应用在骨科修复中发挥着巨大的作用。
生物材料主要分为两大类:天然生物材料和人工生物材料。
对于天然生物材料来说,它是从人体或动物身上提取出来的生物材料,如骨、骨髓、脂肪、软组织等。
人工材料则是制作成特定功能和生物相容性要求的材料。
下面将探讨生物材料在骨科修复中的应用。
一、生物陶瓷生物陶瓷是人工合成的生物材料之一,它具有材料性能优异、化学稳定性佳、阳离子摩尔比率与人类骨骼相仿、具有良好的适应性等特点。
生物陶瓷可用于有外形要求、负荷较小、生物相容性要求高的人工关节、骨修复等领域。
其生物和机械性能也表现出良好的临床效果。
在骨科修复中,生物陶瓷最常用的应用是用于骨折的修复,它能提供生长环境和力学稳定性,促进骨细胞的分化和成骨。
经过多次实验,基于生物陶瓷的骨折修复效果显著,不需要拆线,而且重伤患者能够快速恢复。
二、生物活性玻璃生物活性玻璃是一种容易被人体吸收的材料,它能够与组织形成紧密的结合,以重建缺陷部位。
人体组织与生物活性玻璃的结合非常紧密,这是因为生物活性玻璃在放置后形成了一层生物活性的氢氧化物表面层,而这一层表面层会催化细胞凝集和再生。
在骨科修复中,生物活性玻璃应用广泛,它既有生物相容性,又有生物陶瓷中所没有的生物活性,对于修复骨折、骨质疏松等疾病具有重要的作用。
因此,生物活性玻璃也成为当今骨修复领域中的重要生物材料。
三、生物可降解聚合物生物可降解聚合物是一种可以在人体内分解、被吸收的生物材料。
它由天然高分子或人工合成高分子组成,具有环境友好、良好的生物相容性和良好的可控性。
生物可降解聚合物通常用于制作内固定器、骨密度测量器等,此外,它也可以应用于软骨修复。
在骨科修复中,生物可降解聚合物主要用于骨折和软骨修复。
生物可降解聚合物有很好的重建能力,在修复过程中,它不需要被拆除也不会对人体造成伤害。
四、仿生材料在骨科修复中,仿生材料也被广泛使用。
生物陶瓷材料在骨缺损修复中的应用研究

生物陶瓷材料在骨缺损修复中的应用研究骨缺损是骨骼系统的一种常见疾病,严重影响了患者的生活质量。
因此,寻找一种安全有效、具有良好生物相容性和机械性能的材料,成为骨缺损修复领域的研究热点。
在近年来的研究中,生物陶瓷材料被广泛应用于骨缺损修复中,取得了许多有意义的成果。
生物陶瓷材料是一类由生物活性玻璃、氧化铝以及羟基磷灰石等成分组成的无机材料。
它具有优异的生物相容性和生物活性,能够促进骨细胞的黏附、增殖和分化,促进新骨的生成。
同时,生物陶瓷材料还具有优异的机械性能,具备较好的抗压、抗弯和抗磨损性能,能够为骨缺损区域提供良好的支撑和稳定性,有利于骨组织的修复和再生。
在骨缺损修复中,生物陶瓷材料的应用主要有三种形式:人工骨修复、骨植入和导管修复。
人工骨修复是将生物陶瓷材料与患者自身骨骼组织相结合,通过手术将其植入到缺损部位,形成结构稳定、功能完整的新骨。
骨植入是将生物陶瓷材料直接植入到骨缺损区域,作为支撑材料帮助骨组织修复。
导管修复则是将生物陶瓷材料制成导管的形式,放置在骨缺损的两端,通过导管内生物陶瓷材料的渗透和溶解来促进新骨的形成。
目前,生物陶瓷材料在骨缺损修复中的应用已经取得了许多重要的研究成果。
例如,研究人员利用生物陶瓷材料成功修复了大面积骨缺损,使患者获得了良好的恢复效果。
此外,一些研究还表明,生物陶瓷材料能够与骨组织有效结合,不仅能增加骨细胞的生长和分化,还能促进骨细胞的胶原基质形成,从而提高新骨的机械性能和生物功能。
然而,目前生物陶瓷材料在骨缺损修复中还存在一些挑战和问题需要解决。
首先,生物陶瓷材料的合成和制备过程相对复杂,需要正确控制材料的成分和结构,以保证其良好的生物相容性和机械性能。
其次,由于生物陶瓷材料的生物活性较高,容易与周围组织发生反应,因此需要进行严格的预处理和调控,以减轻材料对机体的不良影响。
此外,生物陶瓷材料在骨缺损修复中的长期效果和安全性还需要进一步的临床验证和研究。
综上所述,生物陶瓷材料在骨缺损修复中的应用研究具有重要的意义。
生物材料在骨修复中的应用

生物材料在骨修复中的应用随着生物材料的不断发展,其在医学领域中的应用越来越广泛。
其中,生物材料在骨修复中的应用备受青睐。
骨是人体内最强硬的组织之一,但一旦受到严重的创伤或疾病侵袭,就会出现骨折、骨缺损等情况。
而生物材料在这些情况下能够起到重要的作用。
1. 生物陶瓷材料的应用生物陶瓷是一种高纯度陶瓷材料,它可以与骨组织完美地融合。
在骨折或骨缺损修复中,生物陶瓷材料可以被植入到人体内部,帮助恢复骨的形态和功能。
此外,由于其稳定性和亲和性,生物陶瓷可以经过长时间的使用而不会出现任何负面影响。
2. BMP的应用BMP即骨形态发生蛋白,是一种生长因子,可以促进骨组织的再生和修复。
在骨缺损修复中,将BMP注射到植入材料或患者的身体内,可以促进骨的再生和修复,快速恢复患者的正常生活。
此外,BMP还可以作为一种非常有效的替代物,帮助患者恢复骨组织的功能。
3. 纤维素材料的应用纤维素是一种天然的多糖物质,可以从植物、真菌等生物中提取。
在骨缺损修复中,将纤维素材料注射到植入材料或患者的身体内,可以促进骨组织的再生和修复。
纤维素材料与骨组织之间的完美融合,可以有效地防止植入物的松动和脱离,降低再次手术的几率。
4. 生物降解性材料的应用生物降解性材料在近年来的医学领域中得到了广泛的应用。
在骨缺损修复中,生物降解性材料可分解成为可吸收的材料,可以有效地再生骨组织和修复缺损处。
由于其稳定性和亲和性,生物降解性材料可以经过长时间的使用而不会出现任何负面影响。
综上所述,生物材料在骨修复中的应用有着广泛的发展前景。
随着生物材料的技术不断地更新和改进,它们在骨缺损修复中的应用也将不断增强。
在未来,生物材料将能够更好地帮助人们恢复骨组织的正常功能,从而提高生活质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
生物陶瓷在骨组织中的应用与展望(南京工业大学材料学院材物0801 刘发付冯岩张文斌仇月东左辉)摘要:综述了生物陶瓷材料在骨科中的应用研究进展.人体骨骼中有机物占干质量约33%,而无机物占干骨质量的65%~75%,其中又有质量分数95%为固体钙及磷。
在此基础上,人们研究了生物陶瓷,并在骨组织方面得到了应用,且取得了一定成就,但是并没有达到真正的相容活性陶瓷.展望了生物陶瓷在骨科中的前景.关键词: 无机材料;生物陶瓷;综述;骨科;活陶瓷生物医用材料的研究与开发,对人类有重要意义。
人们对健康和长寿的追求将推动生物医用材料的发展。
它在世界经济中的地位己经可以和信息及汽车产业相比,目前以每年超过20%的速度增长,其材料及制品市场会达到药品市场规模,将成为21世纪的支柱产业。
2004 年,美国在卫生与人类服务部(Department ofHealth & Human Services)建立了医学创新特别组[1],其任务是促进新医学技术的创新及发展。
中国的骨质疏松病人近亿,美国每年约有15 万例的髋关节及约30 万例膝关节的置换,但人工关节多采用金属或陶瓷构成,会引起炎症,甚至几年后还需再通过手术进行矫正,给病人带来痛苦。
人们希望有耐能参与生命组织活动的人工骨。
1 生物陶瓷材料在骨科中的应用研究进展目前, 对羟基磷灰石材料的研究重点是克服羟基磷灰石生物陶瓷材料的脆性和在生理环境中的疲劳破坏, 使其能用作承力的骨替换材料, 因此研究人员正试图利用纳米的微尺寸效应来研究纳米羟基磷灰石对提高材料强韧性以及对生物相容性的影响。
有资料报道[13-15],羟基磷灰石材料近十年来受到临床重视, 它的种植体模仿了骨基质的结构, 具有骨诱导性, 能为新生骨组织的长入提供支架和通道, 孔径、孔率和孔内部的连通行是骨长入方式和数量的决定性因素。
研究表明[16], 当种植体内部连通气孔的孔径为5~40 μm 时,允许纤维组织长入; 当孔径为40~100 μm 时, 允许非矿化的骨样组织长入; 当孔径在150~200 μm 时, 能为骨组织的长入提供理想的场所; 当孔径超过200 μm时, 是骨传导的基本要求; 当孔径在200~400 μm 时,最有利于新骨生长。
陶瓷基复合材料是以陶瓷、玻璃或玻璃陶瓷基体, 通过不同方式引入颗粒、晶须或纤维等增强体而获得的一类复合材料。
目前生物陶瓷基复合材料尚未达到大规模临床应用阶段, 其研究还主要集中于生物材料的活性和骨结合性能研究以及材料增强研究等。
Al2O3、ZrO2 等生物惰性材料自20 世纪70 年代初在临床应用研究中得到应用, 但它与生物硬组织的结合为一种机械的锁合。
以高强度氧化物陶瓷为基体, 掺入少量生物活性材料, 可使材料在保持氧化物物陶瓷优良力学性能的基础上还具有一定的生物活性和骨结合能力。
为满足骨科临床对生物学性能和力学性能的要求, 人们开始了生物活性陶瓷以及生物活性陶瓷与生物玻璃的复合研究, 以使材料在气孔率、比表面积、生物活性和机械强度等方面的综合性能得以改善。
近年来, 对羟基磷灰石和磷酸三钙复合材料的研究也日益增多[17, 18-22]。
30%羟基磷灰石与70%磷钙陶瓷, 研究发现羟基磷灰石- 磷酸三钙致密复合材料的断裂主要为穿晶断裂, 其沿晶断裂的程度也大于纯单相陶瓷材料。
羟基磷灰石- 磷酸三钙多孔复合材料植入动物体内, 其性能起初类似于β- 磷酸三钙, 而后具有羟基磷灰石的特性, 通过调整羟基磷灰石与磷酸三钙的比例, 达到满足不同临床需求的目的。
45SF1/4 玻璃粉末与羟基磷灰石制备而成的复合材料, 植入兔骨中8 周后取出, 骨质与复合材料之间的剪切破坏强度达27 MPa , 比纯羟基磷灰石陶瓷有明显的提高。
生物陶瓷材料尤其在湿生理环境中的力学性能较差, 生物陶瓷的活性研究及其与骨组织的结合性能研究, 并未能解决材料固有的脆性特征。
生物陶瓷的增强方式主要有颗粒增强、晶须或纤维增强、相变增韧和层状复合增强等[16, 23-29]。
例如当羟基磷灰石粉末中添加10%~70%的ZrO2 粉末时, 材料经1 300~1 350 ℃热压烧结, 其强度和韧性随烧结温度的提高而增加。
纳米SiC 增强羟基磷灰石复合材料比纯羟基磷灰石陶瓷的抗弯强度提高1.6 倍、断裂韧性提高2 倍、抗压强度提高1.4 倍, 与生物硬组织的性能相当。
晶须和纤维为陶瓷基复合材料的一种有效增韧补强材料, SiC 晶须增强生物活性玻璃陶瓷材料, 复合材料的抗弯强度可达460 MPa 、断裂韧性达4.3 MPam1/2, 成为可靠性最高的生物陶瓷基复合材料。
羟基磷灰石晶须增韧羟基磷灰石复合材料的增韧补强效果同复合材料的气孔率有关, 当复合材料相对密度达92%~95%时复合材料的断裂韧性可提高40%。
目前用于补强医用复合材料的主要有: SiC, Si3N4, Al2O3, ZrO2, 羟基磷灰石纤维或晶须以及碳纤维等。
2 生物惰性陶瓷材料生物惰性陶瓷材料的物理机械性能及功能特性与人体组织相匹配,与组织接触不产生炎症或凝血现象,无急性毒性或刺激反应,一般无补体激活产生的免疫反应[5]。
这类材料的应用是基于对材料本身性全面了解,是人类应用最早的生物材料。
氧化铝(Al2O3)陶瓷由高纯氧化铝粉体烧结而成,是生物惰性陶瓷材料的代表。
由于烧结条件不同,主要生成α和γ两种晶型。
γ-氧化铝属两性氧化物,在酸、碱作用下易发生化学变化;α-氧化铝为三方晶系,属化学惰性晶体,也就是通常所说的氧化铝生物惰性陶瓷材料。
该材料具有优异的生物相容性,在生理环境中相当稳定,抗腐蚀,没有溶出物,低膨胀,而且强度高,主要用作外科矫形手术的承重假体(如人工髋关节、人工膝关节等)。
在制作氧化铝生物种植体时,制品的外部形态对种植体与受体组织(尤其是骨组织)的结合有重要影响,表面300 μm 左右的微小凹凸有利于早期骨组织长入固定,而表面数毫米大小的凹凸有利于与骨组织长期牢固的固定[6]。
除了常用的氧化铝生物陶瓷外,惰性氧化物生物陶瓷还有氧化锆、痒化镁、氧化硅以及混合氧化物陶瓷。
这些陶瓷材料在性能上各有其特点,在机械强度、加工性能等方面弥补了氧化铝生物陶瓷的某些不足。
总体而言,惰性生物陶瓷材料由于其生物惰性,在生物体内很难降解,无法被新生组织所替代,主要作为永久替代物应用于临床骨科以修骨缺损。
因此,严格来讲,其并不能作为传统意义上的组织工程支架材料。
3 生物降解陶瓷材料细胞-生物材料复合体回植体内后,能随着时间推移而逐渐被吸收的材料被称为生物降解材料[7]。
生物降解陶瓷材料主要包括磷酸钙陶瓷、硫酸钙陶瓷等,其最大优点是回植后最终无异物存留。
材料完全吸收后,所形成的新骨塑形不再受材料存在的影响,而强度优于新骨与材料结合的强度。
磷酸三钙(TCP)的结构分为高温相(α-TCP)和低温相(β-TCP)。
α-TCP 具有自固化性质,可作为骨水泥使用;而β-TCP 生物相容性好,降解产物参与新骨形成,是最常用于骨组织工程的生物支架材料。
β-TCP 的Ca/P 为1.50,属三方晶系,是生物降解陶瓷材料的代表。
生物可降解β-TCP 主要是多孔型和颗粒型的,而致密的β-TCP 在生理环境中较稳定。
1972 年,Driskell 等[8]研制出多孔β-TCP 陶瓷材料,并将其作为骨植入材料回植于犬与白鼠体内。
植入20~25 d 后,大约有25%~30%左右的β-TCP 被吸收,显示出较好的降解性能。
同时,在被吸收部位发现有成骨细胞的生长,提示了其作为骨组织工程支架材料的可行性。
近来,Yuan 等[9]以多孔β-TCP 复合骨髓间充质干细胞(Bone marrow stromal cells且修复处所生成新骨各项力学指标与对照组自体骨无显著性差异,说明可降解β-TCP 陶瓷材料是一种较好的骨组织工程支架材料。
另有研究结果显示,β-TCP 陶瓷材料的降解主要有3 个途径:①体液中的生理化学溶解,其溶解速度取决于多种因素,包括材料的比表面积、相组成、结晶度以及周围体液的pH 值等;②物理解体,体液浸入陶瓷中烧结不完全而残留的微孔,使得连接晶粒的“细颈”溶解,从而使得陶瓷解体为微粒;③细胞(主要是破骨细胞和巨噬细胞)的吞噬,在β-TCP 的生物降解过程中,在其临近的淋巴核中发现有陶瓷颗粒,表明材料的生物降解过程首先是材料解体为小的颗粒,然后由吞噬细胞迁移至临近组织并被全部或部分吞噬。
因此,可以通过改进烧结条件以优化β-TCP 的体内降解速率。
另外,可吸收β-TCP 的力学性能受其孔隙率、晶粒度以及相组成的影响,强度相对较低,主要用于不承力部位的骨缺损修复。
硫酸钙(CaSO4·2H2O)陶瓷属单斜晶系,晶体集合体一般为纤维叶片状、针状等,常具有燕尾形双晶结构。
医用硫酸钙陶瓷体内可降解,且生物相容性好,无明显细胞毒性、致敏性和遗传毒性,于1996 年6 月获FDA 及CE 标志,临床应用上千例,证明是安全、有效的。
Turner 等[10]在犬双侧股骨近端进行硫酸钙、自体骨以及空白移植实验,通过比较发现硫酸钙陶瓷材料体内降解良好,且在骨缺损修复处有14.3%的新骨形成,而自体骨组为8.6%,空白组仅为3.6%。
硫酸钙陶瓷促进成骨机制目前还没有统一认识,多数学者认为其并不具备刺激新骨生成的特性,而仅具有骨引导作用,能很好地提供成骨所需的环境条件,起到了适合新生骨沉积的生理支架作用;另一方面,硫酸钙溶解的钙离子为新骨形成提供了丰富的钙源,促进了骨缺损的修复。
硫酸钙陶瓷材料的力学性能与松质骨相近,同时可作为骨形态发生蛋白(Bone morphogenetic protein,BMP)、抗生素等的载体,在组织工程化骨组织构建中具有较好的应用前景。
珊瑚是珊瑚虫分泌的外骨骼沉积,其化学成分中99%为碳酸钙,还少量的其他元素和有机成分。
珊瑚的三维多孔结构与生物体的松质骨相似,且孔隙率高,生物降解性好,易加工成型,已广泛应用于骨组织工程构建。
Vacanti 等[11]将患者自体骨膜成骨细胞与天然珊瑚材料复合用于指骨再造,取得了良好的效果。
Cui 等[12]将脂肪干细胞(Adipose-derivedstem cells,ASCs)体外成骨诱导后与珊瑚复合,成功修复了犬临界大小(Critical-size)的颅骨缺损,进一步显示出其作为骨组织工程细胞支架材料的优势。
但是,珊瑚材料也有其缺点:①力学性能较差,与人体骨组织的抗压强度差异较大;②体内降解过快,与新骨生成速度不相匹配。
不少学者使用各种材料改性技术以弥补珊瑚材料的这些缺陷,其中热液交换反应[13]能够使珊瑚的部分碳酸钙成分转变为羟基磷灰石(HA),使它的降解速度下降,而原有孔隙率不变,硬度提高,细胞相容性也得到一定程度的提升。