功率放大器非线性测量和设计的新范例

合集下载

有记忆功放的非线性测试及其预失真器设计

有记忆功放的非线性测试及其预失真器设计

失真器最多可抵消7 阶非线性, 在功放线性化测试中,
M H z 较为合适。
z( n)
-
F [x ( n )]KLeabharlann X=~ ^ \
Q -l
X
k = l q =0
a^ y ^ n
y ( n - q ) \k l
2
预失真器参数辨识
采用记忆多项式模型模拟功放行为是因为非线性
1 . 2 功放预失真平台及内部功能框图 搭 建 的 功 放 预 失 真 器 仿 真 平 台 如 图 2 所 示 # 主机 上 安 装 ADS ( Advanced Design System ) 仿 真 软 件 、 M a tla b 软 件 和 矢 量 信 号 分 析 软 件 (型 号 为 VSA89600 ) 。需 要 说 明 的 是 , 功放激励信号和功放输 出信号都保存在主机上, 可 以 方 便 地 由 M atlab 处理能 够得到预失真器系数。 功放预失真器仿真平台内部功能框图如图3 所 示 。用 户 可 以 在 A D S 软 件 中 直 接 调 用 库 中 已 有 的 组 件 定 义 测 试 信 号 或 者 在 DSP D esign 模 块 中 自 行 设 计 测 试 信 号 。A D S 能 够 直 接 将 产 生 的 测 试 信 号 通 过
G P IB 接 口 导 人 至 矢 量 信 号 发 生 器 ( 型 号 为 E4438C ) ,
控 制 VSA89600 读 取 功 放 下 变 频 后 的 信 号 , 并支持将 数 据 导 人 到 M atlab 中处理。在 E 4 4 3 8 C 中完成基带调 制、 数模转换、 上 变 频 等 信 号 发 射 链 路 功 能 。反馈链路 由 频谱分析仪( 型 号 为 E 4440A ) 完 成 射 频 至 中 频 的 变 换、 A / D 采 样 并 数 字 下 变 频 至 基 带 信 号 。下变频后的 数 据 经 网 线 传 输 至 VSA89600 。功 放 的 输 入 、 输出数据 可 由 Matlab 进 一 步 处 理 后 得 到 功 放 的 非 线 性 阶 数 、 记 忆 阶 数 及 相 应 的 系 数 。发射链路和接收链路的同步可 由 E 4 4 3 8 C 的 10 提供。

放大器非线性失真研究装置设计与测试

放大器非线性失真研究装置设计与测试

AUTOMOBILE DESIGN | 汽车设计时代汽车 放大器非线性失真研究装置设计与测试臧竞之 李希平杭州广安汽车电器有限公司 浙江省杭州市 311402摘 要: 基于STM32F334单片机设计制作的一个放大器非线性失真研究装置。

该设计采用晶体管放大电路将信号源放大,使用四双向模拟开关(CD4066BM)做模拟开关,利用单片机自带ADC采集电压变化,用FFT 算法实现的低频谐波失真度的测量。

使用THD的计算公式计算出线性放大器的“总谐波失真”近似值。

通过EKT043显示触摸屏显示当前输出波形和失真度并且可以通过按键进行波形选择。

关键词:STM32F334单片机 晶体管 ADC采集 FFT算法1 系统方案论证1.1 方案描述信号源输出频率为1kHZ、峰峰值为20mV的正弦波,通过晶体管放大电路放大到峰峰值不小于2V,频率为1kHZ的无明显失真正弦波形,顶部失真波形,底部失真波形,双向失真波形,交越失真波形这5种波形[1]。

通过ADC采集电压变化,用FFT算法实现的低频谐波失真度的测量,使用THD计算公式计算出非线性失真的输出的“总谐波失真”近似值。

通过EKT043显示触摸屏显示当前输出波形和失真度。

如图1所示。

1.2 方案比较与选择1.2.1 失真度测量方法的比较与选择方案一:失真度计以模拟法为基础,采用基于基波抑制原理的基波抑制方法,通过频率选择性无源网络抑制基波,并从抑制基波后的总均方根电压和均方根谐波电压中计算失真度,基波抑制法构成的失真度测量仪可以解决频率范围为100Hz~10KHz、失真度为1×10-5~100%的总体谐波失真测量,测量准确度为±5%~±30%左右,测量较为方便。

方案二:采用快速傅立叶变换(FFT)算法对量化后的信号进行处理,得到基波和各次谐波的电压,从而计算出失真度[2]。

为了提高非整周期采样条件下失真度测量的精度,可以采用准同步法对被测信号的基波和谐波电压进行精确测量。

基于双频测试的功率放大器非线性特性研究

基于双频测试的功率放大器非线性特性研究

基于双频测试的功率放大器非线性特性研究【摘要】本文基于双频测试,研究了功率放大器的非线性特性。

在引言中,介绍了研究的背景、意义和方法。

正文部分首先探讨了功率放大器的工作原理,然后详细介绍了双频测试的原理,接着分析了功率放大器的非线性特性,并设计了相应的实验。

通过实验结果的分析,揭示了功率放大器的非线性特性表现。

结论部分总结了研究的成果和展望未来的研究方向。

本研究对于深入了解功率放大器的性能特征,提高其性能具有一定的指导作用。

【关键词】功率放大器、双频测试、非线性特性、工作原理、实验设计、实验结果分析、研究背景、研究意义、研究方法、研究结论、研究展望。

1. 引言1.1 研究背景功率放大器是无线通信系统中至关重要的部件,其性能对整个系统的工作稳定性和传输质量有着重要影响。

在当前通信系统中,要求功率放大器具有高线性度和高效率,以满足信号传输过程中对功率放大的需求。

由于功率放大器存在非线性特性,导致信号在放大过程中产生失真和色散,影响系统的传输性能。

研究功率放大器的非线性特性对于优化通信系统的性能至关重要。

随着无线通信技术的不断发展,双频测试成为了一种常用的手段来研究功率放大器的非线性特性。

通过在不同频率下对功率放大器进行测试,可以更全面地了解功率放大器的非线性行为,并采取相应的措施来改善其性能。

基于双频测试的功率放大器非线性特性研究具有重要的理论和实际意义。

本研究旨在通过双频测试,深入探究功率放大器的非线性特性,为优化通信系统的性能提供理论支持和实验基础。

通过对功率放大器的工作原理、双频测试原理和实验设计的研究,可以更好地理解功率放大器的非线性行为,为未来通信系统的设计和性能优化提供参考。

1.2 研究意义研究功率放大器的非线性特性可以帮助我们更好地了解功率放大器在不同工作条件下的表现,从而优化功率放大器的设计和性能。

通过对功率放大器的非线性特性进行研究,可以指导工程师在实际应用中更好地选择适合的功率放大器,减少系统设计中的误差和不确定性。

实验八 非线性丙类功率放大器实验

实验八 非线性丙类功率放大器实验

实验八非线性丙类功率放大器实验一、实验目的1.了解丙类功率放大器的基本工作原理,掌握丙类放大器的调谐特性以及负载改变时的动态特性。

2.了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。

3.比较甲类功率放大器与丙类功率放大器的特点、功率、效率。

4.掌握丙类放大器的计算与设计方法。

二、实验内容1.观察高频功率放大器丙类工作状态的现象,并分析其特点2.测试丙类功放的调谐特性3.测试丙类功放的负载特性4.观察激励信号变化、负载变化对工作状态的影响三、实验基本原理放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。

功率放大器电流导通角θ越小,放大器的效率η越高。

甲类功率放大器的oθ,效率η最高只能达到50%,适用于小信号低功率放大,一般作为中间级或输180=出功率较小的末级功率放大器。

非线性丙类功率放大器的电流导通角oθ,效率可达到80%,通常作为发射机末级功放以获得较大的90<输出功率和较高的效率。

特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小),基极偏置为负值,电流导通角oθ,为了不失真地放大信号,它的负载必须是LC谐90<振回路。

电路原理图如图8-1(见P.46)所示,该实验电路由两级功率放大器组成。

其中Q3(3DG12)、T6组成甲类功率放大器,工作在线性放大状态,其中R A3、R14、R15组成静态偏置电阻,调节R A3可改变放大器的增益。

W1为可调电阻,调节W1可以改变输入信号幅度,Q4(3DG12)、T4组成丙类功率放大器。

R16为射极反馈电阻,T4为谐振回路,甲类功放的输出信号通过R13送到Q4基极作为丙放的输入信号,此时只有当甲放输出信号大于丙放管Q4基极-射极间的负偏压值时,Q4才导通工作。

与拨码开关相连的电阻为负载回路外接电阻,改变S1拨码开关的位置可改变并联电阻值,即改变回路Q值。

基于双频测试的功率放大器非线性特性研究

基于双频测试的功率放大器非线性特性研究

基于双频测试的功率放大器非线性特性研究功率放大器是无线通信系统中的重要组件,其性能直接影响到系统的传输质量和容量。

传统的功率放大器设计主要关注其线性增益特性,但在实际应用中,功率放大器的非线性特性往往成为制约性能的主要因素。

研究功率放大器的非线性特性具有重要的理论和应用价值。

基于双频测试的功率放大器非线性特性研究方法是一种常用的手段。

该方法通过在输入信号上施加两个不同频率的连续波,利用功率放大器对输入信号的非线性扭曲造成的交叉项进行测量和分析,进而得到功率放大器的非线性参数。

该方法具有测试简单、结构清晰、数据处理方便等优点,因此被广泛应用于功率放大器的非线性特性研究中。

在研究中,首先需要建立功率放大器的非线性模型。

根据理论分析,功率放大器的非线性特性主要来自于其输入输出特性的非线性和内部电路元件的非线性。

可以通过电路仿真和测量分析来得到功率放大器的非线性模型。

在电路仿真中,使用电磁仿真软件如ADS、CST等来建立功率放大器的电路模型,并利用所得到的模型对功率放大器的非线性特性进行分析。

在测量分析中,可以使用网络分析仪、功率计等设备对功率放大器进行实际测量,并通过数据处理来得到功率放大器的非线性特性。

在双频测试中,首先需要选择适合的频率组合,一般选择两个频率之间的整数倍关系,如1 GHz和2 GHz。

接着在这两个频率上施加连续波信号,并将输出信号进行功率谐波分析。

通过对功率谐波的分析,可以得到功率放大器的非线性参数,如互调失真、截止失真等。

还可以通过改变输入信号的幅度、相位等参数,来考察功率放大器的非线性特性对不同输入信号的响应。

双频测试方法在功率放大器非线性特性研究中具有广泛的应用。

通过该方法,可以对功率放大器的非线性特性进行评估,为功率放大器的设计和优化提供了科学依据。

双频测试方法还可以用于功率放大器故障诊断和性能监测,提高系统的可靠性和稳定性。

功率放大器非线性测量和设计的新范例

功率放大器非线性测量和设计的新范例

功率放大器非线性测量和设计的新范例— NVNA非线性矢量网络仪和ADS基于X参数的功放设计非线性测量和设计的创新技术— X参数频率覆盖10MHz-13.5/26.5/43.5/50GHz我很清楚我所设计的放大器增益随着负载的变化而变化,但是传统的“Hot S22”在非线性条件下并不能帮我解决问题。

当我将各级功率放大器级联时,总的输出结果并没有像我所想象的那样。

不知道到底是怎么回事? 因此我需要新的工具,能让我深入了解器件的非线性特性。

如果我能够获得器件基波及谐波的幅度和相位信息,将大大节省我花在功率合成放大器的匹配电路设计上的时间。

半导体厂家提供的管芯的小信号S参数对我设计放大器几乎没有作用,我需要大信号激励下管芯的非线性参数。

我真希望有一种测量工具能让我提取出完全表征器件非线性特性的参数。

传统的负载牵引系统并不能帮我解决大信号模型问题,因此我需要新方法帮我快速提取出器件的大信号模型,从而让我使用ADS软件有效而且快速地设计出满足指标的功率放大器。

安捷伦科技非线性矢量网络分析仪(NVNA)荣获《电子产品世界》2008年度产品奖, 2008年EDN创新奖,并被选为射频和微波年度最佳产品2众所周知,功率放大器是每个发射机系统的核心部件,随着雷达应用、卫概述星通信及无线通信的迅速发展,要求研发工程师和科学家们不断地研究和设计出具有更高的输出功率、更高的功率附加效率以及更高的线性度等指标的功率放大器,以满足更快的数据通信、更宽的雷达信号等需求。

这就需要不断提高半导体功率管的性能,并把对半导体功率管的应用扩展到其性能的极限,经常使其进入到半导体功率管的非线性工作区域甚至饱和状态。

器件的非线性特性非常容易给雷达系统、卫星系统及通信系统造成严重问题,往往是信息之间互相干扰、系统有效带宽下降的最主要原因。

如何更深刻地了解并掌握器件与电路的非线性特性是每个射频工程师每天所面临的棘手难题,急需解决。

而现有的工具和手段并不能有效地帮助工程师解决这些问题。

南理工高频电子实验-非线性丙类功率放大器实验报告

南理工高频电子实验-非线性丙类功率放大器实验报告

高频电子实验非线性丙类功率放大器实验学号班级专业姓名非线性丙类功率放大器实验一、实验目的(1)了解丙类功率放大器的基本工作原理,掌握丙类功率放大器的调谐特性以及负载变化时的动态特性。

(2)了解激励信号变化对功率放大器工作状态的影响。

二、实验原理晶体管高频功率放大器的原理线路(1)采用负偏置:减小无用功耗,提高效率;(2)采用变压器耦合:阻抗匹配,减小负载电阻R对谐振回路的影响;(3)采用电感部分接入:减小晶体管输出电阻对谐振回路的影响。

在晶体管负偏置,输入信号为大信号的条件下:晶体管在输入信号的正半周的部分时间内导通,在输入信号的其他时间内截止;基级电流和集电极电流为高频脉冲信号;集电极电流流过具有选频作用的并联谐振回路后,产生了与输入信号同频的集电极电压信号。

电流、电压波形(流)通角θ: 有电流出现时所对应相角的一半。

集电极电流式中tω012cos cos 2cos C c c c cn i I I t I t I n t ωωω=+++++()()()()()()()()()()0maxmax 01maxmax 1max 2max 1sin cos ()21cos 1sin cos ()cos 1cos 12sin cos 2sin cos ()cos 11cos 1c C C cC C cn C C n I i t d t I I I i t t d t I I n n n I i t n t d t I n n I n θθθθθθθθθωππθαθθθθωωππθαθθθθθωωππθαθ----==-=-==-=-==--=>⎰⎰⎰()n n αθ称为余弦脉冲的次谐波分解系数。

高频功放的电流、电压波形tCCU BBU 1cos o c c L u u I R tω==cos CE CC o CC c u U u U U tω=-=-输出功率:直流输入功率:集电极损耗功率: 集电极效率:负载特性实验电路图如下图22111111222c c c c L LU P I U I R R ===200012c CCc CCP i Ud t I U πωπ==⎰01c P P P =-11001122c c c CC I U P P I U ηγξ===()()1100c c I I αθγαθ==称为波形系数cCCU U ξ=称为集电极电压利用系数min1(1)L c CE CC c CES R U U U U U =->较小,使得较小,使得,称为欠压状态;min 2(2)L c CE CC c CES R U U U U U =-=增大,使得增大,使得,称为临界状态;min3(3)L c CE CC c CES R U U U U U =-<继续增大,使得继续增大,使得,称为过压状态。

一种功率放大器AM-AM和AM-PM非线性失真测量方法

一种功率放大器AM-AM和AM-PM非线性失真测量方法

一种功率放大器AM-AM和AM-PM非线性失真测量方法陈芳;杨成林
【期刊名称】《广西轻工业》
【年(卷),期】2011(000)009
【摘要】目前测量射频功放幅度和相位失真的常用测试设备是昂贵的矢量网络分析仪(VNAs)。

为此,给出了一种软硬件相结合、低成本、高精度测量AM—AM和AM—PM非线性失真的方法。

【总页数】2页(P96-97)
【作者】陈芳;杨成林
【作者单位】四川师范大学成都学院,四川成都611745;电子科技大学自动化工程学院,四川成都611731
【正文语种】中文
【中图分类】TN935
【相关文献】
1.微波功率放大器AM-PM转移系数测试方法研究 [J], 李新雷;张进仓;秦臻;高妍;林卓;张琳
2.无线通信射频功率放大器非线性失真优化设计 [J], 庞子鸿
3.宽带功率放大器记忆非线性失真补偿算法的仿真与性能优化 [J], 王者;苗圃;
4.F-OFDM系统的功率放大器非线性失真优化设计 [J], 卿敏杰;罗志年
5.Estimation of Intermodulation Rejection Value as a Function of Frequency in Power Amplifier Using AM-AM and AM-PM Diagrams Based
on Power Series Analysis [J], Aazar Saadaat Kashi;Mahmoud Kamarei;Mohsen Javadi
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

功率放大器非线性测量和设计的新范例— NVNA非线性矢量网络仪和ADS基于X参数的功放设计非线性测量和设计的创新技术— X参数频率覆盖10MHz-13.5/26.5/43.5/50GHz我很清楚我所设计的放大器增益随着负载的变化而变化,但是传统的“Hot S22”在非线性条件下并不能帮我解决问题。

当我将各级功率放大器级联时,总的输出结果并没有像我所想象的那样。

不知道到底是怎么回事? 因此我需要新的工具,能让我深入了解器件的非线性特性。

如果我能够获得器件基波及谐波的幅度和相位信息,将大大节省我花在功率合成放大器的匹配电路设计上的时间。

半导体厂家提供的管芯的小信号S参数对我设计放大器几乎没有作用,我需要大信号激励下管芯的非线性参数。

我真希望有一种测量工具能让我提取出完全表征器件非线性特性的参数。

传统的负载牵引系统并不能帮我解决大信号模型问题,因此我需要新方法帮我快速提取出器件的大信号模型,从而让我使用ADS软件有效而且快速地设计出满足指标的功率放大器。

安捷伦科技非线性矢量网络分析仪(NVNA)荣获《电子产品世界》2008年度产品奖, 2008年EDN创新奖,并被选为射频和微波年度最佳产品2众所周知,功率放大器是每个发射机系统的核心部件,随着雷达应用、卫概述星通信及无线通信的迅速发展,要求研发工程师和科学家们不断地研究和设计出具有更高的输出功率、更高的功率附加效率以及更高的线性度等指标的功率放大器,以满足更快的数据通信、更宽的雷达信号等需求。

这就需要不断提高半导体功率管的性能,并把对半导体功率管的应用扩展到其性能的极限,经常使其进入到半导体功率管的非线性工作区域甚至饱和状态。

器件的非线性特性非常容易给雷达系统、卫星系统及通信系统造成严重问题,往往是信息之间互相干扰、系统有效带宽下降的最主要原因。

如何更深刻地了解并掌握器件与电路的非线性特性是每个射频工程师每天所面临的棘手难题,急需解决。

而现有的工具和手段并不能有效地帮助工程师解决这些问题。

因此,处理非线性问题需要使用超越今天我们测试线性参数范畴的新工具,这种全新的工具能够让工程师快速地获得完全表征功率管非线性行为的非线性参数,从而能够进行快速建模、仿真并且彻底改善新技术产品的设计流程。

当今,雷达系统、卫星系统及当前的问题无线通信系统的研发工程师和科学家的目标很明确: 高效和精确地仿真设计功率放大器。

仿真和设计必然需要功率管的大信号模型,但是很多半导体厂家并不提供设计功放所需要的功率管的大信号模型。

有些客户自己曾经试图使用直流信号分析仪结合网络仪测量S参数提取Spice物理模型,最后通过数学运算拟合出大信号模型,但是这个过程很漫长而且往往不准确。

另外,由于在非线性器件和系统的设计过程中一直没有一个集建模、仿真和测试于一体的方案,工程师们只能依赖信息量很有限的小信号S参数并根据各自的经验,花费大量时间和成本做大量的设计迭代实验,使得整个设计过程变得既费时又昂贵。

为改变目前困境,就需要工程师能够精确快速地提取功率管的大信号模型,使其掌握器件的线性和非线性行为性特性,同时还需要在ADS软件中准确地仿真出功率管的非线性行为。

现在也有部分客户逐渐接受负载牵引系统的概念,但是单纯的负载牵引系统不能够满足客户快速高效地设计高性能功放的需求,原因在于负载牵引系统存在一些不足:●负载牵引系统特别消耗时间,不能够在扫频、扫功率及扫直流偏置模式下测量等高线。

●不能提供完整的大信号模型,因此不能让设计师有效地使用EDA工具进行功放的设计和仿真。

●没有考虑谐波分量及谐波分量对基波的影响,无法测量出谐波的相位信息,但是功放非线性设计必须考虑谐波成分。

●即使可以把负载牵引测试数据导入EDA工具,但是由于只有功率信息,没有直流信息、谐波信息等。

因此只能仿真功率等高线,不能仿真谐波的幅度相位、功率效率等高线、交调失真及ACPR等。

现在安捷伦推出了全新的解决方案使工程师在对有源器件建模、仿真及设计时,显著减少花费在设计迭代上的时间,从而让我们加快新产品推向市场的速度。

3解决方案为了解决传统小信号S 参数的问题,安捷伦公司于2008年提出了X 参数概念,X 参数是对S 参数在大信号激励下的数学扩展,不仅包含基波分量而且包括谐波分量,使其代替S 参数完全表征功率管的线性和非线性的行为。

X 参数可以直接使用安捷伦公司的非线性矢量网络仪 (简称NVNA) 测量得到。

测量X 参数就像工程师使用标准网络仪测量S 参数一样非常方便。

NVNA 在得到X 参数后,自动转化为大信号模型MDIF 格式文件,安捷伦称其模型为多次谐波失真模型 (简称PHD 模型,Poly-Harmonic Distortion Model)。

PHD 模型可以直接导入ADS 进行非线性仿真和设计,PHD 模型支持ADS 的谐波平衡仿真和电路包络仿真,因此可以仿真出输出功率等高线、功率附加效率等高线、动态负载线、谐波幅度相位、交调失真、电压电流波形及ACPR 等所有工程师需要的参数。

最终极大地提高客户的设计效率,而且设计出所满足指标的功率放大器。

图1: 功率管多次谐波失真架构X 参数是S 参数在数学上更为严谨的扩展集。

为了更形象地表征X 参数,图1给出了功率管多次谐波失真的架构,X 参数正是基于这个架构给出定义。

A1为大信号激励信号,B1为经过功率管的反射信号,B2为功率管输出的传输信号,A2是由于负载不完全匹配引入的反射信号; A1和A2为激励信号,B1和B2为响应信号。

X 参数表征响应信号的基波、谐波与激励信号的基波、谐波之间的相互关系,公式1给出X 参数的数学表达式,例如: X T 21,13意思是端口1的三次谐波为激励信号与端口2的基波响应之间的关系。

X 参数是专门用来表征和分析射频功率器件的线性和非线性特性的一种更可靠、更完整的方法,作为S 参数在大信号工作环境下的扩展,X 参数的测量条件是首先是使用一个大信号要把被测器件推动到压缩区或饱和区 (这也是很多元器件的实际工作状态),然后使用另外一个小信号依次模拟A1的每个谐波分量及A2的基波和每个谐波分量,从而测量出谐波的响应。

由于X 参数是在功率管的实际工作状态下测量出来的,并且包含每个谐波分量的响应,所以X 参数真正代表了功率管的真实特性。

结合Maury 公司的阻抗Turner 可以得到任意负载阻抗下的X 参数,从而使X 参数可以覆盖整个Smith 圆图。

X 参数支持级联仿真,这就解决了工程师在设计多级级联功放时所遭遇的种种困难。

指数定义: i = 输出端口指数 j = 输出频谱阶数 k =输入端口指数 l = 输入频谱阶数公式1: X 参数数学表达式A 1A 2B 1B 2X-参数4图2: NVNA (10 MHz 到13.5 GHz 、26.5 GHz 、43.5 GHz 和50 GHz),射频和微波非线性网络分析新的行业标准图3: NVNA 校准件, 自左往右依次是矢量校准件、功率校准件和相位校准件安捷伦NVNA 是一台高度集成、功能强大、易于使用的一体化非线性矢量网络分析仪,如图2所示,它是基于安捷伦最新推出的标准矢量网络仪PNA-X 增加一个非线性选件,来实现非线性测量功能。

NVNA 凭借它的创新技术荣膺《Electronic Products 》杂志2008年度最佳产品奖,并入围《Microwaves and RF 》杂志2008年EDN 创新奖决赛而且赢得2008年最佳产品奖。

NVNA 校准与标准网络仪的常规校准大同小异,需要三步校准,如图3所示,首先是进行传统的双端口校准,主要用来消除传统矢网的系统误差; 其次,进行功率校准,从而保证图1中所示每个基波和谐波分量的绝对功率测量精度; 最后,进行相位校准,从而保证图1中所示每个基波和谐波分量之间的相对相位的测量精度。

经过三步校准后,既可以保证图1中所示的每个频谱分量的幅度和相位的测量准确度,每个频谱之间的比值就是X-参数,由此实现X 参数的精确测量。

图4给出了X 参数的测量结果。

NVNA 非线性矢量网络分析仪5图4: X 参数测量结果图7: 谐波与基波之间的相位关系图8:记忆效应测量图5:动态负载线图6: 射频电压和电流波形X 参数测量是NVNA 的一个核心应用 ,除此之外NVNA 还有很多有益于功率放大器设计的测量功能:●动态负载线,如图5所示。

它表征功率管漏极射频电压与电流之间的关系,结合直流IV 曲线可以让工程师清楚地知道功率管在每个频率、功率、偏置及负载下的实际工作区域。

动态负载线是使用大信号模型之外的另一种功率放大器设计方法,尤其是对于设计超大功率的功率放大器,如100瓦、200瓦或更高。

●射频电压和电流时域波形,如图6所示。

它对于很多从事开关放大器设计的工程师非常有价值,因为通过观察漏极电压与电流时域波形的叠加情况可以判断开关放大器功率附加效率的高低。

●谐波与基波之间的相对相位关系,如图7所示。

每个频谱分量的相位对于设计功放非常有价值,譬如多个功率管的并联或串联,只有了解每个频谱分量的相位信息才可以设计外围电路让并联或串联的合成输出效果最佳。

●记忆效应,见图8所示。

由于有源器件内的电容电感及直流偏置网络都会带来记忆效应,它会影响器件的性能。

62GHz 1GHz 122.1度相位差记忆效应引起的上升沿突变图9: X 参数处理流程非线性测量非线性仿真和设计非线性建模客户应用图10: NVNA&X 参数实现非线性测量、建模、仿真及应用的无缝连接图9给出了X 参数处理的流程,首先使用NVNA 测量X 参数,NVNA 会自动把测量结果转化为PHD 模型存为MDIF 格式文件; 其次,ADS 使用PHD 设计套件基于MDIF 格式文件生成一个基于X 参数的PHD 元件; 最后,即可使用这个元件进行功放的设计和仿真。

由于NVNA 结合ADS 可以完成功率管的非线性测量、大信号模型提取、功放与系统的仿真设计,从而整合了非线性功放的设计过程,如图10所示。

这种无缝连接的功放设计工具极大地简化了设计流程,提高了设计效率,最终让工程师在最短时间内设计出最好的产品。

X 参数处理流程7B pm = X F ( A 11 ) + X S ( A 11 ) P m-n A qn + X T ( A 11 ) P m+n A*qnpm pm, qn pm, qnX 参数测量系统设计模块设计晶体管建模工艺开发X 参数X 参数设计和仿真图11: X 参数可以应用于高频设计的各个环节X 参数X 参数X 参数不仅应用于功放设计,而且半导体工艺开发、射频模块设计和系统设计都可以受益于X 参数。

对于工艺开发工程师,可以使用X 参数改善他们的工艺; 射频设计工程师可以使用X 参数设计射频收发组件,如: 雷达的T/R 组件; 系统设计工程师可以使用X 参数进行系统级仿真和设计; 天线设计工程师可以使用X 参数帮助设计天线的输入匹配电路等。

相关文档
最新文档