新课标2017春高中数学第2章数列2.2等差数列第4课时等差数列前n项和公式的应用课件新人教B版必修5
第4章 4.2 4.2.2 第1课时 等差数列的前n项和公式-【新教材】

境
堂
导 学
探
n 的二次函数 Sn=d2n2+a1-d2n,类比二次函数的最值情况,等差数
·
小 结
提
新
素
知 列的 Sn 何时有最大值?何时有最小值?
养
合
作 探
[提示]
由二次函数的性质可以得出:当 a1<0,d>0 时,Sn 先减
课 时
究
分
释
后增,有最小值;当 a1>0,d<0 时,Sn 先增后减,有最大值;且 n 取
·
提
新
素
知
又因为 a1=S1=3,
养
合 作
所以 a1 不满足 an=Sn-Sn-1=2n-1,故命题错误.
探
课 时
究 释
(3)错误.当公差为零时,Sn 为一次函数.
分 层 作
疑 难
[答案] (1)√ (2)× (3)×
业
·
返 首 页
11
·
情
课
境 导
2.在等差数列{an}中,已知 a1=2,d=2,则 S20=( )
小
学
结
·
探
提
新 知
合
合作
探究
释疑
难
素 养
作
课
探
时
究
分
层
释
作
疑
业
难
返 首 页
·
·
16
情
等差数列前n项和的有关计算
课
境
堂
导 学
【例 1】 在等差数列{an}中,
小 结
·
探 新
(1)已知 a6=10,S5=5,求 a8;
求和公式
等差数列的前n项和公式(1)课件高二上学期数学人教A版(2019)选择性必修第二册 (1)

问题2:你能用上述方法计算 + + + ⋯ + 吗?
需要对项数的奇偶进行讨论
(1)当是偶数时, 有 + = + − = ⋯ = + + ,
且 ≠ .任取若干组,,,在电子表格中计算
l
, , , , 的
值(图表示 = , = , = 的情况),观察数列{ }的特点,研究它
是一个怎样的数列,并证明你的结论.
结论:已知数列{ }的前项和为 = + + (,,为常数
例题精讲
课本例6.已知数列{ }是等差数列.
l = ,求 ;
(1)若 = ,
(2)若 = , = ,求 ;
(3)若 =
,
=
− ,
= −,求.
解(1):因为 = , = ,根据公式 =
=
×(+)
所以 = 12.
(−1)
1 +
,得
2
课本例7.已知一个等差数列 前10项的和是310,前20项的和是
1220.由这些条件能确定这个等差数列的首项和公差吗?
追问:还有其他方法吗?
解: =310, =1220,
把它们代入公式 = +
+ =
且 ≠ ),则当 = 时,数列{ }为等差数列;当 ≠ 时,数列{ }
从第二项起为等差数列.
已知数列 { }的前项和为 = + + (,,为常数且 ≠ ),
(完整版)数列公式汇总.doc

人教版数学必修五第二章数列重难点解析第二章课文目录2. 1数列的概念与简单表示法2. 2等差数列2. 3等差数列的前n 项和2. 4等比数列2. 5等比数列前n 项和【重点】1、数列及其有关概念,通项公式及其应用。
2、根据数列的递推公式写出数列的前几项。
3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。
4、等差数列 n 项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。
5、等比数列的定义及通项公式,等比中项的理解与应用。
6、等比数列的前n 项和公式推导,进一步熟练掌握等比数列的通项公式和前n 项和公式【难点】1、根据数列的前n 项观察、归纳数列的一个通项公式。
2、理解递推公式与通项公式的关系。
3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。
4、灵活应用等差数列前n 项公式解决一些简单的有关问题。
5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。
6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。
一、数列的概念与简单表示法⒈ 数列的定义:按一定次序排列的一列数叫做数列 .注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.⒉ 数列的项:数列中的每一个数都叫做这个数列的项 . 各项依次叫做这个数列的第 1 项(或首项),第2 项,,第 n 项, .⒊数列的一般形式:a1 , a2 , a3 , , a n , ,或简记为a n,其中 a n是数列的第n项⒋数列的通项公式:如果数列 a n 的第 n 项a n与 n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式 .注意:⑴并不是所有数列都能写出其通项公式,如上述数列④;⑵一个数列的通项公式有时是不唯一的,如数列:1, 0, 1, 0, 1 , 0 ,它的通项公式可以是1 ( 1) n 1|.a n ,也可以是 a n | cos n 12 2⑶数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:*数列可以看成以正整数集N(或它的有限子集{1 , 2, 3,, n} )为定义域的函数a n f (n) ,当自变量从小到大依次取值时对应的一列函数值。
普通高中课程标准实验教科书必修5第二章数列 (数列的概念与简单的表示方法等17个) 人教课标版4最新优选公

新课引入
这个故事告诉我们: (1)作为数学王子的高斯从小就善于观察,敢 于思考,所以他能从一些简单的事物中发现和 寻找出某些规律性的东西。
(2)该故事还告诉我们求等差数列前 n 项和的 一种很重要的思想方法,这就是下面我们要介 绍的“倒序相加”法。
在等差数列的通 与项 前 n项 公和 式公,式 含中 有 a1, d,n,an ,Sn 五个,只 量要已知其中,就 三可 个以 量求 出余下的两 . 个量
例题讲解
例 3在等 a n 差 中 ,已 数 1 知 项 列 第 1 到 项 0 第 的 31 ,和
第 1项 1 2 到 项 0 第 的 91 ,求 和 02项 第 为 1 3 到 项 0 第 .的
以后也许三里清风,三里路,步步清风再无你。可也无悔你来过!人生的路你陪我一程,我念你一生……… 谢谢你来过!往后余生愿安好!感恩相遇,感恩来过……“当花瓣离开花朵,暗香残留,香消在风起雨后,无人来嗅”忽然听到沙宝亮的这首《暗香》,似乎这香味把整间屋子浸染。我是如此迷恋香味,吸进的是花儿的味道,吐出来的是无尽的芬芳。轻轻一流转,无限风情,飘散,是香,是香,它永远不会在我的时光中走丢。
项数4为 0的 0 等差.数列 根据等差数列的求和公 式 , 得
S40 0404 0.0 1400 4 201 00.2 320 m 00 .m
320 m 0 m 1 00 m 0
答 满盘时卫生纸和长度为 约100m.
例题讲解
例6 已知数 {an}列 的前 n项和Sn为 n212n,求这个数 列的通项 .这 公个 式数列是等?差 如数 果,列 是 它吗 的 首项和公差分?别是什么
高中数学课件:第二章 2.3 等差数列的前n项和 第一课时 等差数列的前n项和

n=1 n≥2.
返回
在等差数列{an}中,S10=100,S100=10.求S110.
[解] 法一:(基本量法)设等差数列{an}的首项为 a1,
1010-1 d=100, 10a1+ 2 公差为 d,则 100a +100100-1d=10. 1 2
2
返回
返回
点击此图片进入 NO.1 课堂强化
返回
点击此图片进入 NO.2 课下检测
返回
1 022,求公差d;
(2)已知等差数列{an}中,a2+a5=19,S5=40,求a10.
返回
nn-1 解:(1)因为 an=a1+(n-1)d,Sn=na1+ 2 d, 又 a1=1,an=-512,Sn=-1 022, 1+n-1d=-512, 所以 1 n+2nn-1d=-1 022. ① ②
返回
返回
[研一题] [例1] 在等差数列{an}中,已知d=2,an=11,Sn=
35,求a1和n.
返回
[自主解答]
an=a1+n-1d, 由 nn-1 Sn=na1+ 2 d,
பைடு நூலகம்
a1+2n-1=11, 得 nn-1 na1+ 2 ×2=35,
n=5, 解方程组得 a1=3, n=7, 或 a1=-1.
2 . 3
课前预习·巧设计
第 二 章 数 列
等 差 数 列 的 前
第一 课时 等差 数列 的前 n项 和
名 师 课 堂 · 一 点 通
创 新 演 练 · 大 冲 关
考点一 考点二 考点三
n
项 和
N0.1 课堂强化 N0.2 课下检测
返回
返回
高中数学必修5课件:第2章2-3-1等差数列的前n项和

数学 必修5
第二章 数列
与前n项和有关的最值问题
已知等差数列{an}中,a1=9,a4+a7=0. (1)求数列{an}的通项公式; (2)当n为何值时,数列{an}的前n项和取得最大值. [思路点拨]
数学 必修5
第二章 数列
[规范解答] (1)由a1=9,a4+a7=0,
得a1+3d+a1+6d=0,
数学 必修5
第二章 数列
等差数列的前n项和公式
已知量 首项、末项与项数
求和
na1+an
公式 Sn=_____2________
首项、公差与项数 Sn=__n_a_1+__n__n_2-__1__d___
数学 必修5
第二章 数列
对等差数列前n项和公式的理解 (1)等差数列的前n项和公式有两种形式,涉及a1,an,Sn, n,d五个量,通常已知其中三个量,可求另外两个量,解答方 法就是解方程组.
数学 必修5
第二章 数列
如图,某仓库堆放的一堆钢管,最上面的一层有4根钢 管,下面的每一层都比上一层多一根,最下面的一层有9根.
[问题1] 共有几层?图形的横截面是什么形状? [提示] 六层 等腰梯形
数学 必修5
第二章 数列
[问题2] 假设在这堆钢管旁边再倒放上同样一堆钢管,如 图所示,则这样共有多少钢管?
数学 必修5
第二章 数列
由an≤0解得n≤4,即数列{an}前3项为负数,第4项为0, 从第5项开始为正数.
∴当n≤4时,Tn=-Sn=n(7-n), 当n>4时,Tn=Sn-S4+(-S4) =Sn-2S4=n(n-7)-2×4×(4-7) =n2-7n+24
∴Tn=nn2-7-7nn+,2n4≤,4n,>4.
高中数学选择性必修二 4 2 2第一课时等差数列的前n项和公式
[跟踪训练]
设 Sn 是等差数列{an}的前 n 项和,已知 a2=3,a8=11,则 S9
等于
()
A.13
B.35
C.49
D.63
解析:∵{an}为等差数列,∴a1+a9=a2+a8,
1.本题属于与等差数列前 n 项和有关的应用题,其关键 在于构造合适的等差数列.
2.遇到与正整数有关的应用题时,可以考虑与数列知识 联系,建立数列模型,具体解决要注意以下两点:
(1)抓住实际问题的特征,明确是什么类型的数列模型; (2)深入分析题意,确定是求通项公式 an,还是求前 n 项 和 Sn 或者求 n.
等差数列的前 n 项和的有关计算 [例 1] 已知等差数列{an}. (1)a1=56,a15=-32,Sn=-5,求 d 和 n; (2)a1=4,S8=172,求 a8 和 d.
[解] 又 Sn=na1+ 2 d=-5, 解得 n=15 或 n=-4(舍).
3.已知等差数列{an}的前 n 项和为 Sn,若 S8=16,a6=1,
则数列{an}的公差为
()
3 A.2
B.-32
2 C.3
D.-23
解析:设数列{an}的公差为 d,∵等差数列{an}的前 n 项和
为 Sn,S8=16,a6=1,
∴S8=8a1+8×2 7d=16, a6=a1+5d=1,
∴S9=9a22+a8=9×214=63. 答案:D
等差数列前 n 项和公式的简单应用 [例 2] 设 Sn 为数列{an}的前 n 项和,Sn=2n2-30n. (1)求 a1 及 an; (2)判断这个数列是否是等差数列. [解] (1)因为 Sn=2n2-30n,所以当 n=1 时, a1=S1=2×12-30×1=-28, 当 n≥2 时,an=Sn-Sn-1 =2n2-30n-[2(n-1)2-30(n-1)]=4n-32. 验证当 n=1 时上式成立, 所以 an=4n-32.
2.2.2等差数列的通项公式(第4课时)等差数列前n项和的性质 学案(含答案)
2.2.2等差数列的通项公式(第4课时)等差数列前n项和的性质学案(含答案)第4课时等差数列前n项和的性质学习目标1.会利用等差数列性质简化求和运算.2.会利用等差数列前n 项和的函数特征求最值知识点一等差数列an的前n项和Sn的性质性质1等差数列中依次k项之和Sk,S2kSk,S3kS2k,组成公差为k2d的等差数列若等差数列的项数为2nnN*,则S2nnanan1,S 偶S奇nd,S奇0;性质2若等差数列的项数为2n1nN*,则S2n12n1anan是数列的中间项,S奇S偶an,S奇0知识点二等差数列an的前n项和公式与函数的关系1将公式Snna1变形,得Snn2n.若令A,a1B,则上式可以写成SnAn2Bn,1等差数列前n项和Sn不一定是关于n的二次函数当公差d0时,Snna1,不是项数为n的二次函数当d0时,此公式可看成二次项系数为,一次项系数为,常数项为0的二次函数,其图象为抛物线yx2x上的点集,坐标为n,SnnN*因此,由二次函数的性质可以得出结论当d0时,Sn有最小值;当d0时,Sn有最大值2关于n的二次函数也不一定是等差数列的前n项和,由SnAn2BnC,当C0时,Sn不是某等差数列的前n项和;当C0时,令A,a1B,则能解出a1和d,因此这时一定是某等差数列的前n项和2若an为等差数列,公差为d,则为等差数列,公差为.1等差数列的前n项和一定是常数项为0的关于n的二次函数2等差数列an的前n项和SnAn2Bn.即an 的公差为2A.3若等差数列an的公差为d,前n项和为Sn.则的公差为.4数列an的前n项和Snn21,则an不是等差数列题型一等差数列前n项和的性质的应用例11等差数列an的前m项和为30,前2m项和为100,求数列an的前3m项的和S3m;2已知某等差数列an共有10项,若其奇数项之和为15,偶数项之和为30,求其公差解1在等差数列中,Sm,S2mSm,S3mS2m成等差数列,30,70,S3m100成等差数列27030S3m100,S3m210.2依题意有a1a3a5a7a915,a2a4a6a8a1030,得5d15,d3.反思感悟等差数列前n项和Sn的有关性质在解题过程中,如果运用得当可以达到化繁为简.化难为易.事半功倍的效果跟踪训练11等差数列an的前n项和为Sn,若S33,S69,则S9________.2等差数列an的公差为,且S100145,则奇数项的和a1a3a5a99________.答案118260解析1S3,S6S3,S9S6成等差数列,2S6S3S3S9S6,即2933S99,S918.2设a1a3a5a99S奇,a2a4a6a100S偶,则S奇S偶S100145.S偶S奇50d25.得2S奇120,S奇60.题型二Sn与函数的关系命题角度1SnAn2Bn的应用例21两个等差数列an,bn的前n项和分别为Sn和Tn,已知,求的值解方法一设Snk7n22n,Tnkn23n,k0,则a5S5S4k75225k7422465k,b5T5T4k5235k423412k..方法二.2已知an为等差数列,Sn为数列an的前n项和,且S77,S1575,求数列的前n项和Tn.解设等差数列an的公差为d,则Snna1d.S77,S1575,即解得a1d2,,数列是等差数列,且其首项为2,公差为.Tnn2nnN*反思感悟将等差数列前n项和公式Snna1d整理成关于n的函数,可得Snn2n.即Snna1dn2n,利用Sn与函数的关系可以使运算更简便跟踪训练21在例21的条件下,求的值2已知等差数列an的前n项和为Sn,若S33,S515,求S9.解1设Snk7n22n,Tnkn23n,则a565k,b6T6T5k6236k523514k,.2为等差数列,设公差为d,则d1,n3d1n3n2,927,S97963.命题角度2等差数列an的前n项和Sn的最值例3在等差数列an中,若a125,且S9S17,求Sn的最大值解方法一S9S17,a125,925d1725d,解得d2.Sn25n2n226nn132169.当n13时,Sn有最大值169.方法二同方法一,求出公差d2.an25n122n27.a1250,由得又nN*,当n13时,Sn有最大值169.方法三同方法一,求出公差d2.S9S17,a10a11a170.由等差数列的性质得a13a140.a130,a140.当n13时,Sn有最大值169.方法四同方法一,求出公差d2.设SnAn2Bn.S9S17,二次函数fxAx2Bx的对称轴为x13,且开口方向向下,当n13时,Sn取得最大值169.反思感悟1等差数列前n项和Sn取得最大小值的情形若a10,d0,则Sn 存在最大值,即所有非负项之和若a10,d0,则Sn存在最小值,即所有非正项之和2求等差数列前n项和Sn最值的方法寻找正.负项的分界点,可利用等差数列性质或利用或来寻找运用二次函数求最值跟踪训练3已知等差数列an中,a19,a4a70.1求数列an的通项公式;2当n为何值时,数列an的前n 项和取得最大值解1由a19,a4a70,得a13da16d0,解得d2,ana1n1d112nnN*2方法一由1知,a19,d2,Sn9n2n210nn5225,当n5时,Sn取得最大值方法二由1知,a19,d20,an是递减数列令an0,则112n0,解得n.nN*,n5时,an0,n6时,an0.当n5时,Sn取得最大值数形结合感悟事物本质典例在等差数列an中,a17,公差为d,前n项和为Sn,当且仅当n8时Sn取得最大值,则d的取值范围为________答案解析方法一由当且仅当n8时Sn 最大,知a80且a90,于是解得1d,故d的取值范围为.方法二Snn2n,由题意知d0,对称轴x,n8时,Sn取最大值7.58.5,即87,d.素养评析利用数形结合抓住事物本质,解决问题才能思路清晰,方法简捷等差数列ana10,d0或a10,d0中,andna1d,其图象为ydxa1d上的一系列点,要求Sn的最大小值,只需找出距x轴最近的两个点;Snn2n,其图象为yx2x上的一系列点要求Sn的最大小值,只需找出距对称轴最近的点.1若数列an的前n项和Snn22n,则an1an的值为A1B2C3D4答案B解析由Snn22n可判断an为等差数列,公差为2.an1an2.2若等差数列an的前5项和为25,则a3的值为A2B3C4D5答案D解析S55a325,a35.3设Sn是等差数列an的前n项和,已知a23,a611,则S7________.答案49解析S77749.4等差数列an中,若公差为2,a1a4a76,则a3a6a9________.答案18解析a3a6a9a1a4a7a3a1a6a4a9a76d12,a3a6a912618.5等差数列an中,公差d0,前n项和为Sn,S100,则Sn 取最小值n________.答案5解析S100,可设Snnn10,对称轴n5,且d0.n5时,Sn最小1等差数列an的前n项和Sn,有下面几种常见变形1Sn;2Snn2n;3n.2求等差数列前n项和最值的方法1二次函数法用求二次函数的最值方法来求其前n项和的最值,但要注意nN*,结合二次函数图象的对称性来确定n的值,更加直观2通项法当a10,d0,时,Sn取得最大值;当a10,d0,时,Sn取得最小值。
数列的递推公式与通项公式前n项和公式
二、数列的递推公式与通项公式、前n 项和公式一、知识点回顾:1、递推公式定义:如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
2、数列前n 项和S n 与通项a n 的关系式:a n =⎩⎨⎧--11s s s n n 12=≥n n 。
在数列{a n }中,前n 项和S n 与通项公式a n 的关系,是本讲内容一个重点,要认真掌握之。
注意:(1)用1--=n n n S S a 求数列的通项公式时,你注意到此等式成立的条件了吗?(2n ≥,当1n =时,11S a =);若a 1 适合由a n 的表达式,则a n 不必表达成分段形式,可化统一为一个式子。
(2)一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。
3、数列的通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。
⑵已知n S (即12()n a a a f n +++= )求n a ,用作差法:{11,(1),(2)n nn S n a S S n -==-≥。
一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。
⑶已知12()n a a a f n = 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++- 1a +(2)n ≥。
⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅ (2)n ≥。
第2讲 等差数列及其前n项和 讲义
1.等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. 2.等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . 3.等差中项由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列.这时,A 叫做a 与b 的等差中项.4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (6)数列S m ,S 2m -S m ,S 3m -S 2m ,…构成等差数列. 5.等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =n (a 1+a n )2或S n =na 1+n (n -1)2d .6.等差数列的前n 项和公式与函数的关系 S n =d2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数). 7.等差数列的前n 项和的最值在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值. 【知识拓展】等差数列的四种判断方法(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列. (2)等差中项法:2a n +1=a n +a n +2 (n ∈N *)⇔{a n }是等差数列. (3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列. (4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × )(2)等差数列{a n }的单调性是由公差d 决定的.( √ )(3)等差数列的前n 项和公式是常数项为0的二次函数.( × )(4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ )1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6等于( ) A .-1 B .0 C .1 D .6 答案 B解析 由等差数列的性质,得a 6=2a 4-a 2=2×2-4=0,故选B.2.(2016·全国乙卷)已知等差数列{a n }前9项的和为27,a 10=8,则a 100等于( ) A .100 B .99 C .98 D .97 答案 C解析 由等差数列性质,知S 9=9(a 1+a 9)2=9×2a 52=9a 5=27,得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98,故选C.3.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( ) A .14 B .21 C .28 D .35 答案 C解析 ∵a 3+a 4+a 5=3a 4=12,∴a 4=4, ∴a 1+a 2+…+a 7=7a 4=28.4.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案 60解析 ∵S 10,S 20-S 10,S 30-S 20成等差数列,且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-30=10+2×10=30,∴S 30=60.5.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.答案 8解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大.题型一 等差数列基本量的运算例1 (1)在数列{a n }中,若a 1=-2,且对任意的n ∈N *有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52 D.54(2)(2016·北京)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 答案 (1)C (2)6解析 (1)由2a n +1=1+2a n 得a n +1-a n =12,所以数列{a n }是首项为-2,公差为12的等差数列,所以S 10=10×(-2)+10×(10-1)2×12=52.(2)∵a 3+a 5=2a 4=0,∴a 4=0. 又a 1=6,∴a 4=a 1+3d =0,∴d =-2. ∴S 6=6×6+6×(6-1)2×(-2)=6.思维升华 等差数列运算问题的通性通法(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.(1)设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( ) A .13 B .35 C .49D .63(2)(2016·江苏)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 答案 (1)C (2)20解析 (1)∵a 1+a 7=a 2+a 6=3+11=14, ∴S 7=7(a 1+a 7)2=49.(2)设等差数列{a n }的公差为d ,由题意可得 ⎩⎪⎨⎪⎧a 1+(a 1+d )2=-3,5a 1+5×42d =10,解得⎩⎪⎨⎪⎧a 1=-4,d =3, 则a 9=a 1+8d =-4+8×3=20. 题型二 等差数列的判定与证明例2 已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. (1)证明 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1(n ∈N *),所以b n +1-b n =1a n +1-1-1a n -1=1(2-1a n)-1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a 1-1=-52.所以数列{b n }是以-52为首项,1为公差的等差数列.(2)解 由(1)知b n =n -72,则a n =1+1b n =1+22n -7.设f (x )=1+22x -7,则f (x )在区间(-∞,72)和(72,+∞)上为减函数.所以当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3. 引申探究本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式.解 由已知可得a n +1n +1=a nn +1,即a n +1n +1-a n n=1,又a 1=35,∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25, ∴a n =n 2-25n .思维升华 等差数列的四个判定方法(1)定义法:证明对任意正整数n 都有a n +1-a n 等于同一个常数.(2)等差中项法:证明对任意正整数n 都有2a n +1=a n +a n +2后,可递推得出a n +2-a n +1=a n +1-a n =a n -a n -1=a n -1-a n -2=…=a 2-a 1,根据定义得出数列{a n }为等差数列.(3)通项公式法:得出a n =pn +q 后,得a n +1-a n =p 对任意正整数n 恒成立,根据定义判定数列{a n }为等差数列.(4)前n 项和公式法:得出S n =An 2+Bn 后,根据S n ,a n 的关系,得出a n ,再使用定义法证明数列{a n }为等差数列.(1)在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( ) A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n答案 A解析 由已知式2a n +1=1a n +1a n +2可得1a n +1-1a n =1a n +2-1a n +1,知{1a n }是首项为1a 1=1,公差为1a 2-1a 1=2-1=1的等差数列,所以1a n =n ,即a n =1n.(2)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. ①设b n =a n +1-a n ,证明{b n }是等差数列; ②求{a n }的通项公式.①证明 由a n +2=2a n +1-a n +2, 得a n +2-a n +1=a n +1-a n +2, 即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. ②解 由①得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1.于是∑nk =1 (a k +1-a k )=∑nk =1(2k -1),所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2. 题型三 等差数列性质的应用 命题点1 等差数列项的性质例3 (1)(2015·广东)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________. (2)已知{a n },{b n }都是等差数列,若a 1+b 10=9,a 3+b 8=15,则a 5+b 6=________. 答案 (1)10 (2)21解析 (1)因为{a n }是等差数列,所以a 3+a 7=a 4+a 6=a 2+a 8=2a 5,a 3+a 4+a 5+a 6+a 7=5a 5=25,所以a 5=5,故a 2+a 8=2a 5=10.(2)因为{a n },{b n }都是等差数列,所以2a 3=a 1+a 5,2b 8=b 10+b 6,所以2(a 3+b 8)=(a 1+b 10)+(a 5+b 6),即2×15=9+(a 5+b 6),解得a 5+b 6=21. 命题点2 等差数列前n 项和的性质例4 (1)设等差数列{a n }的前n 项和为S n ,且S 3=-12,S 9=45,则S 12=________. (2)在等差数列{a n }中,a 1=-2 018,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 018的值等于( )A .-2 018B .-2 016C .-2 019D .-2 017答案 (1)114 (2)A解析 (1)因为{a n }是等差数列,所以S 3,S 6-S 3,S 9-S 6,S 12-S 9成等差数列,所以2(S 6-S 3)=S 3+(S 9-S 6),即2(S 6+12)=-12+(45-S 6),解得S 6=3. 又2(S 9-S 6)=(S 6-S 3)+(S 12-S 9),即2×(45-3)=(3+12)+(S 12-45),解得S 12=114. (2)由题意知,数列{S nn }为等差数列,其公差为1,∴S 2 0182 018=S 11+(2 018-1)×1 =-2 018+2 017=-1. ∴S 2 018=-2 018.思维升华 等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差. (2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n .(1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( ) A .58 B .88 C .143D .176(2)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727 B.3828 C.3929D.4030答案 (1)B (2)A解析 (1)S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. (2)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727.6.等差数列的前n 项和及其最值考点分析 公差不为0的等差数列,求其前n 项和与最值在高考中时常出现.题型有小题,也有大题,难度不大.典例1 (1)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( ) A .45 B .60 C .75D .90(2)在等差数列{a n }中,S 10=100,S 100=10,则S 110=________. 解析 (1)由题意得a 3+a 8=9,所以S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×92=45.(2)方法一 设数列{a n }的首项为a 1,公差为d , 则⎩⎨⎧10a 1+10×92d =100,100a 1+100×992d =10,解得⎩⎨⎧a 1=1 099100,d =-1150.所以S 110=110a 1+110×1092d =-110.方法二 因为S 100-S 10=(a 11+a 100)×902=-90,所以a 11+a 100=-2, 所以S 110=(a 1+a 110)×1102=(a 11+a 100)×1102=-110.答案 (1)A (2)-110典例2 在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值. 规范解答解 ∵a 1=20,S 10=S 15,∴10×20+10×92d =15×20+15×142d ,∴d =-53.方法一 由a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653, 得a 13=0.即当n ≤12时,a n >0,当n ≥14时,a n <0. ∴当n =12或n =13时,S n 取得最大值, 且最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130.方法二 S n =20n +n (n -1)2·⎝⎛⎭⎫-53 =-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.方法三 由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0.∴5a 13=0,即a 13=0.∴当n =12或n =13时,S n 有最大值,且最大值为S 12=S 13=130.1.(2016·重庆一诊)在数列{a n }中,a n +1-a n =2,a 2=5,则{a n }的前4项和为( )A .9B .22C .24D .32答案 C解析 由a n +1-a n =2,知{a n }为等差数列且公差d =2,∴由a 2=5,得a 1=3,a 3=7,a 4=9,∴前4项和为3+5+7+9=24,故选C.2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何?”其意思为:“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A.54钱 B.53钱 C.32钱 D.43钱 答案 D解析 设等差数列{a n }的首项为a 1,公差为d ,依题意有⎩⎪⎨⎪⎧ 2a 1+d =3a 1+9d ,2a 1+d =52,⎩⎨⎧ a 1=43,d =-16,故选D.3.(2017·佛山调研)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( )A .8B .9C .10D .11答案 C解析 由S n -S n -3=51,得a n -2+a n -1+a n =51,所以a n -1=17,又a 2=3,S n =n (a 2+a n -1)2=100,解得n =10. 4.在等差数列{a n }中,a 9=12a 12+6,则数列{a n }的前11项和S 11等于( ) A .24B .48C .66D .132 答案 D解析 方法一 由a 1+8d =12(a 1+11d )+6, 得a 1+5d =12,∴a 1=12-5d .又S 11=11a 1+11×102d =11a 1+55d =11(12-5d )+55d =132.方法二 由a 9=12a 12+6,得2a 9-a 12=12. 由等差数列的性质得,a 6+a 12-a 12=12,a 6=12,S 11=11(a 1+a 11)2=11×2a 62=132,故选D. 5.已知数列{a n }满足a n +1=a n -57,且a 1=5,设{a n }的前n 项和为S n ,则使得S n 取得最大值的序号n 的值为( )A .7B .8C .7或8D .8或9 答案 C解析 由题意可知数列{a n }是首项为5,公差为-57的等差数列,所以a n =5-57(n -1)=40-5n 7,该数列前7项是正数项,第8项是0,从第9项开始是负数项,所以S n 取得最大值时,n =7或n =8,故选C.*6.设数列{a n }的前n 项和为S n ,若S n S 2n为常数,则称数列{a n }为“吉祥数列”.已知等差数列{b n }的首项为1,公差不为0,若数列{b n }为“吉祥数列”,则数列{b n }的通项公式为( )A .b n =n -1B .b n =2n -1C .b n =n +1 DD .b n =2n +1答案 B解析 设等差数列{b n }的公差为d (d ≠0),S n S 2n=k ,因为b 1=1, 则n +12n (n -1)d =k [2n +12×2n (2n -1)d ], 即2+(n -1)d =4k +2k (2n -1)d ,整理得(4k -1)dn +(2k -1)(2-d )=0.因为对任意的正整数n 上式均成立,所以(4k -1)d =0,(2k -1)(2-d )=0,又公差d ≠0,解得d =2,k =14. 所以数列{b n }的通项公式为b n =2n -1.7.(2015·安徽)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.答案 27解析 由题意知数列{a n }是以1为首项,以12为公差的等差数列,∴S 9=9×1+9×82×12=9+18=27.8.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10=________. 答案 14解析 由已知得1a 10=1a 1+(10-1)×13=1+3=4, 故a 10=14. 9.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 答案1941 解析 ∵{a n },{b n }为等差数列,∴a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6. ∵S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941, ∴a 9b 5+b 7+a 3b 8+b 4=1941. 10.设等差数列{a n }的前n 项和为S n ,若a 1=-3,a k +1=32,S k=-12,则正整数k =________. 答案 13解析 S k +1=S k +a k +1=-12+32=-212, 又S k +1=(k +1)(a 1+a k +1)2=(k +1)⎝⎛⎭⎫-3+322=-212, 解得k =13.11.在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2. 由S k =-35,可得2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N *,故k =7.12.已知等差数列{a n }前三项的和为-3,前三项的积为8.(1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.解 (1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d .由题意得⎩⎪⎨⎪⎧ 3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8, 解得⎩⎪⎨⎪⎧ a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3. 所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3. 记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+(n -2)[2+(3n -7)]2=32n 2-112n +10. 当n =2时,满足此式,当n =1时,不满足此式.综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n ≥2. *13.已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *). (1)求证:数列{a n }为等差数列;(2)求数列{a n }的通项公式.(1)证明 当n =1时,有2a 1=a 21+1-4, 即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a 2n -1+n -5,又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1,即a 2n -2a n +1=a 2n -1,也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1.若a n-1=-a n-1,则a n+a n-1=1.而a1=3,所以a2=-2,这与数列{a n}的各项均为正数相矛盾,所以a n-1=a n-1,即a n-a n-1=1,因此数列{a n}是首项为3,公差为1的等差数列.(2)解由(1)知a1=3,d=1,所以数列{a n}的通项公式a n=3+(n-1)×1=n+2,即a n=n+2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
〔跟踪练习1〕 导学号 27542374 在等差数列{an}中,a1=25,S17=S9,求前n项和Sn的最大值.
[解析]
解法一:由S17=S9,得
17×17-1 9×9-1 25×17+ d=25×9+ d,解得d=-2, 2 2 nn-1 所以Sn=25n+ 2 ×(-2)=-(n-13)2+169. 由二次函数性质,得当n=13时,Sn取得最大值169.
1 2 21 则当n≤11时,|a1|+|a2|+|a3|+„+|an|=Sn=- n + n. 2 2 1 2 21 当n≥12时,|a1|+|a2|+|a3|+„+|an|=-Sn+2S11= n - n+110. 2 2 综上所述,|a1|+|a2|+|a3|+„+|an| 1 2 21 -2n + 2 nn≤11 = 1n2-21n+110n≥12 2 2
解法二:先求出d=-2(同解法一). ∵a1=25>0,d=-2, 1 n≤132 an=25-2n-1≥0 ∴ ,得 an+1=25-2n≤0 n≥121 2
.
1 1 即122≤n≤132.∴当n=13时,Sn取得最大值 1313-1 S13=13×25+ ×(-2)=169. 2
B.16 D.64
2.在等差数列{an}中,a1+a4+a7=39,a3+a6+a9=27,则数列{an}的前9 项和S9等于 导学号 27542368 ( B ) A.66 C.144 B.99 D.297
[解析]
∵a1+a4+a7=3a4=39,∴a4=13.
又∵a3+a6+a9=3a6=27,∴a6=9. 9a1+a9 9a4+a6 9×13+9 ∴S9= = = =99. 2 2 2
d 1 解法二:由S9=S12,得 =- . a1 10
an=a1+n-1d≤0 由 an+1=a1+nd≥0
,
1 1-10n-1≥0 得 1- 1 n≤0 10 解得10≤n≤11.
.
∴n取10或11时,Sn取最小值.
解法三:∵S9=S12,∴a10+a11+a12=0, ∴3a11=0,∴a11=0. ∵a1<0,∴前10项或前11项和最小.
6.设数列{an}为等差数列,其前n项和为Sn,且S4=-62,S6=-75,求: 导学号 27542372 (1)通项an及前n项和Sn; (2)求|a1|+|a2|+„+|a14|的值.
[解析]
4a1+6d=-62 (1)设公差为d,由题意,得 6a1+15d=-75
,
a1=-20 解得 d=3
3.设{an}是等差数列,Sn为其前n项和,且S5<S6,S6=S7>S8,则下列结论错 误的是 导学号 27542369 ( C ) A.d<0 B.a7=0 C.S9>S5 D.S6与S7均为Sn的最大值.
[解析]
由S5<S6知a6>0,由S6=S7知a7=0,
由S7>S8知a8<0,C选项S9>S5即a6+a7+a8+a9>0,∴a7+a8>0,显然错误.
156 4.在等差数列{an}中,a3+a7-a10=8,a11-a4=4,则S13=________.
导学号 27542370
[解析]
设公差为d,则a11-a4=7d=4,
4 4 60 ∴d=7,又a3+a7-a10=a1-d=8,∴a1=8+d=8+7= 7 . 1 4 ∴S13=13a1+2×13×12×7 60 4 13×84 =13× 7 +13×6×7= 7 =13×12=156.
命题方向2 ⇨含绝对值的数列的前n项和
在等差数列{an}中,a1=-60,a17=-12,求数列{|an|}的前n项 和. 导学号 27542375
[分析] 本题实际上是求数列{an}前n项的绝对值之和,由绝对值的意义,要
求我们应首先分清这个数列中的哪些项是负的,哪些项是非负的.由已知,数列 {an}是首项为负数的递增数列,因此应先求出这个数列从首项起共有哪些项是负 数,然后再分段求出前n项的绝对值之和.
(2)∵an=2n-1, 1 1 1 1 ∴bn= =22n-1-2n+1 , 2n-12n+1 ∴Bn=b1+b2+b3+„+bn
1 1 1 1 1 1 1 1 =21-3+3-5+5-7+„+2n-1-2n+1
1 1 n 1 - = = . 2n+1 2 2 n + 1
1 求数列 nn+2的前n项和. 导学号
27542379
[错解]
1 11 1 ∵ =2(n- ), nn+2 n+2
1 1 1 1 1 1 1 1 1 1 1 ∴数列{ }的前n项和Sn=2(1-3+2-4+3-5+„+n- )= (1+2 nn+2 n+2 2 1 1 3 1 +n- )= + . n+2 4 nn+2
解法三:先求出d=-2(同解法一). 由S17=S9,得a10+a11+„+a17=0. 而a10+a17=a11+a16=a12+a15=a13+a14, 故a13+a14=0. ∵d=-2<0,a1>0,∴a13>0,a14<0. 故n=13时,Sn取得最大值169.
解法四:先求出d=-2(同解法一). 由d=-2,得Sn的图象如图所示的曲线上均匀分布的点,由S17=S9,知图象 9+17 的对称轴n= 2 =13. 所以,当n=13时,Sn取得最大值169.
当n=1时,2 a1=a1+1,即( a1-1)2=0,∴a1=1. 当n≥2时,有2 Sn-1=an-1+1.②
2 ①2-②2得4an=a2 n-an-1+2an-2an-1,
即(an+an-1)(an-an-1-2)=0. ∵an>0,∴an+an-1>0,∴an-an-1=2, ∴数列{an}是首项为1,公差为2的等差数列, ∴an=1+(n-1)×2=2n-1.
大 值;a1<0,d>0,则Sn 2.在等差数列{an}中,a1>0,d<0.则Sn存在最________
小 存在最________ 值.
1.已知等差数列{an}的前n项和Sn=n2,则a8的值为 导学号 27542367 ( A ) A.15 C.49
[解析] a8=S8-S7=82-72=15.
[辨析] 错误的原因在于裂项相消时,没有搞清剩余哪些项.
[正解]
1 1 9a1+ ×9×8×d=12a1+ ×12×11×d, 2 2 即3a1=-30d,∴a1=-10d,
பைடு நூலகம்
∵a1<0,∴d>0, 1 1 2 21 ∴Sn=na1+2n(n-1)d=2dn - 2 dn 212 212 d = n- 2 - d. 2 8 ∵d>0,∴Sn有最小值. 又∵n∈N*,∴n=10或n=11时,Sn取最小值.
新课标导学
数 学
必修5 ·人教B版
第二章
数 列
2.2 等差数列
第4课时 等差数列前n项和公式的应用
1
课前自主学习
2
3
课堂典例讲练
课 时 作 业
课前自主学习
在我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含 许多与 9 相关的设计.例如,北京天坛圆丘的地面由扇环型的石板铺成 ( 如右图 所示 ) .中心是一块天心石,围绕它的第一圈有 9块石板,从第二圈开始,每一 圈比前一圈多9块,共有9圈.
(1)第9圈共有多少块石板?
(2)前9圈一共有多少块石板?
nn-1 d 2 d 1.等差数列的前n项和Sn=na1+ 2 d可以改写成:Sn= 2 n +(a1- 2 )n.当
二次 函数,所以可借助________ 二次 函数的有关性质来处理 d≠0时,Sn是关于n的________
等差数列前n项和Sn的有关问题.
nn-1 3 2 123 当n≤20时,S′n=-Sn=-[-60n+ ×3]=- n + n; 2 2 2 当n>20时,S′n=-S20+(Sn-S20)=Sn-2S20 nn-1 20×19 =-60n+ ×3-2×(-60×20+ ×3) 2 2 3 2 123 =2n - 2 n+1 260. 3 2 123 -2n + 2 nn≤20 ∴数列{|an|}的前n项和S′n= 3n2-123n+1 260n>20 2 2
1 1 1 = ( - ), 2 2n+1 2n+3
1 1 1 1 1 1 1 ∴Sn=a1+a2+a3+„+an=2[(3-5)+(5-7)+„+( - )] 2n-1 2n+3 11 1 n = ( - )= . 2 3 2n+3 6n+9 1 A B [点评] 形如: 的式子,若可拆分为 - 的形式,一 an+bcn+d an+b cn+d
5.“等和数列”的定义:在一个数列中,如果每一项与它的后一项的和都 等于同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已
3 知数列{an}是等和数列,且a1=2,公和为5,那么a18的值为________.
导学号 27542371
[解析] 由题意,得an+an+1=5,
∴an+1+an+2=5,∴an+2-an=0. ∵a1=2,∴a2=3. ∴当n为偶数时,an=3. ∴a18=3.
.
命题方向3 ⇨裂项求和法
1 求数列 2n+12n+3的前n项和. 导学号
27542377
[分析]
通项的分母是两项的积,且这两项相差2,所以可将其拆分为两项之
1 1 1 1 差,即 =2( - ). 2n+12n+3 2n+1 2n+3 1 [解析] an= 2n+12n+3
.
〔跟踪练习2〕 导学号 27542376 在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3满足5a1· a3=(2a2 +2)2. (1)求d,an; (2)若d<0,求|a1|+|a2|+|a3|+„+|an|.