(完整版)高中数学等差数列教案
高三数学数列教案5篇

高三数学数列教案5篇高三数学数列教案1等差数列(一)教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的'应用意识.教学重点: 1.等差数列的概念的理解与掌握. 2.等差数列的通项公式的推导及应用. 教学难点:等差数列“等差”特点的理解、把握和应用. 教学过程:Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子Ⅱ.讲授新课 10,8,6,4,2,; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,首先,请同学们仔细观察这些数列有什么共同的特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点) 它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数. 也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得: (n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d 即:an=a1+(n-1)d 当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式. 看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项. 由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则: an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d. 如:a5=a4+d=a3+2d=a2+3d=a1+4d请同学们来思考这样一个问题. 如果在a与b中间插入一个数A,使a、A、b 成等差数列,那么A应满足什么条件? 由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=. 反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列. 总之,A= a,A,b成等差数列. 如果a、A、b成等差数列,那么a叫做a与b 的等差中项. 例题讲解 [例1]在等差数列{an}中,已知a5=10,a15=25,求a25.思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算. 思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.[例2](1)求等差数列8,5,2的第20项. 分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项答案:这个数列的第20项为-49. (2)-401是不是等差数列-5,-9,-13的项?如果是,是第几项? 分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401. ∴-401是这个数列的第100项.Ⅲ.课堂练习1.(1)求等差数列3,7,11,的'第4项与第10项.(2)求等差数列10,8,6,的第20项. (3)100是不是等差数列2,9,16,的项?如果是,是第几项?如果不是,说明理由. 2.在等差数列{an}中,(1)已知a4=10,a7=19,求a1与d;(2)已知a3=9,a9=3,求a12.Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。
高中数学数列教案:等差数列

高中数学数列教案:等差数列一、教学目标1.知识与技能:理解等差数列的定义及性质;学会利用等差数列的通项公式和前n项和公式解决实际问题;掌握等差数列的应用。
2.过程与方法:通过观察、归纳、推理等方法,探索等差数列的规律;学会运用等差数列的通项公式和前n项和公式进行计算;培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:培养学生独立思考、合作交流的精神;培养学生运用数学知识解决实际问题的意识。
二、教学重难点1.教学重点:等差数列的定义及性质;等差数列的通项公式和前n项和公式。
2.教学难点:等差数列的性质的证明;等差数列的应用问题。
三、教学过程1.导入新课通过生活中的实例,如斐波那契数列,引导学生思考数列的特点,导入等差数列的概念。
2.等差数列的定义及性质讲解等差数列的定义:一个数列,从第二项起,每一项与它前一项的差都等于同一个常数,这个数列叫做等差数列。
讲解等差数列的性质:等差数列中任意连续三项的和等于中间项的三倍。
通过实例,让学生理解并掌握等差数列的定义及性质。
3.等差数列的通项公式讲解等差数列的通项公式:an=a1+(n1)d,其中an表示第n项,a1表示首项,d表示公差。
通过实例,让学生学会运用通项公式求解等差数列的特定项。
4.等差数列的前n项和公式讲解等差数列的前n项和公式:Sn=n/2(a1+an),其中Sn表示前n项和。
通过实例,让学生学会运用前n项和公式求解等差数列的和。
5.等差数列的应用举例讲解等差数列在实际问题中的应用,如求和、最值问题等。
让学生独立完成一些等差数列的应用题,培养学生的解决问题的能力。
6.课堂小结强调等差数列在实际问题中的应用。
7.作业布置布置一些等差数列的练习题,让学生巩固所学知识。
四、教学反思本节课通过生活中的实例导入等差数列的概念,让学生在轻松的氛围中学习。
在讲解等差数列的定义、性质、通项公式和前n项和公式时,注重通过实例进行教学,让学生在实际操作中掌握知识。
《等差数列》教案优秀3篇

《等差数列》教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划报告、合同协议、心得体会、演讲致辞、条据文书、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as plan reports, contract agreements, insights, speeches, policy documents, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please stay tuned!《等差数列》教案优秀3篇以往的教师在把握教材是,大都是有什么教什么,不能够灵活的使用教材。
高三数学必修五教案《等差数列》优秀4篇

高三数学必修五教案《等差数列》优秀4篇1. 引言本教案是针对高三数学必修五教材中的《等差数列》内容进行设计的。
《等差数列》是高中数学中的重要概念,对学生理解数列的规律和应用具有重要意义。
本教案旨在通过多种不同的教学方法和活动,帮助学生深入理解等差数列的定义、性质和应用。
2. 教案一:等差数列的定义和性质2.1 教学目标•了解等差数列的定义;•掌握等差数列的通项公式;•理解等差数列的性质。
2.2 教学内容1.等差数列的定义;2.等差数列的通项公式;3.等差数列的性质。
2.3 教学活动•分组讨论:学生分成小组,讨论等差数列的定义和通项公式,并总结出等差数列的性质;•演示教学:教师通过示例,引导学生理解等差数列的定义和通项公式,并帮助学生掌握等差数列的性质;•练习巩固:学生进行一些练习题,巩固对等差数列的理解。
2.4 教学评价教师通过观察学生在讨论和练习中的表现,评价学生对等差数列的理解程度。
3. 教案二:等差数列的求和公式3.1 教学目标•掌握等差数列的求和公式;•理解求和公式的推导过程;•运用求和公式解决实际问题。
3.2 教学内容1.等差数列的求和公式;2.求和公式的推导过程;3.运用求和公式解决实际问题。
3.3 教学活动•演示推导过程:教师通过详细的步骤,演示等差数列求和公式的推导过程,并帮助学生理解每一步的意义;•练习应用:学生进行一些实例练习,运用求和公式解决实际问题;•小组合作:学生分组讨论,互相解答问题,提高合作能力和解决问题的能力。
3.4 教学评价教师通过观察学生在练习和讨论中的表现,评价学生对求和公式的掌握情况。
4. 教案三:等差数列的应用4.1 教学目标•熟练运用等差数列解决实际问题;•发现等差数列在生活和科学中的应用。
4.2 教学内容1.通过例题引入等差数列的应用;2.探究等差数列在生活和科学中的应用。
4.3 教学活动•案例分析:教师通过具体的案例,引导学生发现等差数列在生活和科学中的应用,并分析其规律;•分组讨论:学生分组讨论,提出更多的应用案例,并探究其规律和特点;•学生报告:每个小组选取一个应用案例进行报告,分享给全班同学。
高中数学等差数列教案

高中数学等差数列教案•相关推荐高中数学等差数列教案作为一名辛苦耕耘的教育工作者,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
来参考自己需要的教案吧!以下是小编为大家整理的高中数学等差数列教案,仅供参考,欢迎大家阅读。
高中数学等差数列教案1一、教材分析1、教学目标:A.理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;B.培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
C 通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
2、教学重点和难点①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
用不完全归纳法推导等差数列的通项公式。
二、教法分析采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
三、教学程序本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。
(一)复习引入:1.全国统一鞋号中成年女鞋的各种尺码(表示鞋底长,单位是c)分别是21,22,23,24,25,2.某剧场前10排的座位数分别是:38,40,42,44,46,48,50,52,54,56。
3.某长跑运动员7天里每天的训练量(单位:)是:7500,8000,8500,9000,9500,10000,10500。
共同特点:从第2项起,每一项与前一项的差都等于同一个常数。
(二) 新课探究1、给出等差数列的概念:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。
高中数学《等差数列》教学设计

高中数学《等差数列》教学设计一、教学任务及对象1、教学任务本节课的教学任务是关于高中数学中的《等差数列》章节。
等差数列是数学中的一种基本数列,它具有相邻两项之差相等的性质。
通过本节课的学习,学生将掌握等差数列的定义、通项公式、求和公式以及等差数列的性质和应用。
此外,学生还需学会运用等差数列解决实际问题,培养逻辑思维能力和数学应用能力。
2、教学对象本节课的教学对象为高中一年级学生。
在学习本节课之前,学生已经掌握了实数的四则运算、方程与不等式的解法、数列的基本概念等基础知识。
此外,学生具备一定的逻辑推理能力和合作学习能力,但在等差数列的抽象理解和应用方面可能存在一定难度。
因此,在教学过程中,教师应关注学生的个体差异,因材施教,提高学生的学习兴趣和自信心。
二、教学目标1、知识与技能(1)理解等差数列的定义,掌握等差数列的通项公式和求和公式;(2)能够运用等差数列的性质解决实际问题,如求某项的值、求和等;(3)了解等差数列在实际生活中的应用,如计算存款利息、工资增长等;(4)培养运用数列知识进行逻辑推理、数学建模的能力。
2、过程与方法(1)通过自主探究、小组合作等方式,让学生在探索中理解等差数列的性质和公式;(2)运用问题驱动的教学方法,引导学生发现问题、解决问题,培养学生的创新思维;(3)设计不同难度的练习题,使学生在实践中巩固知识,提高解决问题的能力;(4)利用信息技术手段,如几何画板、数学软件等,辅助教学,提高学生的学习兴趣。
3、情感,态度与价值观(1)培养学生对数学的兴趣,激发学生学习数学的积极性;(2)培养学生的合作精神,让学生在小组活动中学会倾听、表达、沟通;(3)培养学生勇于探索、敢于挑战的精神,增强学生的自信心;(4)引导学生认识到数学在现实生活中的重要作用,培养学生的数学应用意识;(5)培养学生严谨、踏实的学术态度,让学生认识到学习数学需要勤奋、刻苦的精神。
三、教学策略1、以退为进在等差数列的教学中,采用“以退为进”的教学策略,即先引导学生回顾已学过的数列知识,如数列的概念、通项公式等,为学生构建一个稳固的知识基础。
2023最新-2023高中数学等差数列教案【优秀4篇】

2023高中数学等差数列教案【优秀4篇】很多同学总是抱怨数学学不好,其实是因为试题没有做到位,数学需要大量的练习来帮助同学们理解知识点。
下面是小编辛苦为朋友们带来的4篇2023高中数学等差数列教案,希望能为您的思路提供一些参考。
小学数学等差数列教案篇一1、知识与技能(1)初步掌握一些特殊数列求其前n项和的常用方法。
(2)通过把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和问题,培养学生观察、分析问题的能力,转化的数学思想以及数学运算能力。
2、过程与方法培养学生分析解决问题的能力,归纳总结能力,以及数学运算的能力。
3、情感,态度,价值观通过教学,让学生认识到事物是普遍联系,发展变化的。
把某些既非等差数列,又非等比数列的数列化归成等差数列或等比数列求和:寻找适当的变换方法,达到化归的目的复习引入:(1)1+2+3+ (100)(2) 1+3+5+……+2n-1=(3) 1+2+4+……+2《数列求和》教学设计及反思=(4) 《数列求和》教学设计及反思=设计意图:让学生回顾旧知,由此导入新课。
[教师过渡]:今天我们学习《数列求和》第二课时,课标要求和学习内容如下:(多媒体课件展示)导入新课:[情境创设] (课件展示):例1:求数列《数列求和》教学设计及反思,…的前《数列求和》教学设计及反思项和分析:将各项分母通分,显然是行不通的,启发学生能否通过通项的特点,将每一项拆成两项的差,使它们之间能互相抵消很多项。
[问题生成]:请同学们观察否是等差数列或等比数列?设问:既然不是等差数列,也不是等比数列,那么就不能直接用等差,等比数列的求和公式,请同学们仔细观察一下此数列有何特征[教师过渡]:对于通项形如《数列求和》教学设计及反思(其中数列《数列求和》教学设计及反思为等差数列)求和时,我们采取裂项相消求和方法[特别警示] 利用裂项相消求和方法时,抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,才能使裂开的两项差与原通项公式相等。
高中数学等差数列教案

高中数学等差数列教案1000字一、教学目标1.掌握等差数列的概念和特性,了解等差数列的基本性质。
2.学会求等差数列的通项公式和求前n项和的公式。
3.能够运用等差数列的知识解决实际问题。
二、教学重点和难点1.重点:把握等差数列的概念和性质,能够求解等差数列的通项公式和前n项和的公式。
2.难点:运用等差数列解决实际问题。
三、教学内容和学习方法1.教学内容:(1)等差数列的概念和性质。
(2)等差数列的通项公式。
(3)等差数列的前n项和的公式。
(4)应用等差数列解决实际问题。
2.学习方法:(1)通过概念讲解,举例说明等差数列的性质,培养学生思维能力。
(2)通过公式推导和例题讲解,让学生习惯以公式为思路,提高解决题目的效率。
(3)通过实际问题的运用,强化学生对等差数列的理解和掌握,培养具有实际应用能力的数学思维。
四、教学过程1.概念引入(1)通过举例让学生理解等差数列的概念。
(2)定义等差数列,让学生掌握等差数列的基本概念和特性。
2.等差数列的通项公式(1)通过实例讲解推导等差数列的通项公式。
(2)通过多题例讲,让学生熟悉使用通项公式。
3.等差数列的前n项和(1)通过实例讲解推导等差数列前n项和的公式。
(2)通过多题例讲,让学生熟悉使用前n项和公式。
4.应用等差数列解决实际问题(1)通过实例分析,让学生了解等差数列在实际问题中的应用。
(2)通过多题例讲,让学生学会应用等差数列解决实际问题。
五、教学总结通过本次授课,学生已经掌握了等差数列的概念和性质,能够求解等差数列的通项公式和前n项和的公式,运用等差数列解决实际问题的能力也有所提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等差数列
教学目的:
1.明确等差数列的定义,掌握等差数列的通项公式;
2.会解决知道n d a a n ,,,1中的三个,求另外一个的问题 教学重点:等差数列的概念,等差数列的通项公式 教学难点:等差数列的性质 教学过程:
引入:① 5,15,25,35,… 和 ② 3000,2995,2990,2985,… 请同学们仔细观察一下,看看以上两个数列有什么共同特征??
共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等-----应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字——等差数列 二、讲解新课:
1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的
差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)
⑴.公差d 一定是由后项减前项所得,而不能用前项减后项来求;
⑵.对于数列{n a },若n a -1-n a =d (与n 无关的数或字母),n ≥2,n ∈N +
,则此数列是等差数列,d 为公差
2.等差数列的通项公式:d n a a n )1(1-+=【或=n a d m n a m )(-+】
等差数列定义是由一数列相邻两项之间关系而得若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可
得:d a a =-12即:d a a +=12
d a a =-23即:d a d a a 2123+=+=
d a a =-34即:d a d a a 3134+=+=
……
由此归纳等差数列的通项公式可得:d n a a n )1(1-+=
∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项a
如数列①1,2,3,4,5,6; n n a n =⨯-+=1)1(1(1≤n ≤6) 数列②10,8,6,4,2,…; n n a n 212)2()1(10-=-⨯-+=(n ≥1) 数列③
;,1,54
;53,52;51 5
51)1(51n n a n =⨯-+=(n ≥1) 由上述关系还可得:d m a a m )1(1-+= 即:d m a a m )1(1--=
则:=n a d n a )1(1-+=d m n a d n d m a m m )()1()1(-+=-+-- 即的第二通项公式 =n a d m n a m )(-+ ∴ d=n
m a a n m --
如:d a d a d a d a a 43212345+=+=+=+= 三、例题讲解
例1 ⑴求等差数列8,5,2…的第20项
⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:⑴由35285,81-=-=-==d a n=20,得49)3()120(820-=-⨯-+=a ⑵由4)5(9,51-=---=-=d a 得数列通项公式为:)1(45---=n a n
由题意可知,本题是要回答是否存在正整数n ,使得)1(45401---=-n 成立解之得n=100,即-401是这个数列的第100项
例2 在等差数列{}n a 中,已知105=a ,3112=a ,求1a ,d ,n a a ,20
解法一:∵105=a ,3112=a ,则 ⎩⎨
⎧=+=+31
1110411d a d a ⇒⎩⎨
⎧=-=3
21d a ∴53)1(1-=-+=n d n a a n
5519120=+=d a a
解法二:∵3710317512=⇒+=⇒+=d d d a a
∴5581220=+=d a a 3)12(12-=-+=n d n a a n
小结:第二通项公式 d m n a a m n )(-+=
例3将一个等差数列的通项公式输入计算器数列n u 中,设数列的第s 项和第t 项分别为s u 和t u ,计算t
s u u t
s --的值,你能发现什么结论?并证明你的结论
解:通过计算发现t
s u u t s --的值恒等于公差
证明:设等差数列{n u }的首项为1u ,末项为n u ,公差为d ,⎩⎨
⎧-+=-+=)
2()1()1()1(11d t u u d
s u u t s ⑴-⑵得d t s u u t s )(-=- d t
s u u t
s =--∴
小结:①这就是第二通项公式的变形,②几何特征,直线的斜率
例4 梯子最高一级宽33cm ,最低一级宽为110cm ,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度
解:设{}n a 表示梯子自上而上各级宽度所成的等差数列, 由已知条件,可知:1a =33, 12a =110,n=12
∴d a a )112(112-+=,即10=33+11d 解得:7=d 因此,,61,54,47740,407335432===+==+=a a a a
,103,96,89,82,75,6811109876======a a a a a a
答:梯子中间各级的宽度从上到下依次是40cm ,47cm ,54cm ,61cm ,68cm ,75cm ,82cm ,89cm ,96cm ,103cm.
例5 已知数列{n a }的通项公式q pn a n +=,其中p 、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?
分析:由等差数列的定义,要判定{}n a 是不是等差数列,只要看1--n n a a (n ≥2)是不是一个与n 无关的常数
解:当n ≥2时, (取数列{}n a 中的任意相邻两项1-n a 与n a (n ≥2))
])1([)(1q n p q pn a a n n +--+=--p q p pn q pn =+--+=)(为常数
∴{n a }是等差数列,首项q p a +=1,公差为p
注:①若p=0,则{n a }是公差为0的等差数列,即为常数列q ,q ,q ,…
②若p ≠0, 则{n a }是关于n 的一次式,从图象上看,表示数列的各点均在一次函数y=px+q 的图象上,一次项的系数是公差,直线在y 轴上的截距为q.
③数列{n a }为等差数列的充要条件是其通项n a =p n+q (p 、q 是常数)称其为第3通项公式
④判断数列是否是等差数列的方法是否满足3个通项公式中的一个
四、练习:
1.(1)求等差数列3,7,11,……的第4项与第10项. 解:根据题意可知:1a =3,d =7-3=4.
∴该数列的通项公式为:n a =3+(n -1)×4,即n a =4n -1(n ≥1,n ∈N*) ∴4a =4×4-1=15, 10a =4×10-1=39. (2)求等差数列10,8,6,……的第20项. 解:根据题意可知:1a =10,d =8-10=-2.
∴该数列的通项公式为:n a =10+(n -1)×(-2),即:n a =-2n +12, ∴20a =-2×20+12=-28. 评述:要注意解题步骤的规范性与准确性.
(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由. 解:根据题意可得:1a =2,d =9-2=7.
∴此数列通项公式为:n a =2+(n -1)×7=7n -5. 令7n -5=100,解得:n =15, ∴100是这个数列的第15项.
(4)-20是不是等差数列0,-32
1,-7,……的项?如果是,是第几项?如果不是,说明理由. 解:
由题意可知:1a =0, d =-32
1 ∴此数列的通项公式为:n a =-2
7n +27, 令-27n +27=-20,解得n =7
47
因为-2
7n +2
7=-20没有正整数解,所以-20不是这个数列的项.
2.在等差数列{n a }中,(1)已知4a =10,7a =19,求1a 与d ; (2)已知3a =9, 9a =3,求12a .
解:(1)由题意得:⎩⎨
⎧=+=+19
610311d a d a , 解之得:⎩⎨⎧==311d a . (2)解法一:由题意可得:⎩⎨
⎧=+=+3
89211d a d a , 解之得⎩⎨⎧-==1111d a
∴该数列的通项公式为:n a =11+(n -1)×(-1)=12-n ,∴12a =0 解法二:由已知得:9a =3a +6d ,即:3=9+6d ,∴d =-1 又∵12a =9a +3d ,∴12a =3+3×(-1)=0. Ⅳ.课时小结
五、小结 通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:n a -1-n a =d ,(n ≥2,n ∈N +
).其次,要会推导等差数列的通项公式:d n a a n )1(1-+=,并掌握其基本应用.最后,还要注意一重要关系式:=n a d m n a m )(-+和n a =p n+q (p 、q 是常数)的理解与应用.。