2006年高考福建卷理科数学试题及参考答案

合集下载

【高考数学】2006年高考试题分类解析--第十章排列、组合与二项式定理

【高考数学】2006年高考试题分类解析--第十章排列、组合与二项式定理

2006年高考试题分类解析--第十章排列、组合与二项式定理1.(2006年福建卷)251()x x -展开式中4x 的系数是_10_(用数字作答)。

2.(2006年广东卷)在112⎪⎭⎫ ⎝⎛-x x 的展开式中,5x 的系数为 3.85112)2()2(1121111111111111=⇒=-⇒-=-=-----+r r x C xx C T r r r r r r r 所以5x 的系数为1320)2()2(3113111111-=-=---C C r r4.(2006年陕西卷)12(3x展开式中1x -的常数项为_594_(用数字作答)。

5.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有__600_种(用数字作答)。

6.( 2006年重庆卷)若(x 3 )x 1n 的展开式中各项系数之和为64,则展开式的常数项为( A)(A)-540 (B)(c)162 (D)5407.( 2006年重庆卷)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有 ( B )(A )30种 (B )90种(C )180种 (D )270种8. (2006年上海春卷)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 48 种不同的播放方式(结果用数值表示).9.(2006年全国卷II )在(x 4+1x)10的展开式中常数项是 45 (用数字作答) 10.(2006年天津卷)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( A )A .10种B .20种C .36种D .52种11.(2006年天津卷)7)12(x x +的二项展开式中x 的系数是____280 (用数学作答).12. (2006年湖北卷)在2431⎪⎪⎭⎫ ⎝⎛+x x 的展开式中,x 的幂的指数是整数的项共有 (C ) A.3项 B.4项 C.5项 D.6项12.解选 C 。

2006年高考数学各章知识详解(1)

2006年高考数学各章知识详解(1)

第一章 集合与简易逻辑1.(2006年福建卷)已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于(C) (A )[1,4)- (B )(2,3) (C )(2,3] (D )(1,4)-【答案】 C【分析】:()()(),13,,2,4,A B =-∞-+∞=则[]()(]()1,32,42,3U C A B =-=【高考考点】绝对值不等式、集合的交集与补集运算 【易错点】:有关集合运算中的区间端点的取舍,常常出现失误【备考提示】 在这类运算中采用集合的区间表示或数轴表示,易于避免失误2.(2006年安徽卷)设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C A B 等于( )A .RB .{},0x x R x ∈≠ C .{}0 D .∅ 【答案】 B【分析】:A ={x |0≤x ≤4},B ={y |-4≤y ≤0},则A ∩B ={0},故ðU (A ∩B )={x |x ∈R ,x ≠0},而选(B).【高考考点】集合的运算:交集、补集 【备考提示】: 对集合的交集、并集、补集等运算要熟练.3.(2006年陕西卷)已知集合{}|110,P x N x =∈≤≤集合{}2|60,Q x R x x =∈+-=则P Q 等于(B )(A ){}1,2,3 (B ){}2,3 (C ){}1,2 (D ){}2【答案】:B 【分析】: Q={ x ∈R|-3≤x ≤2},所以P ∩Q 等于{1,2} 【高考考点】:一元二次不等式的解法,集合的运算性质 【易错点】:忽视集合P 的取值范围 【备考提示】正确和熟练掌握集合的运算性质以及不等式的解法,在复习中注意和三角函数,一元二次不等式等知识的结合使用4.( 2006年重庆卷)已知集合U ={1,2,3,4,5,6,7}, A ={2,4,5,7},B ={3,4,5},则(u A )∪(u B )=( D)(A){1,6} (B){4,5}(C){1,2,3,4,5,7} (D){1,2,3,6,7} 【答案】:D 【分析】:用文恩图或直接计算:{1,3,6}A =U ð,{1,2,6,7}B =U ð,所以()(){1,2,3,6,7}A B =U U 痧,故选D ; 【高考考点】:集合的交、并、补运算。

【高考数学】2006年高考试题分类解析--第四章三角

【高考数学】2006年高考试题分类解析--第四章三角

2006年高考试题分类解析--第四章三角1.(2006年天津卷)已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4π=x 处取得最小值,则函数)43(x f y -=π是( D ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,23(π对称 C .奇函数且它的图象关于点)0,23(π对称 D .奇函数且它的图象关于点)0,(π对称 2.(2006年福建卷)已知3(,),sin ,25παπα∈=则tan()4πα+等于 ( A )(A )17 (B )7 (C )17- (D )7-3.(2006年福建卷)已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于 ( B )(A )23 (B )32(C )2 (D )3 4.(2006年安徽卷)将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+ B .sin()6y x π=- C .sin(2)3y x π=+D .sin(2)3y x π=- 解:将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭ 平移,平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知,73()1262πππω+=,所以2ω=,因此选C 。

5.(2006年安徽卷)设0a >,对于函数()sin (0)sin x af x x xπ+=<<,下列结论正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值解:令sin ,(0,1]t x t =∈,则函数()sin (0)sin x af x x xπ+=<<的值域为函数1,(0,1]a y t t =+∈的值域,又0a >,所以1,(0,1]ay t t=+∈是一个减函减,故选B 。

2006年高考数学按章节汇编12--第十二章概率与统计

2006年高考数学按章节汇编12--第十二章概率与统计

第十二章概率与统计1.(2006年福建卷)一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2。

将这个小正方体抛掷2次,则向上的数之积的数学期望是__49__。

2.( 2006年重庆卷)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是 ( C)(A)20 (B)30(C)40 (D)503.(2006年全国卷II)一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出25人.4.(2006年四川卷)设离散性随机变量ξ可能取的值为()()1,2,3,4,1,2,3,4P k ak b kξ==+=,又ξ的数学期望3Eξ=,则a b+=__110_____; 5.(2006年江苏卷)某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x-y|的值为(A)1(B)2(C)3(D)4解:由平均数公式为10,得()11011910,5x y++++⨯=则20x y+=;又由于方差为2,则()()()()()22222110101010111091025x y⎡⎤-+-+-+-+-⨯=⎣⎦得22208 2=192x y xy+=,所以有()22224x y x y x y xy-=-=+-=,故选(D)点评:本题主要考查平均数与方差的定义等统计方面的基础知识6.(2006年江西卷)某商场举行抽奖促销活动,抽奖规则是:从装有9个白球,1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出2个红球可获得奖金50元,现有甲,乙两位顾客,规定:甲摸一次,乙摸两次,令ξ表示甲,乙摸球后获得的奖金总额。

2006年福建省高考理科数学试卷真题+参考答案+详细解析

2006年福建省高考理科数学试卷真题+参考答案+详细解析

2006年福建省高考数学试卷(理科数学)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设a ,b ,c R ∈,则复数()()a bi c di ++为实数的充要条件是( ) A .0ad bc -=B .0ac bd -=C .0ac bd +=D .0ad bc +=2.(5分)在等差数列{}n a 中,已知12a =,2313a a +=,则456a a a ++等于( ) A .40B .42C .43D .453.(5分)已知(,)2παπ∈,3sin 5α=,则tan()4πα+等于( )A .17B .7C .17-D .7-4.(5分)已知全集U R =,且{||1|2}A x x =->,2{|680}B x x x =-+<,则()U A B 等于( )A .(2,3)B .[2,3]C .(2,3]D .(2,3]-5.(5分)已知正方体外接球的体积是323π,那么正方体的棱长等于( )A .BCD 6.(5分)在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同.从中摸出3个球,至少摸到2个黑球的概率等于( ) A .27B .38C .37D .9287.(5分)对于平面α和共面的直线m 、n ,下列命题中真命题是( ) A .若m α⊥,m n ⊥,则//n α B .若//m α,//n α,则//m n C .若m α⊂,//n α,则//m n D .若m 、n 与α所成的角相等,则//m n 8.(5分)函数2log (1)1xy x x =>-的反函数是( ) A .2(0)21xx y x =>-B .2(0)21xx y x =<-C .21(0)2x x y x -=>D .21(0)2x x y x -=<9.(5分)已知函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-,则ω的最小值等于( )A .23B .32C .2D .310.(5分)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A .(1,2]B .(1,2)C .[2,)+∞D .(2,)+∞11.(5分)||1OA =,||3OB =,0OA OB ⋅=,点C 在AOB ∠内,且30AOC ∠=︒,设(OC mOA nOB m =+、)n R ∈,则mn等于( ) A .13B .3C .33D .312.(5分)对于直角坐标平面内的任意两点11(),A x y ,22(),B x y ,定义它们之间的一种“距离”: 2121||||||||AB x x y y =-+-.给出下列三个命题:①若点C 在线段AB 上,则||||||||||||AC CB AB +=; ②在ABC ∆中,若90C ∠=︒,则222||||||||||||AC CB AB +=; ③在ABC ∆中,||||||||||||AC CB AB +>. 其中真命题的个数为( ) A .0B .1C .2D .3二、填空题(共4小题,每小题4分,满分16分)13.(4分)在二项式251()x x-的展开式中,含4x 的项的系数是 .14.(4分)已知直线10x y --=与抛物线2y ax =相切,则a = .15.(4分)一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上的数之积的数学期望是 .16.(4分)如图,连接ABC ∆的各边中点得到一个新的△111A B C ,又连接△111A B C 的各边中点得到△222A B C ,如此无限继续下去,得到一系列三角形:ABC ∆,111A B C ∆,222A B C ∆,⋯,这一系列三角形趋向于一个点M .已知(0,0)A ,(3,0)B ,(2,2)C ,则点M 的坐标是 .三、解答题(共6小题,满分74分)17.(12分)已知函数22=++,x Rf x x x x x()sin cos2cos∈.(Ⅰ)求函数()f x的最小正周期和单调增区间;(Ⅱ)函数()=∈的图象经过怎样的变换得到?y x x Rf x的图象可以由函数sin2()18.(12分)如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2CA CB CD BD ====,2AB AD ==. (Ⅰ)求证:AO ⊥平面BCD ;(Ⅱ)求异面直线AB 与CD 所成角的大小; (Ⅲ)求点E 到平面ACD 的距离.19.(12分)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:3138(0120)12800080y x x x =-+<已知甲、乙两地相距100千米.(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?20.(12分)已知椭圆2212xy+=的左焦点为F,O为坐标原点.(Ⅰ)求过点O、F,并且与椭圆的左准线l相切的圆的方程;(Ⅱ)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.21.(12分)已知函数2()8f x x x =-+,()6g x lnx m =+. (Ⅰ)求()f x 在区间[,1]t t +上的最大值()h t ;(Ⅱ)是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由.22.(14分)已知数列{}n a 满足11a =,*121()n n a a n N +=+∈. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足12111*444(1)()n n b b b b n a n N ---⋯=+∈,证明:数列{}n b 是等差数列; (Ⅲ)证明:*122311()232n n a a a n nn N a a a +-<++⋯+<∈.2006年福建省高考数学试卷(理科数学)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设a ,b ,c R ∈,则复数()()a bi c di ++为实数的充要条件是( ) A .0ad bc -=B .0ac bd -=C .0ac bd +=D .0ad bc +=【解析】a ,b ,c R ∈,复数()()()()a bi c di ac bd ad bc i ++=-++为实数,0ad bc ∴+=,故选D . 【点评】本题是对基本概念的考查.2.(5分)在等差数列{}n a 中,已知12a =,2313a a +=,则456a a a ++等于( ) A .40B .42C .43D .45【解析】在等差数列{}n a 中,已知12a =,2313a a +=,得3d =,514a =,4565342a a a a ∴++==.故选:B .【点评】本题主要考查了等差数列的性质.属基础题.3.(5分)已知(,)2παπ∈,3sin 5α=,则tan()4πα+等于( )A .17B .7C .17-D .7-【解析】已知3(,),sin 25παπα∈=,则3tan 4α=-,∴1tan 1tan()41tan 7πααα++==-,故选:A .【点评】本题主要考查两角和与差的正切公式.属基础题.4.(5分)已知全集U R =,且{||1|2}A x x =->,2{|680}B x x x =-+<,则()U A B 等于( )A .(2,3)B .[2,3]C .(2,3]D .(2,3]-【解析】{|3A x x =>或1}x <-,{|13}U C A x x =-,{|24}B x x =<<,()(2,3]U C A B ∴=,故选:C . 【点评】本题主要考查了集合的运算,属于以不等式为依托,求集合的交集、补集的基础题,也是高考常会考的题型.5.(5分)已知正方体外接球的体积是323π,那么正方体的棱长等于( )A .BC .3D【解析】正方体外接球的体积是323π,则外接球的半径2R =,正方体的对角线的长为4, 故选:D .【点评】本题考查球的内接正方体问题,是基础题.6.(5分)在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同.从中摸出3个球,至少摸到2个黑球的概率等于( ) A .27B .38C .37D .928【解析】由题意知本题是一个古典概型,在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同.试验的总事件是从8个球中取3个球有38C 种取法,从中摸出3个球,至少摸到2个黑球包括摸到2个黑球,或摸到3个黑球有213353C C C +种不同的取法,∴至少摸到2个黑球的概率等于2133533827C C C P C +==,故选:A . 【点评】本题也可以从对立事件角度来考虑,从中摸出3个球,至少摸到2个黑球的对立事件是从中摸出3个球,摸到的都是白球或摸到的有一个黑球,试验的总事件是从8个球中取3个球有38C 种取法,摸到的都是白球有3510C =种方法,摸到的有一个黑球有1235C C 种方法,代入公式得到结果. 7.(5分)对于平面α和共面的直线m 、n ,下列命题中真命题是( ) A .若m α⊥,m n ⊥,则//n α B .若//m α,//n α,则//m n C .若m α⊂,//n α,则//m n D .若m 、n 与α所成的角相等,则//m n【解析】对于平面α和共面的直线m 、n ,真命题是“若m α⊂,//n α,则//m n ”.故选:C . 【点评】本题考查空间直线与平面之间的位置关系,是基础题. 8.(5分)函数2log (1)1xy x x =>-的反函数是( ) A .2(0)21xx y x =>-B .2(0)21xx y x =<-C .21(0)2x x y x -=>D .21(0)2x x y x -=<【解析】对于1x >,函数221log log (1)011x y x x ==+>--,由函数2log (1)1xy x x =>-解得1211yx =--,1212121y yy x =+=--,∴原函数的反函数是2(0)21x x y x =>-,故选:A . 【点评】本题的解决体现了整体换元的思想,这样可以使复杂的解析式变得易懂,本题的难点在通过原函数的值域确定反函数的值域,求函数式时注意准确应用指数式与对数式的互化. 9.(5分)已知函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-,则ω的最小值等于( )A .23B .32C .2D .3【解析】函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-,则x ω的取值范围是[,]34ωπωπ-,∴32ωππ--或342ωππ,ω∴的最小值等于32,故选:B . 【点评】本题主要考查正弦函数的最值和三角函数的单调性.属基础题.10.(5分)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) A .(1,2]B .(1,2)C .[2,)+∞D .(2,)+∞【解析】已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60︒的直线与双曲线的右支有且只有一个交点, 则该直线的斜率的绝对值小于等于渐近线的斜率b a ,∴3ba,离心率2222224c a b e a a+==, 2e ∴,故选:C .【点评】本题考查双曲线的性质及其应用,解题时要注意挖掘隐含条件.11.(5分)||1OA =,||3OB =,0OA OB ⋅=,点C 在AOB ∠内,且30AOC ∠=︒,设(OC mOA nOB m =+、)n R ∈,则mn等于( ) A .13B .3CD【解析】法一:如图所示:OC OM ON=+,设||ON x =,则||3OM x =.3333||||OA OB OC x x xOA xOB OA OB =⋅+⋅=+,∴3mn =.法二:如图所示,建立直角坐标系.则(1,0)OA =,(0,OB =,∴OC mOA nOB =+()m =,tan30∴︒==,∴3mn=.故选:B . 【点评】对一个向量根据平面向量基本定理进行分解,关键是要根据平行四边形法则,找出向量在基底两个向量方向上的分量,再根据已知条件构造三角形,解三角形即可得到分解结果.12.(5分)对于直角坐标平面内的任意两点11(),A x y ,22(),B x y ,定义它们之间的一种“距离”: 2121||||||||AB x x y y =-+-.给出下列三个命题:①若点C 在线段AB 上,则||||||||||||AC CB AB +=; ②在ABC ∆中,若90C ∠=︒,则222||||||||||||AC CB AB +=; ③在ABC ∆中,||||||||||||AC CB AB +>. 其中真命题的个数为( ) A .0B .1C .2D .3【解析】对于直角坐标平面内的任意两点11(),A x y ,22(),B x y ,定义它们之间的一种“距离”: 2121||||||||AB x x y y =-+-.对于①若点C 在线段AB 上,设C 点坐标为00(,)x y ,0x 在1x 、2x 之间,0y 在1y 、2y 之间, 则010*********||||||||||||||||||||||||AC CB x x y y x x y y x x y y AB +=-+-+-+-=-+-=.成立故正确. 对于②在ABC ∆中,若90C ∠=︒,则222||||||||||||AC CB AB +=;是几何距离而非题目定义的距离,明显不成立,对于③在ABC ∆中,01012020||||||||||||||||AC CB x x y y x x y y +=-+-+-+-012001202121|()()||()()|||||||||x x x x y y y y x x y y AB -+-+-+-=-+-=.③不正确.∴命题①成立,故选:B .【点评】此题主要考查新定义的问题,对于此类型的题目需要认真分析题目的定义再求解,切记不可脱离题目要求.属于中档题目.二、填空题(共4小题,每小题4分,满分16分)13.(4分)在二项式251()x x-的展开式中,含4x 的项的系数是 10 .【解析】根据所给的二项式写出展开式的通项,251031551()()(1)r r r r r r r T C x C x x --+=-=-,要求4x 的项的系数,1034r ∴-=,2r ∴=,4x ∴的项的系数是225(1)10C -=,故答案为:10.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.14.(4分)已知直线10x y --=与抛物线2y ax =相切,则a =14.【解析】设切点00(),P x y ,2y ax =,2y ax ∴'=,则有:0010x y --=(切点在切线上)①;200y ax =(切点在曲线上)②021ax =(切点横坐标的导函数值为切线斜率)③;由①②③解得:14a =. 【点评】本题主要考查抛物线的应用.考查了学生综合运用所学知识的能力.15.(4分)一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,则向上的数之积的数学期望是49. 【解析】一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2. 将这个小正方体抛掷2次,向上的数之积可能为0ξ=,1,2,4,11111133333311663(0)4C C C C C C P C C ξ++===,112211661(1)9C C P C C ξ===,1111211211661(2)9C C C C P C C ξ+===, 111111661(4)36C C P C C ξ===,∴124499369E ξ=++=.故答案为:49. 【点评】数字问题是概率中经常出现的题目,一般可以列举出要求的事件,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的可以借助于排列数和组合数来表示.16.(4分)如图,连接ABC ∆的各边中点得到一个新的△111A B C ,又连接△111A B C 的各边中点得到△222A B C ,如此无限继续下去,得到一系列三角形:ABC ∆,111A B C ∆,222A B C ∆,⋯,这一系列三角形趋向于一个点M .已知(0,0)A ,(3,0)B ,(2,2)C ,则点M 的坐标是 52(,)33.【解析】如图,连接ABC ∆的各边中点得到一个新的△111A B C ,又连接△111A B C 的各边中点得到△222A B C ,如此无限继续下去,得到一系列三角形:ABC ∆,△111A B C ,△222A B C ,因为这一系列三角形重心相同,趋向于一个点M ,则点M 是ABC ∆的重心, 已知(0,0)A ,(3,0)B ,(2,2)C ,52(,)33M ∴=.【点评】点M 是ABC ∆的重心,应用中点坐标公式及三角形重心坐标公式. 三、解答题(共6小题,满分74分)17.(12分)已知函数22()sin 3cos 2cos f x x x x x =++,x R ∈. (Ⅰ)求函数()f x 的最小正周期和单调增区间;(Ⅱ)函数()f x 的图象可以由函数sin 2()y x x R =∈的图象经过怎样的变换得到? 【解析】(Ⅰ)1cos233133()2(1cos2)2cos2sin(2)22262x f x x x x x x π-=++=++=++. ()f x ∴的最小正周期22T ππ==.由题意得222,262k x k k Z πππππ-++∈,即,36k x k k Z ππππ-+∈.()f x ∴的单调增区间为[,],36k k k Z ππππ-+∈. (Ⅱ)先把sin 2y x =图象上所有点向左平移12π个单位长度,得到sin(2)6y x π=+的图象,再把所得图象上所有的点向上平移32个单位长度,就得到3sin(2)62y x π=++的图象. 【点评】本小题主要考查三角函数的基本公式、三角恒等变换、三角函数的图象和性质等基本知识,以及推理和运算能力.18.(12分)如图,四面体ABCD 中,O 、E 分别是BD 、BC 的中点,2CA CB CD BD ====,2AB AD == (Ⅰ)求证:AO ⊥平面BCD ;(Ⅱ)求异面直线AB 与CD 所成角的大小; (Ⅲ)求点E 到平面ACD 的距离.【解析】()I 证明:连接OC ,BO DO =,AB AD =,AO BD ∴⊥.BO DO =,BC CD =,CO BD ∴⊥. 在AOC ∆中,由已知可得1,3AO CO ==.而2AC =,222AO CO AC ∴+=,90AOC ∴∠=︒,即AO OC ⊥. BD OC O =,AO ∴⊥平面BCD .()II 解:以O 为原点,如图建立空间直角坐标系,则(1,0,0)B ,(1,0,0)D -,(0,3,0)C ,(0,0,1)A ,13(,,0)22E ,(1,0,1)BA =-,(1,3,0)CD =--.∴.2cos ,4||||BA CD BA CD BA CD <>==, ∴异面直线AB 与CD 所成角的大小为2arccos4. ()III 解:设平面ACD 的法向量为(,,)n x y z =,则.(,,)(1,0,1)0.(,,)(03,1)0n AD x y z n AC x y z ⎧=⋅--=⎪⎨=⋅-=⎪⎩,∴030.x z y z +=⎧⎪⎨-=⎪⎩ 令1y =,得(3,1,3)n =-是平面ACD 的一个法向量.又13(,,0)22EC =-,∴点E 到平面ACD 的距离|.|321||77EC n h n ===.【点评】本小题主要考查直线与平面的位置关系、异面直线所成的角以及点到平面的距离基本知识,考查空间想象能力、逻辑思维能力和运算能力.19.(12分)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:3138(0120)12800080y x x x =-+<已知甲、乙两地相距100千米.(Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?【解析】()I 当40x =时,汽车从甲地到乙地行驶了1002.540=小时, 要耗油313(40408) 2.517.512800080⨯-⨯+⨯=(升). 答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升. ()II 当速度为x 千米/小时时,汽车从甲地到乙地行驶了100x小时,设耗油量为()h x 升, 依题意得3213100180015()(8)(0120)1280008012804h x x x x x x x =-+⋅=+-<,332280080()(0120)640640x x h x x x x -'=-=<.令()0h x '=,得80x =.当(0,80)x ∈时,()0h x '<,()h x 是减函数; 当(80,120)x ∈时,()0h x '>,()h x 是增函数.∴当80x =时,()h x 取到极小值(80)11.25h =.因为()h x 在(0,120]上只有一个极值,所以它是最小值.答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.【点评】本小题主要考查函数、导数及其应用等基本知识,考查运用数学知识分析和解决实际问题的能力.20.(12分)已知椭圆2212x y +=的左焦点为F ,O 为坐标原点.(Ⅰ)求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程;(Ⅱ)设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.【解析】2()2I a =,21b =,1c ∴=,(1,0)F -,:2l x =-.圆过点O 、F ,∴圆心M 在直线12x =-上.设1(,)2M t -,则圆半径13|()(2)|22r =---=. 由||OM r =2213()22t -+=,解得2t =±∴所求圆的方程为2219()(2)24x y ++±=.()II 设直线AB 的方程为(1)(0)y k x k =+≠,代入2212x y +=,整理得2222(12)4220k x k x k +++-=.直线AB 过椭圆的左焦点F ,∴方程有两个不等实根.记11(),A x y ,22(),B x y ,AB 中点00(),N x y ,则2122421k x x k +=-+,202221k x k =-+,002(1)21ky k x k =+=+,AB ∴的垂直平分线NG 的方程为001()y y x x k-=--.令0y =,得222002222211212121242G k k k x x ky k k k k =+=-+=-=-+++++. 0k ≠,∴102G x -<<,∴点G 横坐标的取值范围为1(,0)2-.【点评】本小题主要考查直线、圆、椭圆和不等式等基本知识,考查平面解析几何的基本方法,考查运算能力和综合解题能力,直线与圆锥曲线的位置关系问题,通常是先联立组成方程组,消去x (或)y ,得到y (或)x 的方程.我们在研究圆锥曲线时,经常涉及到直线与圆锥曲线的位置关系的研究.主要涉及到:交点问题、弦长问题、弦中点(中点弦)等问题,常用的方法:联立方程组,借助于判别式,数形结合法等. 21.(12分)已知函数2()8f x x x =-+,()6g x lnx m =+. (Ⅰ)求()f x 在区间[,1]t t +上的最大值()h t ;(Ⅱ)是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由. 【解析】22()()8(4)16I f x x x x =-+=--+. 当14t +<,即3t <时,()f x 在[,1]t t +上单调递增,22()(1)(1)8(1)67h t f t t t t t =+=-+++=-++; 当41t t +,即34t 时,()(4)16h t f ==;当4t >时,()f x 在[,1]t t +上单调递减,2()()8h t f t t t ==-+.综上,2267,3()16,348,4t t t h t t t t t ⎧-++<⎪=⎨⎪-+>⎩.()II 函数()y f x =的图象与()y g x =的图象有且只有三个不同的交点,即函数()()()m x g x f x =-的图象与x 轴的正半轴有且只有三个不同的交点.2()86m x x x lnx m =-++,∴262862(1)(3)()28(0)x x x x m x x x x x x-+--'=-+==>,当(0,1)x ∈时,()0m x '>,()m x 是增函数; 当(1,3)x ∈时,()0m x '<,()m x 是减函数; 当(3,)x ∈+∞时,()0m x '>,()m x 是增函数; 当1x =,或3x =时,()0m x '=.()m x m ∴=极大值(1)7m =-,()m x m =极小值(3)6315m ln =+-. 当x 充分接近0时,()0m x <,当x 充分大时,()0m x >.∴要使()m x 的图象与x 轴正半轴有三个不同的交点,必须且只须()70()63150m x m m x m ln =->⎧⎨=+-<⎩极大值极小值,即71563m ln <<-.∴存在实数m ,使得函数()y f x =与()y g x =的图象有且只有三个不同的交点,m 的取值范围为(7,1563)ln -.【点评】本小题主要考查函数的单调性、极值、最值等基本知识,考查运用导数研究函数性质的方法,考查运算能力,考查函数与方程、数形结合、分类与整合等数学思想方法和分析问题、解决问题的能力. 22.(14分)已知数列{}n a 满足11a =,*121()n n a a n N +=+∈. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足12111*444(1)()n n b b b b n a n N ---⋯=+∈,证明:数列{}n b 是等差数列; (Ⅲ)证明:*122311()232n n a a a n nn N a a a +-<++⋯+<∈. 【解析】(Ⅰ)*121()n n a a n N +=+∈,112(1)n n a a +∴+=+,{1}n a ∴+是以112a +=为首项,2为公比的等比数列.12n n a ∴+=.即*21()n n a n N =-∈.(Ⅱ)证明:12111*444(1)()n n b b b b n a n N ---⋯=+∈,∴12()42n n b b b n nb ++⋯+-=.122[()]n n b b b n nb ∴++⋯+-=,①12112[()(1)](1)n n n b b b b n n b ++++⋯++-+=+.②②-①,得112(1)(1)n n n b n b nb ++-=+-, 即1(1)20n n n b nb +--+=,③ 21(1)20n n nb n b ++-++=.④④-③,得2120n n n nb nb nb ++-+=,即2120n n n b b b ++-+=,*211()n n n n b b b b n N +++∴-=-∈,{}n b ∴是等差数列. (Ⅲ)证明:112121112122(2)2k k k k k k a a ++--==<--,1k =,2,...,n ,∴122312n n a a a na a a +++⋯+<.111211111111.2122(21)23222232k k k k kk kk a a +++-==-=----⋅+-,1k =,2,⋯,n , ∴1222311111111()(1)2322223223n n n n a a a n n n a a a +++⋯+-++⋯+=-->-, ∴*122311()232n n a a a n nn N a a a +-<++⋯+<∈. 【点评】本小题主要考查数列、不等式等基本知识,考查化归的数学思想方法,考查综合解题能力.。

2006年全国各地高考数学试题及解答分类大全(集合)

2006年全国各地高考数学试题及解答分类大全(集合)

2006年全国各地高考数学试题及解答分类大全(集合)一、选择题:1. (2006春招上海) 若集合131,11,2,01A y y x x B y y x x ⎧⎫⎧⎫⎪⎪==-≤≤==-<≤⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭,则A ∩B 等于( ) (A )]1,(∞-. (B )[]1,1-. (C )∅. (D )}1{.2.(2006安徽文)设全集{1,2,3,4,5,6,7,8}U =,集合{1,3,5}S =,{3,6}T =,则()U C S T ⋃等于( )A .∅B .{2,4,7,8}C .{1,3,5,6}D .{2,4,6,8}2.解:{1,3,5,6}S T ⋃=,则()U C S T ⋃={2,4,7,8},故选B3.(2006安徽理)设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()R C A B 等于( ) A .R B .{},0x x R x ∈≠ C .{}0 D .∅3.解:[0,2]A =,[4,0]B =-,所以(){0}R R C AB C =,故选B 。

4.(2006北京文)设集合A ={}312<+x x ,B ={}23<<x x -,则A ⋂B 等于( ) (A) {}13<<x x - (B) {}21<<x x (C){x|x >-3} (D) {x|x <1} 4.解:集合A ={}312<+x x ={x|x <1},借助数轴易得选A5.(2006福建文、理)已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于( )(A )[1,4)- (B )(2,3) (C )(2,3] (D )(1,4)- 5.全集,U R =且{}|12{|1或3},A x x x x x =->=<->{}2|680{|24},B x x x x x =-+<=<< ∴ ()U A B =(2,3],选C.6..(2006湖北文)集合P ={x |x 2-16<0},Q ={x |x =2n ,n ∈Z },则P Q =( )A.{-2,2}B.{-2,2,-4,4}C.{-2,0,2}D.{-2,2,0,-4,4}6. 解:P ={x |x 2-16<0}={x |-4<x <4},故P Q ={-2,0,2},故选C7..(2006湖北理)有限集合S 中元素的个数记做()card S ,设,A B 都为有限集合,给出下列命题: ①A B =∅的充要条件是()()()card A B card A card B =+;②A B ⊆的充要条件是()()card A card B ≤;③A B 的充要条件是()()card A card B ≤;④A B =的充要条件是()()card A card B =;其中真命题的序号是 ( )A .③④B .①②C .①④D .②③7. 解:①A B =∅⇔集合A 与集合B 没有公共元素,正确②A B ⊆⇔集合A 中的元素都是集合B 中的元素,正确③A B ⇔集合A 中至少有一个元素不是集合B 中的元素,因此A 中元素的个数有可能多于B 中元素的个数,错误④A B =⇔集合A 中的元素与集合B 中的元素完全相同,两个集合的元素个数相同,并不意味着它们的元素相同,错误选B8. (2006江苏)若A 、B 、C 为三个集合,C B B A ⋂=⋃,则一定有(A )C A ⊆ (B )A C ⊆ (C )C A ≠ (D )φ=A8.【思路点拨】本题主要考查.集合的并集与交集运算,集合之间关系的理解。

2006年福建高考数学试题(理科)及答案

2006年福建高考数学试题(理科)及答案

2006年福建高考数学试题(理科)一.选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设,,,a b c R ∈则复数()()a bi c di ++为实数的充要条件是(A )0ad bc -= (B )0ac bd -= (C )0ac bd += (D )0ad bc +=(2)在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于(A )40 (B )42 (C )43 (D )45(3)已知3(,),sin ,25παπα∈=则tan()4πα+等于(A )17 (B )7 (C )17- (D )7-(4)已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B 等于(A )[1,4)- (B )(2,3) (C )(2,3] (D )(1,4)-(5)已知正方体外接球的体积是323π,那么正方体的棱长等于(A )22 (B )233 (C )423 (D )433(6)在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同。

从中摸出3个球,至少摸到2个黑球的概率等于(A )27 (B )38 (C )37 (D )928(7)对于平面α和共面的直线m 、,n 下列命题中真命题是(A )若,,m m n α⊥⊥则n α∥ (B )若m αα∥,n ∥,则m ∥n(C )若,m n αα⊂∥,则m ∥n (D )若m 、n 与α所成的角相等,则m ∥n(8)函数2log (1)1xy x x =>-的反函数是(A )2(0)21x xy x =>- (B )2(0)21xx y x =<-(C )21(0)2x x y x -=> (D )21(0)2x x y x -=< (9)已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值等于(A )23 (B )32(C )2 (D )3 (10)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,若过点F 且倾斜角为60o的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(A )(1,2] (B )(1,2) (C )[2,)+∞ (D )(2,)+∞(11)已知1,3,.0,OA OB OAOB===点C 在AOC ∠30o=。

2006年高考理科综合试题及答案(福建省)

2006年高考理科综合试题及答案(福建省)

2006年普通高等学校招生全国统一考试理科综合能力测试(全国卷Ⅰ)(河南、河北、广西、新疆、湖北、江西、陕西等省用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至5页,第Ⅱ卷6至11页。

全卷共300分。

考试用时150分钟。

祝考试顺利第Ⅰ卷(共21小题,每小题6分,共126分)注意事项1.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在试题卷上无效。

3.考试结束,监考人员将本试题卷和答题卡一并收回。

以下数据可供解题时参考:相对原子质量(原子量):H 1 C 12 N 14 O 16一、选择题(本题包括13小题。

每小题只有一个选项符合题意)1.人的神经系统中,有些神经细胞既能传导兴奋,又能合成与分泌激素。

这些细胞位于A.大脑皮层B.垂体C.下丘脑D.脊髓2.一般情况下,用抗原免疫机体,血清中抗体浓度会发生相应变化。

如果第二次免疫与第一次免疫所用的抗原相同且剂量相等,下列四图中能正确表示血清中抗体浓度变化的是3.下列关于动物细胞培养的叙述,正确的是A.培养中的人效应T细胞能产生单克隆抗体B.培养中的人B细胞能够无限地增殖C.人的成熟红细胞经过培养能形成细胞株D.用胰蛋白酶处理肝组织可获得单个肝细胞4.锄足蟾蝌蚪、雨蛙蝌蚪和蟾蜍蝌蚪均以浮游生物为食。

在条件相同的四个池塘中,每池放养等量的三种蝌蚪,各池蝌蚪总数相同。

再分别在四个池塘中放入不同数量的捕食者水螈。

一段时间后,三种蝌蚪数量变化结果如图。

下列分析,错误的是A.无水螈的池塘中,锄足蝌蚪数量为J型增长B.三种蝌蚪之间为竞争关系C.水螈更喜捕食锄足蟾蝌蚪D.水螈改变了三种蝌蚪间相互作用的结果。

5.采用基因工程技术将人凝血因子基因导入山羊受精卵,培育出了转基因羊。

但是,人凝血因子只存在于该转基因羊的乳汁中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式解法
一、联立数组:
### 解不等式322
322--+-x x x x <0.
根据商的符号法则,它可以化成两个不等式组:
2222320320, 330230.x x x x x x x x ⎧⎧-+>-+<⎪⎪⎨⎨--<-->⎪⎪⎩⎩
或 因此,原不等式的解集就是上面两个不等式组的解集的并集
可得所求不等式解集为:{x |-1<x <1或2<x <3}
二、数轴标根法
原理:设一个高次不等式的解为X1、X2……Xn,其中X1<X2<……<Xn ,则对于任意X >Xn ,不等式恒大于零,即最大根右边的数使不等式恒成立,所以标根从不等式右边标起。

(对二次不等式一样适用,但一般我们直接用抛物线的知识做)
做法:
1.把所有X 前的系数都变成正的(不用是1,但是得是正的);
2.画数轴,在数轴上从小到大依次标出所有根;
3.从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(指的是分解因式后,某个因数的指数是奇数或者偶数);
(X-2)2(X-3)>0
(X-2)的指数是2, 是偶数,所以在数轴上画曲线时就不穿过2这个点
而(X-3)的指数是1 ,是奇数,所以在数轴上画曲线时就要穿过3这个点
4.注意看题中不等号中有没有等号,有的话还要注意写结果时舍去会使不等式为0的根。

### 解不等式322
322--+-x x x x <0.
根据积的符号法则,可以将原不等式等价变形为:
(x 2-3x +2)(x 2-2x -3)<0 即(x +1)(x -1)(x -2)(x -3)<0
(最高次项系数一定要为正,不为正要化成正的)
令(x +1)(x -1)(x -2)(x -3)=0
可得零点x =-1或1,或2或3,将数轴分成五部分(如图).
看题求解,题中要求求<0的解,那么只需要在数轴上看看哪一段在数轴以下即可,观察可以得到:
由数轴标根法可得所求不等式解集为:{x |-1<x <1或2<x <3}
三、含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。

注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集.
(1)解不等式
2
()
1
ax
x a R ax
>∈
-
a=时,{|x0}
x<;
a>时,
1
{|x x
a
>或0}
x<;
a<时,
1
{|0}
x x
a
<<或{|x0}
x<。

相关文档
最新文档