黏性土的剪切
路基填土的粘聚力取值

路基填土的粘聚力取值1. 引言路基填土的粘聚力是土体内部颗粒之间由于毛细吸力和水膜效应而产生的抵抗颗粒相对滑动的力。
粘聚力的取值对路基工程的设计和施工具有重要影响。
本文将深入探讨路基填土的粘聚力的概念、测定方法以及影响因素。
2. 粘聚力的概念粘聚力是土体内颗粒之间由于毛细吸力和水膜效应而产生的一种内聚力,它使得土体在不受外力作用时能够保持一定的抗剪强度。
粘聚力的存在对土体的强度、变形性质以及稳定性都有着显著的影响。
3. 粘聚力的测定方法3.1 直接剪切试验直接剪切试验是常用的测定土体粘聚力的方法之一。
通过在土体样品上施加垂直和水平的应力,模拟实际路基填土的受力状态,从而测定土体的剪切强度和粘聚力。
3.2 振实试验振实试验是通过模拟路基填土在振动荷载下的工作状态,间接测定粘聚力。
振实试验可以模拟路基填土在实际交通荷载下的工作状态,通过测定振实后的土体强度参数,推断出粘聚力的变化。
3.3 室内试验室内试验主要包括室内剪切试验、室内振实试验等。
通过在实验室中对采集的路基填土样品进行不同条件下的试验,获取粘聚力的相关参数。
4. 影响粘聚力的因素4.1 水分含量水分含量是影响粘聚力的关键因素之一。
适量的水分有助于颗粒之间形成水膜,增加粘聚力,但过多的水分可能使土体失去粘聚力,变得松散。
4.2 颗粒大小和形状颗粒的大小和形状对粘聚力也有明显影响。
较细小的颗粒更容易形成水膜,增加粘聚力,而较大的颗粒则可能破坏水膜效应。
4.3 土体的类型不同类型的土体具有不同的颗粒结构和成分,因此其粘聚力也有所差异。
黏性土和非黏性土在粘聚力上表现出显著的差异。
4.4 荷载历史路基填土在长期交通荷载作用下,其粘聚力可能会发生变化。
荷载历史对填土的压实状态和水分分布有影响,从而影响粘聚力。
5. 结论路基填土的粘聚力是影响路基工程性能的重要因素之一。
了解粘聚力的概念、测定方法以及影响因素,有助于科学合理地设计和施工路基工程,确保其在不同条件下具有稳定性和可靠性。
一般土的粘聚力和内摩擦角

粉土的内摩擦角φ一般为18~25°,粘聚力一般为5~10KPa。
圆粒土的内摩擦角φ一般为18~22°,粘聚力非常小,可以看做0。
内摩擦角大小取决于土粒间的摩阻力和连锁作用, 内摩擦角反映了土的摩阻性质。
黏聚力是黏性土的特性指标, 黏聚力包括土粒间分子引力形成的原始黏聚力和土中化合物的胶结作用形成的固化黏聚力。
因而内摩擦角与黏聚力是土抗剪强度的两个力学指标。
土的抗剪强度指土对剪切破坏的极限抵抗能力,土体的强度问题实质是土的抗剪能力问题。
土的抗剪强度指标——内摩擦角φ、黏聚力C φ——土的内摩擦角(°) C——土的粘聚力(KPa)。
φ、C与土的性质有关,还与实验方法、实验条件有关。
因此,谈及强度指标时,应注明它的试验条件。
(直剪实验、三轴剪切试验等)扩展资料:土的抗剪强度可以认为是由颗粒间的内摩阻力以及由胶结物和束缚水膜的分子引力所造成的粘聚力所组成,土的颗粒间存在着相互作用力,其中粘土颗粒-水-电系统间的相互作用是最普遍的,颗粒间的相互作用可能是吸引力,也可能是排斥力。
土的粘聚力是由于土颗粒间的引力和斥力的综合作用。
粘土中的引力主要包括以下几种:1、静电引力它包括库仑力和离子-静电力。
由于粘土矿物颗粒是片状的,在平面部分带负电荷,而两边边角处带正电荷,边和面接触则会相互吸引。
2、范德华力范德华力是分子间的引力。
物质的极化分子与相邻的另一极化分子间可通过相反的偶极吸引,当极化分子与非极化分子接近时,也可能诱发后者,而与其反号的偶极相吸引。
3、颗粒间的胶结粘土颗粒间可以被胶结物所粘结,它是一种化学键。
颗粒间的胶结包括碳、硅、铅、铁的氧化物和有机混合物。
这些胶结材料可能来源于土料本身,亦即在矿物的溶解和重吸收过程中生成,也可能来源于土中水溶液。
4、颗粒间接触点的化合价键当正常固结土在固结后再卸载而成为超固结土时,其抗剪强度并没有随有效正应力的减小而按比例减小,而是保留了很大部分的强度。
黏性土和软土地基的岩土工程评价[详细]
![黏性土和软土地基的岩土工程评价[详细]](https://img.taocdn.com/s3/m/4ee9d28750e2524de4187e51.png)
第15章黏性土和软土地基的岩土工程评价15.1黏性土的工程分类及其基本特征黏性土塑性指数大于10的土定名为黏性土.黏性土再根据塑性指数分为粉质黏土和黏土.塑性指数大于10,且小于或等于17的土定名为粉质黏土,塑性指数大于17的土定名为黏土.塑性指数应由相应于76g圆锥仪沉入土中深度为10米米时测定的液限计算而得.不同沉积年代黏性土的工程地质特征一、老黏性土第四系上更新统(Q3)及其以前沉积的黏性土.一般分布于山麓、山坡、河谷高阶地或伏于现代沉积(Q4)之下.由于它沉积年代较久,因而具有较高的结构强度和较低的压缩性.其承载力标准值一般大于350kPa,压缩模量E s大于15米Pa,标准贯入击数N 大于15.通常,老黏性土的承载能力明显地大于具有相同物理性质指标的一般黏性土.但应注意,有些年代在Q3及其以前的沉积层由于受所处地形等其他条件的影响,其工程性质也可能较差.二、一般黏性土第四纪全新世(Q4)沉积的工程性质一般的黏性土.广泛分布于河谷各级阶地(主要在低阶地)、山前及平原地区,厚度变化视成因类型而异.多呈褐黄色或黄褐色,有时含铁锰质粒状结核,但圆度较差,亦较硫松.承载力标准值一般为120~300kPa,压缩摸量E s为4~15米Pa,标准贯入击数N为3~15.三、新近沉积黏性土沉积年代较新的、即在近代文化期沉积的黏性土.多分布于湖、塘、沟、谷和河漫滩地段以及超河没滩低阶地、古河道、洪积冲积锥(扇)和山前斜地的顶部.一般未经很好的压密固结作用,结构强度较小.新近沉积黏性土的物理指标与一般黏性土的指标相近,但工程性质与—般黏性土有明显差别.15.2软土的生成环境与工程特性软土是指天然孔隙比大于或等于1.0,且天然含水量大于液限的细粒土.软土为在静水或缓慢流水的环境中沉积,并经生物化学作用形成的土.软土包括淤泥、淤泥质土、泥炭、泥炭质土等.淤泥:天然含水量大于液限、且天然孔隙比大于或等于1.5 (w>w L、且e≥1.5),淤泥质土:天然含水量大于液限、且天然孔隙比小于1.5但大于或等于1.0(w>w L、且1.5>e≥1.0).土的有机质含量W u:W u<5%,无机土,5%≤W u≤10%,有机质土,10%<W u≤60%,泥炭质土,W u>60%,泥炭.一、淤泥和淤泥质土的生成环境与组成成分静水或缓慢流水的环境:水流不通畅的饱和缺氧条件湖泊、沼泽、大河流的入海处的三角洲、溺谷等沉积环境.淤泥和淤泥质土的组成成分,是由其生成环境决定的.1.粒度成分(塑性指数)黏粒(粒径d<0.005米米)含量一般达30%~60%,大量黏粒的存在,是使淤泥大量容水的内在因素之一.2.矿物成分黏土矿物中以蒙脱石和水云母类占多数.这种矿物组成也反应了软土的生成环境是缺氧的碱性环境,这些黏土矿物与水的作用非常强烈,比高岭石类及其他成分的黏土颗粒的吸水性更大,因而在其颗粒外围形成很厚的结合水膜,使得淤泥和淤泥质土的天然含水量很大.3.富含大量微生物和各种有机质是淤泥和淤泥质土的最大特点.大量有机质的存在,使软土具一系列特殊的性质:颗粒比重小、重度小、天然含水量大(水容量很大)、水很难排出等.这是由于有机质这种胶体颗粒的结合水膜厚度比一般黏土矿物颗粒更大的缘故.因此,土中有机质的分解程度愈高、含量愈大,则土的含水量愈大、工程性质愈差.二、淤泥和淤泥质土的结构性和状态特征淤泥和淤泥质土的结构性是指具有一定强度的粒间联结的性质.当土被扰动,破坏了它的粒间联结,则土体强度就会剧烈降低.粒间联结的因素构成:1.静电引力和分子引力作用黏粒之间的静电引力和分子引力的作用,使黏粒在水下沉积过程中相互联结成蜂窝状或絮状结构.2.水胶联结作用水胶联结是黏土颗粒间水分子(极性分子)在不同电荷作用下定向排列造成的.受吸附力愈大,其分子排列愈紧密,就愈具有较大的黏滞度和抗剪强度,从而形成一定强度的粒间联结.3.灰质联结作用水中大量的微生物一淤泥细菌作用的结果.这类细菌可以制造CO2,CO2与土中的Ca CO3可形成Ca (H CO3) 2,到一定深度后,细菌大量死亡,则CO2减少,Ca CO3又沉淀下来,从而形成黏粒间某种程度的灰质联结.三、淤泥和淤泥质土的物理力学特性软土的主要工程特性:1.天然含水量大(一般大于36%)、孔隙比大(大于1.0)、饱和度大;2.渗透性差(垂直渗透系数为10-6~10-8厘米/s);3.压缩性高且完成固结时间长;4.强度低、地基承载力低;5.具触变性且灵敏性高;6.具流变性;7.在较大的地震力作用下,可能发生震陷.四、不同成因的淤泥和淤泥质土的工程地质特征我国淤泥和淤泥质土的形成和分布,基本上可以分为两大类别: 第一类是属于海洋沿岸的淤积;第二类是内陆和山区河、湖盆地及山前谷地的淤积.大体上说,第一类分布较稳定,厚度较大;第二类常零星分布,沉积厚度较小.1.沿海软土大致可分为四种类型:1)泻湖相沉积:温州、宁波等地区.其特征是土层比较单一,厚度大,分布范围宽阔,形成海滨平原.2)溺谷相沉积:闽江口地区.其高压缩性和低强度等特点更甚于前者,但分布范围略窄.3)滨海相沉积:天津的塘沽新港地区以及连云港等地区.其淤积厚度达60米以上,间夹粉砂薄层或透镜体,整个土体呈“千层饼’样的细微条带层状构造.工程性质一般较泻湖相和溺谷相者稍好,但在深水处的年轻海淤则比其他各成因类型者更差.4)三角洲相沉积:长江三角洲、珠江三角洲地区.其主要特点是海相与陆相交替沉积形成,分布宽阔,厚度比较均匀、稳定,但分选程度差,多交错的斜层理或不规则透镜体夹层.具有薄粉砂夹层或粉砂、砂质粉土透镜体,为水平渗流提供了良好的条件.因此,比沿海其他成因类型软土的物理力学性能相对较好.2.内陆平原地区软土主要有湖泊相、沼泽相、河漫滩相、牛轭湖相等.1)湖泊相、沼泽相沉积:滇池东部及其周围地区,洞庭湖、洪泽湖盆地,太湖流域的杭嘉湖地区等.其组成和构造特点是组成颗粒微细、均匀,富有机质.淤泥成层较厚,不夹或很少夹砂、且往往具有厚度和大小不等的肥淤泥与泥炭夹层或透镜体.因此,其工程性质往往比一般滨海相沉积者差.2)河漫滩、牛轭湖相沉积⑴河漫滩相沉积的工程地质特征是具有明显的二元结构.上部为粉质黏土、砂质粉土,具微层理,但比滨海相的间隔厚些;下部为粉、细砂.⑵)牛轭湖相沉积物一般由淤泥、淤泥质黏性土及泥炭层组成,处于流动或潜流状态,工程性质与—般内陆湖相相近,但其分布范围略狭,一般呈透镜状掩埋于冲积层的下部,故需慎重对待.3.内陆山区软土成因主要是由于当地的泥灰岩、炭质页岩、泥砂质页岩等风化产物和地表的有机物质经水流搬运沉积于原始地形低洼处,长期饱水软化,间有微生物作用而形成.分布上总的特点是,分布面积不大、厚度变化悬殊.15.3 黏性土和软土地基承载力的综合评价一、影响黏性土和软土地基承载力的因素软土的主要工程性质特点是强度低、压缩性高、排水固结过程缓慢.地基土的承载力不仅与地基的特性有关,还与基础、上部建筑和地基土之间的相互作用有关.地基土的特性随着施工程序、方法、加荷的方式变化.地基土的承载力,要考虑强度和变形两方面,既要保证地基不发生强度破坏丧失稳定性,又要保证建筑物不产生影响建筑物安全与正常使用的过大沉降或不均匀沉降.对于软土地基来说,强度与变形两者之间,起控制作用的是变形.软土地基承载力的影响因素:1、上部结构与基础的整体刚度、基础对不均匀沉降的敏感性其他条件相同,上部结构连同基础的整体刚度愈大,建筑物的差异沉降就愈小,地基土的承载力可以适当地用得高一些.但应注意,上部结构与基础的刚度增大、地基承载力用高后,结构中所产生的内应力也随之增大.2、加荷方式、加荷速率及加荷的大小室内试验及现场观测均表明不同加荷方式、不同加荷速率,以及加荷的大小对软基变形均有影响.图15-8表示不同的加荷方式对沉降的影响.两者均最终加荷到125kPa,一种加荷方式是间歇地5次加荷,每加25kPa后待沉降稳定后再加下一级荷载;另一种则为连续加荷.由图可见间歇加荷的最终沉降比连续加荷的为小.而连续加荷的沉降主要集中在前期,延续时间长.图15-9为不同加荷速率室内固结试验的成果.图中1——加荷时间间隔为30米in;2——加荷时间间隔为1h.加荷快的,其初期沉降较之加荷慢的为小,而最终沉降则比较大.加荷的大小:根据福州地区经验,当基底压力小于40~70kPa时变形较小,随着压力的增大,每增大10~20kPa,沉降就要增加0.5~1倍以上,而且变形速率较高,延续时间也长.上海地区淤泥质土当基底压力小于70~80kPa时变形就较小,基底压力超过这一数值,沉降就会增大一倍甚至几倍.从理论上来分析,软土地基在加荷过程中,始终存在着剪应力与抗剪强度这一对矛盾.当地基土受荷载作用后,如加荷速率控制适当,使排水固结占主导地位,地基土的强度逐渐增长,并能适应外加荷载所产生的剪应力的增长,地基的变形就小,承载力也就得到提高.反之,如加荷速率过快,由于软黏土排水固结比较缓慢,则地基土的强度的增长不适应由于外加荷载所产生不断增长的剪应力时,地基土会发生局部的塑性变形,使变形大为增加,甚至发生剪切破坏.3、土的结构扰动软土灵敏度高,土的结构遭到扰动或破坏后,强度就会急剧降低.例如江苏某大型厂房,采用箱形基础,宽63.3米,高6米,由于理深大,开挖基坑未采取措施,基坑底部因挖土卸重,地下水流动,由于长期大量抽水,施工操作时基坑底土层被践踏,加上直接在基坑边堆土,使基底软黏土受挤扰动,土的天然结构遭到严重破环,土的压缩性大大增加,以致厂房建成后沉降甚剧,大大超过了原设计的沉降值.软土中要避免深挖,深挖不可避免时,施工措施对软土的承载力有很大的影响.4、充分利用软土之上的“硬壳层”,采用浅埋基础我国软土分布地区,表层均有一层“硬壳层”,一般为可塑的中压缩性的黏性土,其力学性质较之以下的软黏土为好,因此,充分利用软土之上的“硬壳层”,采用浅埋基础,使基底与软土层的间距增加,减少软黏土的附加压力,从而减少地基的变形,可提高地基承载力.软土地区,应当查明硬壳层的分布、厚度、软土稠度状态沿深度的变化,在评价地基承载力时应结合这些具体地基条件进行综合分析.5、微地貌对软土受荷变形的影响如原始地面高低不平,近期人工整平.原来高的地方挖土后,等于预压土,而低的地方,则为新填土,见图15-12.如设计时基底附加压力均为p0.,实际上,高处的附加压力仅为p0-γh2,γh2为挖去的土重)低处的附加压力则为p0+γh1,γh1为新填土的土重),因此虽然土层分布是均匀成层的,两者的沉降却是不同的.综合以上的讨论,影响软土地基承载力的因素是复杂的,多方面的.从工程地质勘察来看,在评价软土地基承截力时要注意以下方面:(1)软土地基成层特性、软硬土层的分布规律,特别是地表的硬壳层应当仔细查明,尽管硬壳层一般厚度并不大,也不密忽视,要考虑充分发挥硬壳层的作用.(2)基础的类型、形状、大小、埋深和刚度,上部建筑的结构类型、刚度,对不均匀沉降的敏感性,以及相邻建筑的影响.(3)荷载性质、大小、加荷速率对地基土的变形特性有很大影响.在对软黏土的变形规律进行深入试验研究时,对这些因素要有充分的考虑,否则会导致不正确的结论.有时还要联系到地基土早先的受荷历史来研究.(4)深开挖基坑时的施工条件的影响.二、确定黏性土和软土地基承载力的方法1、常规法按国家标准《建筑地基基础设计规范》(GBJ7-89)以室内试验确定黏性土和软土地基的承载力标准值时,应按表15-5和表15-6查得的承载力基本值乘以回归修正系数ψf,见第14章14-3l.表15-7和表15-8为原地基规范(TJ7-74)给出的老黏性土和新近沉积黏性土的容许承载力[R]表,供参考.在我国沿海典型软土地区之一的上海地区,上海市标准《地基基础设计规范》DBJ08-11-89所附《上海市工程地质图集》系在前期规范基础上根据建筑经验和沉降量估算编制的,持力层及下卧层的强度已经初步验算,规定凡符合该图系编制条件(见第14章14-3)的地基容许承载力,可按工程地点查图使用.新规范国家标准《建筑地基基础设计规范》(GB50007-2002)中已不提供地基承载力表.2、强度公式对一般建筑物只采用临塑荷载p kp或界限附荷载p1/4公式估算地基强度,而且必须结合地区建筑经验使用,并需满足变形要求.根据上海地区的经验,一般仍用直剪仪做固结快剪,取峰值强度的70%确定强度指标c,φ值.根据福州地区的土质条件,建筑物在施工期的下沉百分比一般较小,固结度仅为10%~30%,故采用固结快剪或不排水快剪均与实际情况不符,会得到偏高或偏低的强度指标,因此根据地区经验,用固结1h 的快剪测定强度指标,用p kp计算地基强度,再乘以1.1~1.2的系数后与载荷试验所确定的地基承载力相接近,也比较符合工程实践经验.使用本方法确定地基承载力仍需考虑地区经验,脱离了 地区的建筑经验,就可能得出错误的评价.3、原位测试(1)用十字板剪切试验强度c u 估算软黏性土地基承载力对于φ≈0的饱和软黏性土,根据十字板剪切试验所测定的c u ,按临塑荷载p kp 公式应为:3.14kp u p c h γ=+(15-2)参考此式,根据上海地区有关单位与载荷试验对比及使用的经验,一般用下列两式估算软黏性土的天然地基容许承载力[R ].[]2u R c h γ=+(15-3a)或[](23)u R c h γ=+(15-3b)应用(15-3a 和3b)两式的关键,在于测得c u 值的十字板剪切试验方法和所取c u 计算值的选择,根据建研院与上海有关勘察单位早在上海漕河泾、闵行等地区的试验,认为按式(15-1a)提供天然地基容许承载力与载荷试验结果接近.一般经验认为,对饱和软黏性土地基,不论用2c u 或3c u 作为[R ]依据,都需考虑地基变形问题.当建筑物对变形要求较严时,以用式(15-1a)为宜.而根据近年有关工程的应用经验及试验影响因素分析认为,既使用式(15-1a),对其中的cu 值也累经过适当修正,才不致使计算结果偏大.(2)用静力触探p s (或q c )评定黏性土和软土地基承载力国内在这方面已积累了大量资料,建立了适用于一定地区和土性的经验公式.现将部分经验公式列于表15-9(附部分国外资料),有关经验公式的对比情况见图15-13.(3)用标准贯入试验N值评定黏性土地基容许承载力直接利用N值判定地基容许承载力.如图17-14,图中p0为静载试验所得比例界限压力.4、用静力载荷试验确定黏性土和软土地基承载力详见第9章.15.4 软土地基工程勘察要点一、应着重查明的问题1、查明软土的成因类型和古地理环境例如,选择一个厂区跨越古湖盆地的中部,该厂区所遇淤泥层非但强度小,而且厚度往往很大,则其变形稳定性必然较差;如果厂区是处于古湖盆地的边缘地带,则其淤泥层中会夹有较粗碎屑的沉积,或间有坡积层的交替,且整个淤泥层的厚度也较薄,必然使地基土体的渗水性及其相应的强度和变形特性有显著改变,给厂区建筑地基承载力的提高以有利条件.这也正如本章15-2所述,不同成因类型的淤泥和淤泥质土,以及其所处的古地理环境不同,将具有不同的分布、结构构造特征和不同的物理力学特性.另外,在内地近代河谷边缘、阶地和山间盆地的中部,特别要注意古河道和古湖沼相淤泥分布的勘察工作,因为这种情况往往不能从近代地貌上来判定.在滨海平原及河口三角洲地区,水网密布,且地下暗浜、暗塘也多,如上海地区过去有的工程就是由于没有重视该地区地基的这一特点,因而未予查清而造成工程事故的.2、查明软土的分布范围、埋藏深度、厚度及其变化情况.关于这方面的问题特别在山区或某些山前地带比较突出,因为这些地带土层构造一般比较复杂,如果在地基压缩层范围内的这种软黏土层厚形不等时,即使厚度相差并不悬殊,然而由于软黏土压缩性甚大的特性,也往往产生较大的不均匀变形,而使建筑物出现裂缝.3、在山区还要特别注意查明软土层下伏基岩的坡度在山区还要特别注意查明软土层下伏基岩(或其他比较坚硬的土层)表面的坡度,以确定地基的抗滑稳定性和加剧地基不均匀沉降的可能性和程度.例如,舟山某厂主厂房地基的情况,足可说明下伏基岩起伏这一问题的重要性(图15-15).该厂房为钢筋混凝土条形基础,埋深1.65米,用砂垫层处理,砂垫层厚度2米,局部地点为1米.垫层直接放在淤泥和粉质黏土层上.地基下伏基岩顶面向东、北、南方向倾斜,向北坡度约为1:2.63,向南1:51,故淤泥厚度变化大,最薄仅2.00米,最厚达6.00米.厂房建成后不久,东西两边山墙出现严重开裂,致使砖墩裂断,缝口上下叉开,则不得不拆掉重砌.整个厂房呈南北向反弯曲变形,其中锅炉房部分横向向东南倾斜,其东南角沉降最大达20.5厘米.总之,厂房地基变形与基岩坡向一致.其原因就是由于基岩起伏,淤泥层厚薄不等,当时尽管采用了2米厚的砂垫层处理地基,仍然造成主厂房与基岩坡度一致的反弯曲变形和局部倾倒变形.其主要问题是在地基勘察时采用孔距50米,以为淤泥层比较均匀,厂房开裂后补钻才发现基岩面起伏,以及淤泥层厚度剧烈变化的情况.这个问题如能在勘察中查明,则在地基基础设计中采用合适的方案,这一工程事故是完全可以避免的.4、重点查明地基持力层、下卧层条件充分重视地表“硬壳层”土的勘察工作,查明其厚度及物理力学性质变化情况.5、查明是否存在砂土或粉土夹层、透镜体注意是否有砂的夹层和透镜体等,查明它们的位置和厚度变化情况,以便考虑它们作为天然排水层,加速软黏土固结过程,提高地基强度的可能性,以及施工中可能产生流砂危害的情况,以便预先采取措施.关于流砂现象的实质和形成条件参见第16章16-5.二、对勘探、取土方法与取土器的要求见第8章.三、现场观察描述与现场试验的重要意义软土土质松软,触变性强,对于采取这种土的土样,无论所用取土器设计得多么完善,其保持原状的程度总有一定限度,并且经运回实验室以及开样切土过程,受某些人为因素的影响,又难免再受某种程度的扰动.在试验方面,如剪切试验用直剪仪与实际受力和排水条件有一定差距,并限制了剪切面,因而也使所得c,φ值偏大.用三轴剪力仪比直剪试验较为接近实际情况,并可以在易于破坏的面上剪裂,但缺点是样品制各过程可能会使土的含水量和结构有所改变.因此,目前对这些室内测定的指标,有时只能根据勘察及建筑经验打折使用.但这究竞是比较间接的办法,而对于一个新的地区已有勘察和建筑经验很少时,要提供比较确切的指标,就有一定的困难.因此,已有不少单位对软土及其他易于扰动的土,不论是需用原状土的物理指标(如γ,ω等),还是力学指标都规定在现场测定.在这个对勘察工作具有方向性的改进措施方面,有些单位在取土器中采用分节试样环(详见第16章16-2),又可避免一次试验前开样切土过程的扰动,并对现场宜接测定某些物理力学指标带来很大方便.对抗剪强度和承载力指标用十字板剪力仪和静力触探能在钻孔中直接测定,可以从根本上避免取土过程对土样的扰动及土样应力状态的改变.因而所得成果更能代表软黏土的天然状况.另外,在软黏土的勘探过程对提取土样的现场观察、描述也尤为重要.有些单位对软土及其他易扰动的土类的土样定名与土质鉴定,已实行以野外观察为主(参考室内试验指标)的办法.关于这一措施和思想,特别对高灵敏度的、因而呈潜液状态的,以及含极薄层粉细砂夹层的叙土的土质鉴定和定名有决定性的意义.例如:根据这种土的室内(或现场)的液、塑限试验所确定的土的塑性指数及状态指标(液性指数),往往会与在天然状态下的实际情况有一定差距.因为液、塑限指标是用扰动土做出的,特别是不能正确反映土中细微砂夹层的影响,所以有时会出现把含有极薄层粉细砂夹层或透镜体的淤泥质黏土定名为淤泥质粉质黏土甚至粉土的问题.重视现场直接观察、描述,并与试验数据互相校验,则可及时发现问题,及时补取土样,解决问题.补充资料国家标准《岩土工程勘察规范》(GB50021—2001)中的有关规定和要求(软土的勘察要求和方法、软土的岩土工程评价)1.软土的勘察内容软土勘察除应符合常规要求外,还应查明下列内容:①成因类型、成层条件、分布规律、层理特征、水平向和垂直向的均匀性;②地表硬壳层的分布与厚度、下伏硬土层或基岩的埋深和起伏;③固结历史、应力水平和结构破坏对强度和变形的影响;④微地貌形态和暗埋的塘、浜,沟、坑、穴的分布、埋深及其填土的情况;⑤开挖、回填、支护、工程降水、打桩、沉井等对软土应力状态、强度和压缩性的影响;⑥当地的工程经验.2.软土的勘探和取样①软土地区勘察宜采用钻探取样与静力触探结合的手段.勘探点布置应根据土的成因类型和地基复杂程度确定.当土层变化较大或有暗埋的塘、浜、沟、坑、穴时应予加密.②软土取样应采用薄壁取土器、快速静力连续压入法.钻进方式应采用回转式提土钻进,并采用清水加压或泥浆护壁.土试样在采取、运送、保存、试样制备过程中,要严防扰动.3.软土的试验方法。
十字板剪切试验

十字板剪切试验1.适用范围十字板剪切试验可用于检测软黏性土及其预压处理地基的不排水抗剪度和灵敏度。
2.仪器设备十字板剪切仪根据其测力方式,主要分为机械式和电测试。
机械式十字板剪切仪是利用蜗轮旋转插入土层中的十字板头,由开口钢环测出抵抗力矩,计算土的抗剪强度。
电测试十字板剪切仪是通过在十字板头上连接一贴有电阻片的受扭力矩的传感器,用电阻应变仪测剪切扭力。
3.十字板形状宜为矩形,宽高比1:2,板厚宜为2-3mm;其规格宜为表的规格5.十字板剪切仪的性能指标应符合下列规定:(1)实验前,十字板探头应连同量测仪器,电缆进行率定,室内探头率定测力传感器的非线性误差,重复性误差,滞后误差,归零误差均应小于1%FS,现场归零误差应小于3%,温度漂移应小于0.01%FS/℃,绝缘电阻不小于500MΩ。
(2)十字板剪切仪的测量精度应达到1kPa.(3)仪器应能在温度-10-45℃的环境中工作。
5.1十字板剪切试验的测量仪器宜采用专用的试验记录仪。
5.2十字板剪切试验的信号传输线应采用屏蔽电缆。
5.3触探管应顺直,每节触探杆相对弯曲宜小于0.5%,丝扣完好无裂纹。
6.现场检测平整场地和安装仪器设备应符合下列规定:1.检测孔应避开地下电缆,管线及其他地下设施;2.当检测附近处地面不平时,应平整场地;3.设备安装应平稳。
6.1机械式十字板剪切仪试验操作应符合下列规定:1.利用钻孔辅助设备成孔,将套管下至预测深度以上3-5倍套管直径处,并清除孔内残土。
2.将十字板头,轴杆与探杆逐节连接并拧紧,然后放下孔内至十字板头与孔底接触。
3.接上导杆,将底座插过导杆固定在套管上,用制紧螺钉拧紧,然后将十字板头压入土内预测深度处;当试验深度处为较硬层时,应穿过该层在进行试验。
十字板插入至试验深度后,至少应静止3min,方可开始试验。
4.先提升导杆2-3mm,使离合器脱离,用旋转手柄快速旋转导杆十余圈,使轴杆摩擦减至最低值,然后在合上离合器。
土力学三轴试验

土力学三轴试验土力学三轴试验三轴试验中土的剪切性状分析摘要:按剪切前的固结状态和剪切时的排水条件分为三种:不固结不排水剪,固结不排水剪,固结排水抗剪。
文中将讨论正常固结饱和黏性土在剪切时将具有不同的强度特性。
关键词:不固结不排水抗剪强度,固结不排水抗剪强度,固结排水抗剪强度作者简介:Triaxial shear Characters of Middle-earthLI Jia-chun(shanghai University,department of civil engineering,08124240)Abstract: Consolidation by the state before shear and shear when the drainage is divided into three types: non-consolidated undrained shear, consolidation undrained shear, consolidated drained shear. This article will discuss the normally consolidated saturated clay in the shear strength will have different characteristics.Key words: non-consolidated undrained shear, consolidation undrained shear, consolidated drained shear.0 引言广义黏性土包括粉土,黏性土。
黏性土的抗剪强度远比无粘性土复杂。
要准确掌握原状土的强度特性,也就非常困难。
对土的强度研究,大多数用均匀的重塑土。
原状土和重塑土之间在结构上和应力历史存在重大差异,且原状土的取样扰动对其实际强度也有较大影响。
按剪切前的固结状态和剪切时的排水条件分为三种:不固结不排水剪,固结不排水剪,固结排水抗剪。
第五部分 土的抗剪强度

75第五部分 土的抗剪强度一、计算题5-1-1某饱和粘性土,由无侧线抗压强度试验测得不排水抗剪强度u c =70kPa ,如果对同一土样进行三轴不固结不排水试验,施加周围压力3σ=20 kPa 。
求当轴向压力为300 kPa 时,试件能否发生破坏?5-1-2饱和粘土试样在三轴仪中进行固结不排水试验,破坏时1σ=400 kPa ,3σ= 200kPa ,孔隙水压力1u =150 kPa ,c '=60 kPa ,ϕ' =︒30。
求破坏面上反向有效应力,剪应力及剪切破坏时的孔隙水压力系数A 。
5-1-3某正常固结饱和粘性土试样,其不固结不排水强度指标为0ϕ=0,u c = 10kPa 进行固结不排水试验,得有效抗剪强度指标c '=0,ϕ'=︒30。
(1)如试样在不排水条件下破坏,求破坏时有效大主应力和小主应力。
(2)如某一面上法向应力σ突然增加到100kPa ,法向应力刚增加时沿这个面的抗剪强度是多少?经很长时间后该面抗剪强度是多少?5-1-4某黏土有效强度指标:0='c ,︒='30ϕ,作不固结不排水三轴试验。
在每一种试验中,三轴周围压力保持不变为762002/m kN 。
试计算:(1)在不固结不排水试验中,破坏时孔隙压力是1202/m kN .求式样破坏时的有效竖向压力强度是多少?(2)固结不排水试验测得在破坏时的有效竖向压力强度为1502/m kN .求破坏时孔隙水压力为多少?5-1-1某土工实验室进行应变式直剪试验,数据如表5-1所列。
试整理分析得出该土样的抗剪强度指标。
已知剪力盒面积A=302cm ,应力环系数K=0.2kPa/0.01mm ,百分表每格=0.01mm 。
垂直荷载(kN ) 0.15 0.30 0.60 0.90 应力环系数(格)1201602803805-1-6对某饱和粘性土进行三轴固结不排水试验,kPa 3003=σ,孔隙水压力kPa u f 100=。
材料-土工试验(一)_真题无答案-交互

材料-土工试验(一)(总分122, 做题时间90分钟)一、判断题1.不规则土样可以用环刀法测定其天然密度。
SSS_JUDGEMENT正确错误2.土的含水率是土中水的质量与土的质量之比。
SSS_JUDGEMENT正确错误3.含石膏土土样的含水率测试方法与其他土样一样。
SSS_JUDGEMENT正确错误4.压缩系数在Δh~Δp曲线上求得。
SSS_JUDGEMENT正确错误5.压缩指数在Δe~Δp曲线上求得。
SSS_JUDGEMENT正确错误6.CHS为含砾低液限粉土。
SSS_JUDGEMENT正确错误7.水析法适用于0.075MM~0.002MM粒径的土。
SSS_JUDGEMENT正确错误8.液塑限联合测定液限后,无论对细粒土还是粗粒土其计算入土深度的公式是一样的。
正确错误9.搓条法中只要土体断裂,此时含水率就是塑限含水率。
SSS_JUDGEMENT正确错误10.使用EDTA滴定法测定水泥或石灰剂量时所用的标准曲线是上级发的。
SSS_JUDGEMENT正确错误11.土的压缩性表现的是水的排出。
SSS_JUDGEMENT正确错误12.同一土体在不同击实功的条件下,其最大干密度不变。
SSS_JUDGEMENT正确错误13.直剪试验中慢剪试验方法是指:先使试样在法向压力作用下完全固结,然后慢速施加水平剪力直至土样破坏。
SSS_JUDGEMENT正确错误14.压缩试验是研究土体一维变形特性的测试方法。
SSS_JUDGEMENT正确错误15.压缩试验中土的压缩主要是孔隙体积的减小,所以关于土的压缩变形常以其孔隙比的变化来表示,试验资料整理为e~p曲线或e~lgp曲线。
SSS_JUDGEMENT正确错误16.击实试验利用标准化的击实仪具,试验土的密度和相应的含水率的关系,用来模拟现场施工条件下,获得路基土压实的最大干密度和相应的最佳含水率。
正确错误17.土的液限含水量是表示土的界限含水量的唯一指标。
SSS_JUDGEMENT正确错误18.在进行无荷载膨胀量试验中,测定试样是在无侧限条件下,浸水后在高度方向上单向膨胀与原高度的比值,即膨胀量。
粘性土的换算内摩擦角计算方法

目前在设计中常用的方法是用综合内摩擦角φ0代替抗剪强度中的内摩擦角φ和粘聚力c。
常用的内摩擦角换算方法有:①把粘性土的内摩擦角φ值增大5°-10°,作为综合内摩擦角φ0,因此,当墙高H≦6m时,一般取综合内摩擦角值为35°-40°,当墙高H>6m时,取综合内摩擦角值为30°-35°。
也可按经验规定粘聚力每增加0.1MPa,相当于增加内摩擦角3°-7°②根据土的抗剪强度相等的原理,计算综合内摩擦角φ0其换算公式为:φ。
=tan-1(tanφ+c/rH)式中,r为填料的容重(kN/m3);φ为试验测定的土的内摩擦角;c为试验测定的土的粘聚力(kPa);H为挡土墙的高度(m)。
③根据土压力相等的原理计算综合内摩擦角φ0值。
为计算方便,可按破裂楔体顶面水平、墙背竖直、墙背与土之间的摩擦角为0的简单边界条件确定换算为砂性土的土压力为:Ed=1/2 rH2tan2(45°-φ0/2)粘性土的土压力为:令粘性土的土压力与换算后的砂性土土压力相等,即可求出φ0值Ea=1/2 rH2tan2(45°-φ/2)-2cH tan2(45°-φ/2)+2c2/r综合内摩擦角是个偷懒的做法,在特定情况下是可以的,但不应是6楼的表达方式,6楼的表达方式是基于抗剪强度,对于挡土墙这个式子就不恰当了,应该以土压力系数的形式来表达--土压力系数相等反算综合内摩擦角由于土压力系数与深度有关,因此对于挡土墙来说,综合内摩擦角是个随墙高的变量。
内摩擦角(angle of internal friction)煤堆在垂直重力作用下发生剪切破坏时错动面的倾角作为岩(土)体的两个重要参数之一的内摩擦角,是土的抗剪强度指标,是工程设计的重要参数。
土的内磨擦角反映了土的磨擦特性,一般认为包含两个部分:土颗料的表面磨擦力,颗粒间的嵌入和联锁作用产生的咬合力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第xx卷第x期岩土工程学报Vol.xx No.x xxxx年 x月 Chinese Journal of Geotechnical Engineering xxxx, xxxx黏性土的剪切破坏特征摘要:对饱和黏性土试样进行三轴不固结不排水剪切、固结不排水剪切和固结排水剪切试验,获得了饱和黏性土三轴试验的抗剪强度指标,通过对强度指标的分析比较,绘制应力与应变的关系曲线和强度包线,并计算土的内聚力和摩擦角。
得出三轴慢剪指标,并作为设计、施工的参数。
为黏性土路基的设计和施工提供依据,使施工的数据更加合理、科学,提高工程的安全性、可靠性、科学性。
关键词:黏性土;三轴剪切试验;不固结不排水;固结不排水;固结排水;强度包线中图分类号:xxxxx.xx 文献标识码:X 文章编号:xxxx–xxxx(xxxx)xx–xxxx–xxReliability analysis of high level backfill based on chaotic optimizationLIU Zhi-xiang, LI Xi-bing, ZHANG Yi-ping(Central South University, Changsha 410083, China)Abstract: To adhere to the saturation :took three samples of the earth's axis is not an end and drainage, sewerage and could not cut it to the cut the knot and got saturated soil stuck of three axes to cut the strength to strength the target indicators, by comparison, the analysis of stress to strain of the relationship between the curve and the intensity of the bag, and the earth's cohesion and rubbing horns. the three axes to cut down, and as a design and construction of parameters. To adhere to the nature of the design and construction, construction provides for data more rational, scientific and engineering safety, reliability, scientific.Key words: Very nature of the earth ;three axis of an experiment ;not solidated ;is no sewerage and drainage ;not solidated drainage ;Line is wrapped0 引言在实际工程施工中,出于施工安全的考虑,往往要对坝基的稳定性、地基的承载力、挡土墙的压力与稳定性以及边坡稳定等进行计算和评估,而这些安全评价都与土的抗剪强度有着密切的关系。
三轴剪切试验能够模仿土体在实际土层中的受力状况,试验中可模拟与工程条件相近的三向受力状态,易于反映土体不连续性和各向异性,具有能控制主应力及排水条件,受力状态明确,剪切面不固定,破坏面是土体最薄弱面,并根据工程所需准确测定土的孔隙压力及体积变化等优点,同时还能提供所需有效强度指标,进行土体稳定的有效应力分析,所以通常我们用三轴剪切实验测定土的抗剪强度及应力-应变关系,根据剪切前的固结状态和剪切时的排水条件不同分为三种情况:不固结不排水剪(UU);固结不排水剪(CU);固结排水剪(CU)。
确定强度指标需要通过室内外试验与测试,不同的试验方法测得土的强度指标有较大区别。
而在工程应用中,选择的试验条件应当尽可能与实际工程条件相似。
众所周知,黏性土的抗剪强度比无粘性土复杂得多,本文将重点讨论正常固结饱和粘性土在剪切时将具有的不同强度特性。
1. 不固结不排水强度(UU)进行地基基础设计计算及进行边坡稳定计算和挡土墙压力计算时,建筑物如果修建在饱和粘性土地基上,施工周期短(填筑速度快) ,建筑物荷载较大,或地基土为粘性土,排水条件较差时,土体中的水来不及排出进行固结,此时作为稳定性分析所需的参数是土体天然强度参数粘聚力c 和内摩擦角φ,不固结不排水剪试验能够较为准确的模拟实际工程情况。
不固结不排水剪试验,英文称 Unconsolidated Undrained Triaxial test ,简称UU 试验。
在不排水条件下施加周围压力增量Δσ3,然后在不允许有水进出的条件下,逐渐施加附加轴向压力q,直至试样剪破。
因此,试验中径向应力σ3等于(σc+ Δσ3 ),轴向应力σ1等于(σ3+q ),孔隙水压力等于112μμμ=∆+∆。
试验的结果如下图:xxx 岩 土 工 程 学 报 xxxx 年正常固结饱和土UU 试验的强度包线图中实线半圆A 、B 、C 分别表示三个试件在不同的3σ作用下破坏时的总应力圆,虚线是有效应力圆。
试验的结果表明,虽然三个试件的周围压力3σ不同,但破坏时的主应力差相等,在3f τσ-图上表现出三个总应力圆直径相同,因而破坏的包线是一条水平线,即:式中:u ϕ--不排水内摩擦角,度; u c --不排水抗剪强度,a kp在试验中如果分别量测试样破坏时的孔隙水压力f μ,试样结果可以用有效应力整理,结果表明,三个试件只能得到同一个有效应力圆,并且有效应力圆的直径与三个总应力圆直径相等,即:这是由于在排水的条件下,试样在试验的过程中含水量不变,体积不变,饱和黏性土的孔隙压力系数B=1,改变周围压力增量只能引起孔隙水压力的变化,并不会改变试样中的有效应力,各试件在剪切前的有效应力相等因此抗剪强度不变。
如果在较高的剪前固结应力下进行不固结不排水试验,就会得出较大的不排水抗剪强度u c 。
由于一组试件试验的结果,有效应力圆是同一个,因而就不能得到有效应力破坏包线和'c 、'ϕ值,所以这种试验一般只用于测定饱和土的不排水强度。
不固结不排水试验的“不固结”是在三轴压力室压力下不再固结而保持试样原来的有效应力不变,如果饱和黏性土从未固结过,将是一种泥浆状土,抗剪强度也必等于零。
一般从天然土层中取出的试样,相当于在某一压力下已经固结,总具有一定天然强度。
天然土层的有效固结压力是随着深度而变化的,所以不排水抗剪强度u c 也随着深度变化,均质的正常固结不排水强度大致随有效固结压力成线性增大。
饱和土的超固结黏土的不固结不排水强度包线也是一条水平线,即0u ϕ=。
2. 固结不排水强度(CU )建筑物如果修建的地基基土层属于软土,基土被碾压密实,但地基排水条件较差,如经常受水位影响的堤坝工程中,堤坝水位突然下降,在分析其稳定性验算时都应采用固结不排水剪试验的强度参数来进行分析计算。
固结不排水剪试验,英文称Consolidated Undrained Triaxial test ,简称CU 试验。
在试验装样后先施加围压,再打开排水阀对试样进行前期的排水固结,但在剪切过程中须关闭排水阀。
进行剪切时,首先检查轴向是否与量力环接触良好,因为在固结时由于固结围压的压缩作用,试样的体积会减小。
然后施加轴向压力,直至剪切破坏后或达到控制应变时结束试验。
在试样固结过程中,试样含水率逐渐减小,在试样受剪破坏过程中, 试样的含水率保持不变。
对于CU 试验,抗剪强度在一定程度上受应力历史的影响,因此,试验前需区别式样是正常固结还是超固结。
确定好后,由于式样在c σ、3σ∆下固结稳定,所以试验时可直接加33c σσσ=+∆使其固结稳定。
然后,在不允许水有进出的条件下逐渐加附加轴向压力即偏应力13q σσ=∆-∆,直至式样剪切破坏。
如果在试验中测定量测孔隙水应力,则结果可用有效应力整理。
从破坏时的总应力中减去f μ,可得到相应破坏时的有效大主应力'1f σ和有效小主应力'3f σ 及破坏应力圆,绘出这些破坏应力圆的包线,可得有效应力强度包线。
由于正常固结土剪破时的孔隙水应力为正值,则剪破时的有效应力圆总在总应力圆的左边。
有效应力强度包线也是通过坐标原点的直线,直线的倾角'ϕ大于cu ϕ,'0c =,于是用有效应力表示的CU 试验抗剪强度为:其中:'σ——剪破面上的有效应力;'ϕ——有效内摩擦角。
同时由于式样的剪切前固结压力随着3σ∆的增加而增大,则式样剪前的有效应力增大而孔隙比相应减小,因此,强度和极限总应力圆也相应增大。
作这些极限总应力圆的包线即得到正常固结土CU 试验得总应力强度线,如下:132f u c σστ-==0u ϕ=''13131313()()()A B Cσσσσσσσσ-=-=-=-''tan τσϕ=正常固结土CU 试验的强度包线和有效应力强度包线土中以实线表示的为总应力圆和总应力破坏包线,如果试验时量测孔隙水压力,试验结果可以用有效应力整理,图中虚线表示有效应力圆和有效应力破坏包线,f μ为剪切破坏时的孔隙水压 力,由于'11f f f σσμ=-,'33f f f σσμ=-,故''1313f f f f σσσσ-=-,即有效应力圆与总应力圆直径相等,但位置不同,两者之间的距离为f μ,因为正常的固结试样在剪切破坏时产生正的孔隙水压力,故有效应力圆在总应力圆的左方,总应力破坏包线和有效应力破坏包线都通过原点,说明未受任何固结压力的土(如泥浆状土)不会具有抗剪强度。
总应力破坏线的倾角以cu ϕ,一般在1020-之间,有效应力破坏包线的倾角'ϕ称为有效内摩擦角,'ϕ一般比cu ϕ大一倍左右。
3. 固结排水强度(CD )建筑物如果修建的地基基土层属于软土,基土被碾压密实,施工工期较长,但地基透水性较好,排水条件到位,一般采用固结排水剪试验来测得土体抗剪强度参数来分析稳定性。
固结排水剪试验,英文称Unconsolidated Undrained Triaxial test ,简称CD 试验。
在试验装样后先施加围压,再打开排水阀对试样进行前期的排水固结,在剪切过程中须打开排水阀。
进行剪切时,首先检查轴向是否与量力环接触良好,因为在固结时由于固结围压的压缩作用,试样的体积会减小。