平行线及其性质和判定

合集下载

平行线的判定与性质的条件和结论

平行线的判定与性质的条件和结论

平行线的判定与性质的条件和结论
在对平行线的判定与性质的条件和结论进行分析时,应考虑以下几个方面:
首先,有关两条直线的判定与性质,我们应该得出以下结论:如果两条直线l、l'之间存在唯一公共直线,即他们分别以入射角与出射角来标定时,这两条直线必定平行;反之,如果两条直线l、l'之间不存在唯一公共直线,即入射角与出射角不相等,这两条直线必定不平行。

其次,另外,有关平行线的性质,可以得出以下结论:当两条直线的斜率一致时,那么这两条直线必定是平行的;或者当两条直线分别平行于纵轴和横轴时,也就是,它们在竖直方向和水平方向上是平行的,此外,两条有公共点的直线也一定是平行的,即是它们的入射角与出射角相等。

最后,还有一种有关平行线的性质,就是“垂直”性质。

根据这一性质,可以得出结论:如果一点在平行线l、l'上,则以该点为顶点的任意一条垂线都能把同一平面内的平行线分割为两部分,因此,通过这种方式可以得出结论:在一个平面内,如果存在三条直线同时与两条其他线平行,那么这三条直线必定是互相垂直的。

总结起来,在对平行线的判定与性质的分析中,主要考虑到以下几点:1. 以入射角与出射角来判断直线是否平行;2. 如果两条直线斜率一致,则必定平行;3.如果两条直线分别平行于纵轴和横轴,或者存在公共点,则必定平行;4.如果一点在两条直线上,则任一垂线都可以把两条平行线分割开来;5.如果存在一组三条平行线,则必定相互垂直。

平行线与相交线的性质和判定方法

平行线与相交线的性质和判定方法

平行线与相交线的性质和判定方法平行线和相交线是几何学中非常重要的概念。

它们的性质和判定方法不仅在数学中有广泛应用,而且在实际生活中也有很多实际意义。

本文将介绍平行线和相交线的性质,并详细说明判定两条线是否平行或相交的方法。

一、平行线的性质和判定方法平行线是指在同一个平面中永不相交的两条直线。

以下是平行线的性质和判定方法:1. 特殊角的对应角相等若两条平行线被一条与它们相交的直线切割成多个角,那么这些角的对应角(位于两条平行线的内部、外部但同侧的角)相等。

2. 平行线间的距离相等两条平行线之间的任意两个点到这两条平行线的距离相等。

3. 平行线的证明方法- 对于已知的平行线,可以使用证明方法来确认,如使用平行线的定义和定理进行推导和证明。

- 可以利用等角和同位角的性质,通过夹角相等或对应角相等来判断两条线是否平行。

二、相交线的性质和判定方法相交线是指在同一个平面上相交的两条直线。

以下是相交线的性质和判定方法:1. 相交线上的相邻角互补若两条相交的直线之间有三个角,那么其中的相邻角(位于两条直线之间的两个角)互补,即它们的和为180度。

2. 四条线的交叉有序性若四条线两两相交于不同的点,并且这些点按照一定的顺序排列,那么这四条线相交于一个共同的交点。

3. 相交线的证明方法- 相交线的证明方法可以使用平行线的性质,如果两条线不平行,则一定相交。

- 利用等角和同位角的性质,可以根据角的性质进行相交线的证明。

三、应用示例下面通过几个简单的示例来说明平行线和相交线的性质和判定方法:例1:判断线段AB是否平行于线段CD。

解:连接线段AB和CD的两个端点,如果这两条连接线段的直线平行于CD,则线段AB与CD平行。

例2:已知直线l和直线m分别与直线n相交,且∠1和∠2为同位角,证明直线l和直线m平行。

解:根据同位角的性质可得∠1和∠2互补,即∠1+∠2=180度。

又因为直线l和直线m分别与直线n相交,所以∠1和∠2为同位角,故直线l与直线m平行。

平行线的判定与性质

平行线的判定与性质

第2节 平行线的判定与性质∙知识点聚焦1.三线八角(1)同位角:两条直线被第三条直线所截,截线的同旁,被截两直线的同一侧的角,我们把这 样的两个角称为同位角. 如图1∠和5∠,2∠和6∠3∠和7∠,4∠和8∠.(2)内错角:两条平行直线被第三条直线所截, 两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.如图3∠和5∠,4∠和6∠ (3)同旁内角:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角.如图4∠和5∠,3∠和6∠.2.平行线的判定方法(1)平行线的定义:在同一平面内不相交的两直线平行.(2)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.(3)同位角相等,两直线平行. (4)内错角相等,两直线平行. (5)同旁内角互补,两直线平行. (6)垂直于同一条直线的两直线平行. 3.平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等. (3)两直线平行,同旁内角互补.典型例题 41 2 3 5 876 DCBEAF∙例1.如图,已知直线a ,b 被直线c ,d 所截,直线a ,c ,d 相交于点O ,按要求完成下列各小题.(1)在图中的∠1~∠9这9个角中,同位角共有多少对?请你全部写出来; (2)∠4和∠5是什么位置关系的角?∠6和∠8之间的位置关系与∠4和∠5的相同吗?分析:(1)直接利用两条直线被第三条直线所截成的角中,若两个角都在两直线的同侧,并且在第三条直线的同旁,则这样一对角叫做同位角,进而得出答案. 直接利用两条直线被第三条直线所截成的角中,若两个角都在两直线之间,并且在第三条直线的同旁,则这样一对角叫做同旁内角,进而得出答案.例2.如图,直线a ,b ,c 被直线l 所截,︒=∠︒=∠︒=∠723,1082,721,说明ba //的理由.分析:由条件可知31∠=∠,c a //;o 18032=∠+∠,c b //,从而有b a //.例3.(1)如图,CD 平分∠ACB,DE ∥BC,∠AED=80∘,求∠EDC 的度数.分析:由角平分线的定义,结合平行线的性质, 易求∠EDC 的度数.labc213(2)已知:如图,1∠=∠C ,2∠和D ∠互余,FD BE ⊥于点G .求证:CD AB //.分析:首先由FD BE ⊥,得1∠和D ∠互余, 再由已知,1∠=∠C ,2∠和D ∠互余, 所以得2∠=∠C ,从而证得CD AB //.例4.探究:(1)如图a ,若CD AB //,则E D B ∠=∠+∠,你能说明为什么吗? (2)反之,若E D B ∠=∠+∠,直线AB 与CD 有什么位置关系?请证明; (3)若将点E 移至图b 所示位置,此时B ∠、D ∠、E ∠之间有什么关系?请证明; (4)若将E 点移至图c 所示位置,情况又如何?(5)在图d 中,CD AB //,G E ∠+∠与D F B ∠+∠+∠又有何关系? (6)在图e 中,若CD AB //,又得到什么结论?分析:对于“折线”,“拐角”型问题,解决这类问题的办法是:经过拐点作平行线来沟通已知角和未知角的关系.例5.已知,如图,CD AB //,AE 平分BAC ∠,CE 平分ACD ∠,求证:CE AE ⊥分析:根据两直线平行,同旁内角互补可得o ACD BAC 180=∠+∠,在根据角平分线可知EAC ∠=21BAC ∠,ACD ACE ∠=∠21,然后求出o ACD BAC ACE EAC 90)(21=∠+∠=∠+∠,得o ACE 90=∠.例6.如图,在ABC ∆中,AB CE ⊥于E ,AB DF ⊥于F ,ED AC //,CE 是ACB ∠的角平分线。

平行线与相交线的性质与判定

平行线与相交线的性质与判定

平行线与相交线的性质与判定平行线与相交线是几何学中常见的概念,它们之间存在着一系列的性质与判定方法。

本文将重点探讨平行线与相交线的性质以及如何判断它们的关系。

一、平行线的性质与判定在平面几何中,平行线是指在同一平面内永不相交的直线。

以下是关于平行线的性质与判定方法:1. 平行线性质一:平行线具有相同的斜率。

如果两条直线的斜率相同,那么它们是平行线。

2. 平行线性质二:平行线在任意两个平行线上的相交线上的对应角是对应的等于角。

例如,平行线l1与l2被相交线m相交,角A与角B 是对应的内角,那么角A等于角B。

3. 平行线性质三:平行线上的两对内角和等于180度。

如果两条直线被一条横截线相交,那么交线两边的对应内角和等于180度。

4. 平行线判定一:如果两条直线的斜率乘积为-1,那么它们互相垂直,而不是平行。

这是因为在直角坐标系中,垂直线的斜率乘积为-1。

5. 平行线判定二:如果两条直线由同一直线上的两点确定,且这两点不在第三条直线上,那么它们是平行线。

这是因为这两条直线具有相同的斜率。

二、相交线的性质与判定相交线是指在同一平面内相交的两条直线。

以下是关于相交线的性质与判定方法:1. 相交线性质一:相交线的内角互补成180度。

如果两条直线交于一点,那么它们的内角互为补角,即和为180度。

2. 相交线性质二:相交线的外角互为补角。

如果两条直线交于一点,那么它们的外角互为补角,即和为180度。

3. 相交线性质三:相交线上的对应角相等。

如果两条直线相交于一点,那么它们的对应角相等。

4. 相交线判定一:如果两条直线的斜率互不相等,那么它们是相交线。

这是因为不同直线的斜率不同。

5. 相交线判定二:如果两条直线的斜率相等,但截距不相等,那么它们是相交线。

这是因为斜率相等但截距不相等的直线一定会有一个交点。

在实际问题中,我们可以利用上述的性质和判定方法来解决与平行线与相交线相关的几何问题。

例如,在证明两条直线平行时,可以计算它们的斜率是否相同;在判定两条直线相交时,可以计算它们的斜率和截距是否满足相交的条件。

平行线的判定及性质 例题及练习

平行线的判定及性质 例题及练习

平行线的判定及性质一、【基础知识精讲】1、平行线的判定(1)平行公理:经过直线外一点,有且只有一条直线与已知直线平行. (2)平行公理的推论:平行于同一条直线的两条直线. (3)在同一平面内,垂直于同一条直线的两条直线. (4)同位角相等,两直线平行. (5)内错角相等,两直线平行.(6)同旁内角互补,两直线平行.3、平行线的性质(1)两直线平行,同位角相等. (2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.二、【例题精讲】专题一:余角、补角、对顶角与三线八角例题1:∠A的余角与∠A的补角互为补角,那么2∠A是()A.直角 B.锐角 C.钝角 D.以上三种都有可能【活学活用1】如图2-79中,下列判断正确的是()A.4对同位角,2对内错角,4对同旁内角B.4对同位角,2对内错角,2对同旁内角C.6对同位角,4对内错角,4对同旁内角D.6对同位角,4对内错角,2对同旁内角【活学活用2】如图2-82,下列说法中错误的是( )A.∠3和∠5是同位角B.∠4和∠5是同旁内角C.∠2和∠4是对顶角D.∠1和∠2是同位角【活学活用3】如图,直线AB与CD交于点O,OE⊥AB于O,图中∠1与∠2的关系是()A.对顶角B.互余C.互补D相等例题2:如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角分别是_______.【活学活用4】如图,∠AOC +∠DOE +∠BOF = .专题二:平行线的判定例题3:如图,已知∠EFB+∠ADC=180°,且∠1=∠2,试说明DG ∥AB.1 2A BCDF E G【活学活用】1、长方体的每一对棱相互平行,那么这样的平行棱共有 ( )A .9对B .16对 C.18对 D .以上答案都不对2、已知:如图2-96,DE ⊥AO 于E,BO ⊥AO,FC ⊥AB 于C ,∠1=∠2,求证:DO ⊥AB.3、如图2-97,已知:∠1=∠2=,∠3=∠4,∠5=∠6.求证:AD ∥BC.4、如图2—101,若要能使AB ∥ED ,∠B 、∠C 、∠D 应满足什么条件?ABCDOE F5、同一平面内有四条直线a 、b 、c 、d ,若a ∥b ,a ⊥c ,b ⊥d ,则c 、d 的位置关系为( ) A.互相垂直 B .互相平行 C.相交 D .没有确定关系专题三:平行线的性质1、如图,110,ABC ACB BO ∠+∠=、CO 分别平分ABC ∠和,ACB EF ∠过点O 与BC 平行,则BOC ∠= . 2、如图,AB //CD ,BC //DE ,则∠B+∠D = .3、如图,直线AB 与CD 相交于点O ,OB 平分∠DOE .若60DOE ∠=,则∠AOC 的度数是 .4、 如图,175,2120,375∠=∠=∠=,则4∠= .13 425、如图,//AB CD ,直线EF 分别交AB 、CD 于E 、F ,ED 平分BEF ∠,若172∠=,则2∠= .【例题讲解】例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证:AD ∥EF 。

平行线的性质与判定

平行线的性质与判定

A
G
D
例题赏析 例2、如图,已知AB∥CD, ∠BAE=45°, ∠D=∠C,你能求出∠D 、∠C 、 ∠B的度数吗?
E
解: ∵AB∥CD (已知)
A
B
∴∠BAE=∠D
(两直线平行
同位角相等)
同旁内角互补) D
C
∴∠B+ ∠C =180°(两直线平行 ∵∠BAE=45°(已知) ∴ ∠D = 45° ∵ ∠D=∠C (等量代换) (已知)
一、平行线的判定方法:
•同位角相等,两直线平行; •内错角相等,两直线平行; •同旁内角互补,两直线平行; 平行于同一条直线的两条直线平 行 同一平面内,垂直于同一条直线 的两条直线互相平行。
4 3 8 5 7 6 2
1
a
b
二、平行线的性质:
两直线平行,同位角相等; 两直线平行,内错角相等; 两直线平行,同旁内角互补。
证明:∵ ∠1=∠ACB(已知)
B 3
A 1 E
2
F平行) ∴ ∠2 =∠DCF(两直线平行,内错角相等)
又∵ ∠2=∠3(已知)
∴ ∠3 =∠DCF(等量代换) ∴ CD∥FH(同位角相等,两直线平行)
6.如图已知AD∥BC,且DC⊥AD于D.
(1)DC与BC有怎样的位置关系?说说你的理由。 (2)你能说明∠1+∠2=180°吗? A 1 解:(1)∵ DC⊥AD于D(已知)
E
F B ∴ AB∥DC (同位角相等,两直线平行)
C
达标检测
1、如图,能判定DE∥BC的条件是( D) A、∠C=∠DAB B、∠C=∠FAE
C、∠C+∠FAD=180° D、∠C=∠EAC
D

平行线的性质与判定方法

平行线的性质与判定方法

平行线的性质与判定方法平行线是几何学中的重要概念,它们具有一些独特的性质和判定方法。

本文将详细介绍平行线的性质和判定方法。

1. 性质一:不相交的平行线在任意平面上不会相交。

两条平行线永远保持相同的距离,无论它们延长到多远。

2. 性质二:平行线具有相同的斜率。

两条平行线的斜率都相等,这是判定平行线的一个重要性质。

3. 性质三:互补角相等。

如果两条平行线被一条横截线切割,那么同位角是互补角,即它们的和等于180度。

4. 性质四:内错角相等。

当两条平行线被一条横截线所穿过时,内错角是相等的。

根据以上性质,我们可以推导出一些平行线的判定方法。

下面我们将重点介绍三种常见的判定方法。

1. 通过线段的平行判定:如果两个线段的对应边平行且长度相等,那么这两个线段所在直线就是平行线。

这个方法利用了平行线的性质一。

2. 通过角的平行判定:如果两个角的对应边平行且对应角相等,那么这两个角所在的直线就是平行线。

这个方法利用了平行线的性质二和性质三。

3. 通过垂直判定:如果两条线段互相垂直,并且其中一条线段与第三条线段平行,那么第三条线段也与另一条垂直线段平行。

这个方法利用了平行线的性质二和性质四。

除了这些常见的判定方法,还有其他一些特殊情况下的判定方法。

例如,当两条直线被一条平行于它们的直线所切割时,如果同位角相等,那么这两条直线就是平行线。

在实际应用中,平行线的性质和判定方法在解决几何问题和证明几何定理时起着重要的作用。

它们帮助我们确定直线的相对位置,并应用于建筑、工程、地理测量等领域。

总结起来,平行线具有不相交、斜率相同、互补角相等和内错角相等等性质。

通过线段的平行判定、角的平行判定和垂直判定等方法可以确定平行线的存在。

这些性质和判定方法在几何学中具有重要的应用价值。

平行线与垂直线的性质与判定

平行线与垂直线的性质与判定

平行线与垂直线的性质与判定平行线和垂直线是几何学中常见的两种特殊线型。

它们具有不同的性质和判定方法,在解决几何问题和证明几何命题时起到重要作用。

本文将介绍平行线和垂直线的性质以及判定方法。

一、平行线的性质与判定1. 平行线的性质平行线是指不相交且位于同一平面内的两条直线,它们具有以下性质:(1)平行线上的任意一对对应角相等;(2)平行线与横截线之间,对应角相等;(3)平行线与平行线之间,内角和等于180度;(4)平行线的任意两条线段之间的比例相等。

2. 平行线的判定方法平行线可以通过以下几种方法进行判定:(1)同位角判定法:若两条直线被一组平行线截断,或者两条直线被一组平行线所包围,那么这两条直线就是平行线。

(2)转角判定法:若两条直线之间的内角和等于180度,则这两条直线是平行线。

(3)斜率判定法:若两条直线的斜率相等并且不相交,那么这两条直线是平行线。

(4)平行线的性质判定法:若两条直线具有平行线的性质,如对应角相等、内角和等于180度等,则这两条直线是平行线。

二、垂直线的性质与判定1. 垂直线的性质垂直线是指两条直线相交,交角等于90度的情况。

垂直线具有以下性质:(1)垂直线构成的交角等于90度;(2)垂直线的斜率之积等于-1。

2. 垂直线的判定方法垂直线可以通过以下几种方法进行判定:(1)直角判定法:若两条直线的交角等于90度,则这两条直线是垂直线。

(2)斜率判定法:若两条直线的斜率之积等于-1,则这两条直线是垂直线。

(3)垂直线的性质判定法:若两条直线具有垂直线的性质,如交角等于90度等,则这两条直线是垂直线。

三、平行线与垂直线的应用平行线和垂直线在几何学中有广泛的应用。

它们能够帮助我们解决与角度、比例和图形相似性等相关的问题。

1. 平行线的应用平行线的性质和判定方法可以应用于以下几个方面:(1)证明两幅图形相似:如果两条直线与另外一组平行线相交,并且相交处的对应角相等,那么这两幅图形是相似的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线及其性质和判定
核心纲要
1.平行线
(1)定义:在同一平面内,不相交的两条直线叫做平行线,直线a与直线b互相平行,
记作a∥b.
(2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行.
注:点必须在直线外,而不是在直线上.
(3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即“平行于同一条直线的两条直线平行".
2.两条直线的位置关系
在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行.
注:判断同一平面内两直线的位置关系时,可以根据它们的公共点的个数来确定:
①有且只有一个公共点,两直线相交;
②无公共点,两直线平行;
3.两直线平行的判定方法
(1)平行线的定义.(2)平行公理的推论.(3)同位角相等,两直线平行.(4)内错角相等,两直线平行.(5)同旁内角互补,两直线平行.
4.平行线的性质
(1)两直线平行,同位角相等.(2)两直线平行,内错角相等.(3)两直线平行,同旁内角互补.本节重点讲解:一个定义(平行线),一个位置,五个判定,三个性质.
基础演练
1.在同一平面内,两条直线的位置关系可能是( )
A.平行或相交B.垂直或相交C.垂直或平行D.平行、垂直或相交2.下列说法正确的是( )
A.经过一点有一条直线与已知直线平行
B.经过一点有无数条直线与已知直线平行
C.经过一点有且只有一条直线与已知直线平行
D.经过直线外一点有且只有一条直线与已知直线平行.
3.如图所示,下列推理中错误的是( )
A.∵∠A+∠ADC=180°,∴AB∥CD B.∵∠DCE=∠ABC,∴AB∥CD
C.∵∠3=∠4,∴AD∥BC D.∵∠1=∠2,∴AD∥BC
4.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度可能是()
A.第一次右拐50°,第二次左拐130°B.第一次左拐50°,第二次右拐50°
C.第一次左拐50°,第二次左拐130°D.第一次右拐50°,第二次右拐50°
5.(1)如图1所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D’,C’的位置.若
∠EFB=65°,则∠AED’等于__________.
(2)如图2所示,AD∥EF,EF∥BC,且EG∥AC.那么图中与∠1相等的角(不包括∠1)的个数是__________.
(3)如图3所示,AB∥CD,直线AB,CD与直线l相交于点E,F,EG平分∠AEF,FH平分∠EFD,则GE与FH的位置关系为__________.
图1 图2 图3
6.解答题.
(1)填写推理理由如图所示,D、F、E分别是BC、AC、AB上的点,DF∥AB,DE∥AC,试说明:∠EDF=∠A.
解:∵DF∥AB( )
∴∠A+__________=180°( )
∵DE∥AC(已知)
∴∠AFD+__________=180°()
∴∠EDF=∠A( )
(2)推理填空,如图所示,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的度数过程填写完整:解:∵EF∥AD()
∴∠2=__________()
又∵∠1=∠2( )
∴∠1=∠3( )
∴AB∥__________( )
∴∠BAC+__________=180°( )
又∵∠BAC=70°( )
∴∠AGD=__________
7.已知:如图所示,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.求证:AD平分∠BAC.
能力提升
8.若α和β是同位角,且a=30°,则β的度数是( )
A.30°B.150°C.30°或150°D.不能确定
9.如果一个角的两边分别平行于另一个角的两边,且其中一个角比另一个角的4倍少30°,那么这两个角分别是( )
A.30°和150°B.42°和138°
C.都等于10°D.42°和138°或都等于10°
10.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图所示.
从图中可知,小敏画平行线的依据可能有( )
①两直线平行,同位角相等;②两直线平行,内错角相等;
③同位角相等,两直线平行;④内错角相等,两直线平行.
A.①②B.②③C.③④D.①④
11.如图所示,点E在CA延长线上,DE、AB交于点F,且∠BDE=∠AEF,∠B=∠C,∠EFA比∠FDC的余角小10°,P为线段DC上一动点,Q为PC上一点,且满足∠FQP=∠QFP,FM为∠EFP的平分线.则下列结论:①AB∥CD,②FQ平分∠AFP,③∠B+∠E=140°,④∠QEM的角度为定值.其中正确的结论有( )个数
A.1 B.2 C.3 D.4
12.如图所示,AB∥EF,EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,
∠B-∠D=24°,则∠GEF=__________.
13.在同一平面内有2002条直线a1,a2,…,a2002,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5,…,那么a1与a2002的位置关系是__________.
14.如图所示,AB∥CD,∠1=∠2,∠3=∠4,试说明:AD∥BE.
15.已知,如图所示,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC.
16.如图所示,已知∠DBF=∠CAF,CE⊥FE.垂足为E,∠BDA+∠ECA=180°,
求证:DA⊥EF
17.已知,如图所示,∠1+∠2=180°,∠1+∠EFD=180°,∠3=∠B,试判断∠AED与∠C的关系,并证明你的结论.
18.已知,如图所示,AC∥DE,DC∥EF,CD平分∠BCA.求证:EF平分∠BED.
19.阅读材料:
材料1:如图(a)所示,科学实验证明:平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.即∠1=∠2.
材料2:如图(b),已知△ABC,过点A作AD∥BC则∠DAC=∠C.
又∵AD∥BC,∴∠DAC+∠BAC+∠B=180°,∴∠BAC+∠B+∠C=180°.即三角形内角和为180°.
根据上述结论,解决下列问题:
(1)如图(c)所示,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射,若b 反射出的光线n平行于m,且∠1=50°,则∠2=_________,∠3=__________;
(2)在(1)中,若∠1=40°,则∠3=__________,若∠1=55°,则∠3=__________;
(3)由(1)(2)请你猜想:当∠3=__________时,任何射到平面镜a上的光线m经过平面镜a和b 的两次反射后,入射光线m与反射光线n总是平行,请说明理由.
20.已知直线MN∥BC,点A在直线MN上,点D在线段BC上,AB平分∠MAD,AC平分
∠NAD
(1)如图(a)所示,若DE⊥AC于E,求证:∠1=∠2.
(2)若点F为线段AB上不与点A、B重合的一动点,点H在线段AC上,FQ平分∠AFD交AC于点Q,设∠HFQ=x,∠MAB=α,∠BDF=β,∠AFD=∠FBD+∠FDB,点D在线段BC上(不与B、C两点重合),问当α、β、x之间满足怎样的等量关系时,FH∥MN(如图(b)所示)?试写出α、β、x 之间满足的某种等量关系,并以此为条件证明FH∥MN.
21.如图所示,已知射线CB∥OA,AB∥OC,∠C=∠OAB=100°,点E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
(1)求∠EOB的度数.
(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.
中考连接
22.如图所示,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是( ) A.17°B.34°C.56°D.68°
23.如图所示,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果
∠1=20°,那么∠2的度数是( )
A.30°B.25°C.20°D.15°
巅峰突破
24.如图所示,直线a,b被直线c所截,现给出下列四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能说明a∥b的条件序号为( )
A.①②B.①③C.③④D.①②④
25.如图所示,在△ABC中,CE⊥AB于点E,DF⊥AB于点F,AC∥ED,CE是△ACB的角平分线.求证:∠EDF=∠BDF.
平行线及其性质和判定
26.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.
11 / 11。

相关文档
最新文档