3.平行线的性质

合集下载

平行线与横线竖线的性质

平行线与横线竖线的性质

平行线与横线竖线的性质几何学是数学的一个分支,它研究的是空间中的图形和它们之间的关系。

平行线与横线竖线是几何学中的重要概念,它们具有一些独特的性质。

本文将探讨平行线与横线竖线的性质,以及它们在几何学中的应用。

一、平行线的性质平行线是指在同一个平面内不相交且不会相交延拓的两条直线。

平行线有以下几个重要性质:1. 平行线的夹角相等:当两条平行线被一条横线截断时,所截得的对应角相等。

这是平行线性质的基本特征之一。

例如,如图1所示,直线AB和直线CD是平行线,直线EF与直线AB相交,截取的角α和β相等。

2. 平行线的内外角性质:当两条平行线被一条横线截断时,所截得的内角和外角之和分别为180度。

这一性质常被用于解决几何题目中的角度关系。

例如,如图2所示,直线AB和直线CD是平行线,直线EF与直线AB相交,截取的角α和β互补,和为180度。

3. 平行线的对应角性质:当两条平行线被一条横线截断时,对应角相等。

这一性质有广泛的应用,许多几何问题都可以通过对应角关系求解。

例如,如图3所示,直线AB和直线CD是平行线,直线EF与直线AB相交,对应角α和β相等。

二、横线竖线的性质横线和竖线都是特殊的直线,它们有如下性质:1. 横线的特点:横线是指与水平方向垂直的直线,也就是没有斜度的直线。

横线没有斜率,斜率为零。

它们通过数学符号“-”表示。

例如,在数学坐标系中,y = 3就是一条横线。

2. 竖线的特点:竖线是指与垂直方向平行的直线,也就是没有斜率的直线。

竖线没有斜率,斜率不存在。

它们通过数学符号“|”表示。

例如,在数学坐标系中,x = -2就是一条竖线。

横线和竖线在几何学中有着广泛的应用,用于描述和解决空间图形的性质和问题。

三、平行线与横线竖线的应用平行线与横线竖线的性质可以应用于各种几何问题的解决,例如:1. 证明两条线段平行:通过对应角相等的性质,可以证明两条线段平行。

如果两条线段的对应角相等,则可以得出它们是平行的结论。

平行线与垂直线

平行线与垂直线

平行线与垂直线平行线和垂直线是几何学中的两种特殊线段关系。

它们在数学和日常生活中都有重要的应用。

本文将详细介绍平行线和垂直线的概念、性质以及它们在几何学中的应用。

一、平行线平行线是指位于同一个平面内且不相交的两条直线。

它们之间的距离始终保持相等,永远不会相交或交叉。

平行线的符号表示为“∥”。

1. 平行线的定义两条直线如果在同一个平面内且不相交,那么它们就是平行线。

2. 平行线的性质(1)平行线之间的距离始终相等,任意延长都不会相交。

(2)平行线的斜率相等,即具有相同的倾斜度。

(3)平行线的角度和内角相等,外角互补。

3. 平行线的应用平行线在现实生活中有各种应用。

例如,在建筑设计中,平行线用于确保建筑物的结构稳定;在地图绘制中,平行线用于标记纬度线,帮助导航和地理定位。

二、垂直线垂直线是指与另一条线段相交成直角的线段。

两条垂直线段之间的夹角为90度,称为“直角”。

垂直线的符号表示为“⊥”。

1. 垂直线的定义两条线段如果相交成直角,则它们是垂直线。

2. 垂直线的性质(1)垂直线之间的夹角为90度。

(2)垂直线的斜率互为相反数,即一个为正斜率,另一个为负斜率。

(3)垂直线上任意两点连线的斜率为-1。

3. 垂直线的应用垂直线在几何学和物理学中起着重要作用。

在建筑设计中,垂直线用于确保建筑物的垂直和水平度;在电路设计中,垂直线用于表示电子元件之间的正交关系。

总结:平行线和垂直线是几何学中重要的概念。

平行线位于同一个平面内且永不相交,而垂直线则与另一条线段相交成直角。

它们各自具有特定的性质和应用。

了解这些概念对于解决几何问题以及应用于实际生活中的设计和测量都是非常重要的。

通过对平行线和垂直线的学习,我们可以更好地理解空间关系,增强我们的几何思维能力,并运用它们解决实际问题。

因此,对于学生来说,掌握平行线和垂直线的概念和性质是数学学习中的基础知识,也是迈向高级数学和应用数学的第一步。

无论是在日常生活还是在其他学科中,平行线和垂直线都具有广泛的应用,我们应当加强对它们的理解和运用。

平行线的性质

平行线的性质

平行线的性质平行线是几何学中一个重要的概念,它具有一系列独特的性质和规律。

本文将从定义、性质以及常见应用几个方面来探讨平行线的特点。

一、定义平行线指在同一个平面上,永远不会相交的两条直线。

两条平行线之间的距离是不变的,无论它们延伸多远。

二、性质1. 平行线具有相同的斜率:对于两条平行线,它们的斜率相等。

可以通过直线的斜率公式来证明这个性质。

2. 平行线没有交点:平行线不会相交,因此在它们之间不存在交点。

这一性质是平行线的基本特征。

3. 平行线的内角和性质:当一条直线与两条平行线相交时,相应的内角和是补角。

也就是说,这些内角的和等于180度。

4. 平行线的外角性质:当一条直线与两条平行线相交时,相应的外角是等于对应内角的。

5. 平行线的转角性质:当有两条平行线与一条交线相交时,它们所对应的转角相等。

三、应用平行线的性质在几何学中有广泛的应用。

下面列举几个常见的应用场景。

1. 建筑与设计:在建筑和设计过程中,平行线的概念经常被用来处理墙壁、地板、屋顶等元素的布局。

通过确保平行线之间的距离一致,可以营造出整齐、协调的空间效果。

2. 路面交通:在道路设计和交通规划中,平行线的性质被用于绘制车行道、人行道和停车位等交通设施。

通过确保平行线的平直性和正确的间距,可以提高交通流畅度和安全性。

3. 数学证明:平行线的性质在数学证明中扮演重要的角色。

通过运用平行线的相关性质和定理,可以推导出更复杂的几何定理,解决各种几何问题。

总结:平行线是几何学中一个基础而重要的概念,它具有独特的性质和规律。

通过理解和应用平行线的性质,我们可以更好地解决几何问题,同时在建筑、设计和交通规划等领域中发挥重要作用。

掌握平行线的性质对于理解几何学和应用几何学都是至关重要的。

平行线是什么

平行线是什么

平行线的定义:在同一平面内,不相交的两条直线叫做平行线。

平行线的性质:
1.经过直线外一点,有且只有一条直线与已知直线平行。

2.两条平行线被第三条直线所截,同位角相等,内错角相等,同旁内角互补。

3.两条直线平行于第三条直线时,两条直线平行。

4.平行线分三角形对应边成比例。

平行线的判定:
1、同位角相等,两直线平行。

2、内错角相等,两直线平行。

3、同旁内角互补,两直线平行。

4、在同一平面内,垂直于同一直线的两条直线互相平行。

5、在同一平面内,平行于同一直线的两条直线互相平行。

6、同一平面内永不相交的两直线互相平行。

平行线与垂直线的性质与判定

平行线与垂直线的性质与判定

平行线与垂直线的性质与判定平行线和垂直线是几何学中的基本概念,在平面几何的研究中起着重要的作用。

本文将从性质和判定两个方面介绍平行线和垂直线的特点和判断方法。

一、平行线的性质平行线是指在同一个平面上两条直线永远不会相交的直线。

它们具有以下性质:1. 同向性质:平行线在同一平面上,方向相同且不会相交。

2. 等距离性质:平行线之间的任意两条线段均相等。

3. 夹角性质:平行线与横截线之间的夹角相等。

二、平行线的判定方法1. 公理法:根据几何公理,若两条直线与另一直线的夹角相等,那么这两条直线就是平行的。

2. 反证法:假设两条直线不平行,可以通过找到一个与这两条直线交汇的第三条直线形成一个三角形,利用角的性质证明两条直线是平行的。

3. 斜率法:两条直线平行时,它们的斜率相等。

根据这个性质,可以通过计算两条直线的斜率来判断它们是否平行。

三、垂直线的性质垂直线是指在平面几何中与另一直线的夹角为90度的直线。

垂直线具有以下性质:1. 相交性质:垂直线与另一条直线相交,形成直角。

2. 互逆性质:两条垂直线互为对方的垂直线。

3. 斜率性质:两条直线垂直时,它们的斜率之乘积为-1。

四、垂直线的判定方法1. 公理法:根据几何公理,如果两个夹角的乘积为-1,则这两条直线垂直。

2. 互逆法:如果两条直线互为对方的斜率的倒数,则这两条直线垂直。

3. 斜率法:若两条直线的斜率之积为-1,则这两条直线垂直。

结论通过对平行线和垂直线的性质和判定方法的介绍,我们可以更好地理解平面几何中的基本概念和关系。

掌握这些知识,可以帮助我们在解题过程中更加准确和便捷地判断线之间的关系,进而解决相关问题。

在实际生活中,平行线和垂直线的性质也广泛应用于建筑、工程等领域。

因此,对于平行线和垂直线的性质和判定方法的学习具有重要的意义。

平行线和垂直线的性质与判断

平行线和垂直线的性质与判断

平行线和垂直线的性质与判断一、平行线的性质1.在同一平面内,不相交的两条直线叫做平行线。

2.平行线有无数条,它们之间的距离相等。

3.平行线的长度无限,无论它们延伸多远,都不会相交。

4.平行线永远不会改变方向,即使它们延伸多远。

5.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

6.在同一平面内,一条直线与平行线相交,那么这条直线与另一条直线垂直。

二、垂直线的性质1.两条相交成90度的直线叫做垂直线。

2.垂直线有无数条,它们相交于同一点,称为垂足。

3.垂直线互相平行,且与同一平面内的其他直线相交成90度。

4.垂直线的长度无限,无论它们延伸多远。

5.如果两条直线都垂直于同一条直线,那么这两条直线互相平行。

6.在同一平面内,一条直线与垂直线相交,那么这条直线与另一条直线平行。

三、平行线和垂直线的判断1.判断两条直线是否平行,可以使用尺子和直角器,如果两条直线之间的距离相等,则它们互相平行。

2.判断两条直线是否垂直,可以使用尺子和直角器,如果两条直线相交成90度,则它们互相垂直。

3.如果已知一条直线与第三条直线平行,那么可以判断另一条直线与这条直线平行,如果另一条直线与第三条直线垂直,则可以判断它与已知直线垂直。

4.在同一平面内,如果已知一条直线与两条平行线相交,那么可以判断这两条直线互相平行。

5.在日常生活中,平行线和垂直线的性质和判断可以应用于建筑设计、工程测量、绘画等领域。

6.在数学中,平行线和垂直线的性质和判断可以用于解决几何问题,如计算面积、证明定理等。

7.在科学实验中,平行线和垂直线的性质和判断可以用于测量角度、确定方向等。

习题及方法:1.习题:在同一平面内,已知直线AB与CD平行,直线EF与CD垂直,求证直线AB与EF垂直。

答案:根据平行线的性质,直线AB与CD平行,所以它们之间的距离相等。

根据垂直线的性质,直线EF与CD垂直,所以它们之间的角度是90度。

因此,直线AB与EF垂直。

平行线与垂直线的性质

平行线与垂直线的性质

平行线与垂直线的性质平行线和垂直线在几何学中具有重要的性质和特点。

它们之间有着明确的关系和区别,对于几何形状和空间的研究有着重要的作用。

下面将详细介绍平行线和垂直线的性质。

一、平行线的性质平行线是指在同一个平面内永不相交的两条直线。

平行线具有以下性质:1. 对于两条平行线来说,它们的距离永远相等。

无论在何处测量,平行线之间的距离保持一致。

2. 如果一条直线和两条平行线相交,那么这两条交线对应的内角,外角以及对顶角都是相等的。

3. 平行线之间没有角度,即平行线不存在交角。

二、垂直线的性质垂直线是指两条直线相交成直角或者角度为90度的线。

垂直线具有以下性质:1. 对于两条垂直线来说,它们是互相垂直的,其角度为90度。

2. 如果两条直线互相垂直,那么它们的斜率乘积为-1。

这是垂直线的重要特征。

3. 两条垂直线相交时,内角和外角都是相等的。

三、平行线与垂直线的关系平行线和垂直线是互相对立的关系。

两条平行线永远不会相交,而两条垂直线则必定相交成直角。

四、应用举例平行线与垂直线的性质在现实生活和几何学中有着广泛的应用。

以下是一些应用举例:1. 建筑设计中,平行线常用于设计直线的墙面,使建筑外观更加整齐美观。

2. 在道路交叉口的设计中,垂直线的概念用于规划交通信号灯的安装位置,确保交通流畅有序。

3. 在数学几何中,平行线和垂直线是解决几何问题的重要工具,例如求解三角形的边长和角度等。

总结:平行线和垂直线是几何学中重要的概念,它们具有各自独特的性质和特点。

平行线永不相交且距离相等,垂直线相交成直角且具有特殊的斜率关系。

平行线与垂直线在建筑设计、道路规划和数学几何等领域都有广泛的应用。

通过了解和运用平行线和垂直线的性质,能够更好地理解和研究几何形状和空间关系。

平行线的性质及尺规作图(基础)知识讲解

平行线的性质及尺规作图(基础)知识讲解

平行线的性质及尺规作图(基础)知识讲解【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、尺规作图1. 定义:尺规作图是指用没有刻度的直尺和圆规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.八种基本作图(有些今后学到):(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.(6)已知一角、一边做等腰三角形.(7)已知两角、一边做三角形.(8)已知一角、两边做三角形.【典型例题】类型一、平行线的性质1.已知:如图,AB∥DC,点E是BC上一点,∠1=∠2,∠3=∠4.求证:AE⊥DE.【思路点拨】过E作EF∥AB,再由条件AB∥DC,可得EF∥AB∥CD,根据平行线的性质可得∠1=∠5,∠4=∠6,然后可得∠5+∠6=∠BEF+∠FEC=90°,进而得到结论.【答案与解析】证明:过E作EF∥AB,∵AB∥DC,∴EF∥AB∥CD,∴∠1=∠5,∠4=∠6,∵∠1=∠2,∠3=∠4,∴∠5+∠6=∠BEF+∠FEC=90°,∴AE⊥DE.【总结升华】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.举一反三:【变式】如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2= .【答案】140°.【解析】如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为140°.类型二、两平行线间的距离2.如图所示,直线l1∥l2,点A、B在直线l2上,点C、D在直线l1上,若△ABC的面积为S1,△ABD的面积为S2,则( ) .A.S1>S2 B.S1=S2 C.S1<S2 D.不确定【答案】B【解析】因为l1∥l2,所以C、D两点到l2的距离相等.同时△ABC和△ABD有共同的底AB,所以它们的面积相等.【总结升华】三角形等面积问题常与平行线间距离处处相等相结合.举一反三:【变式】如图,在两个一大一小的正方形拼成的图形中,小正方形的面积是10平方厘米,阴影部分的面积为平方厘米.【答案】5 (提示:连接BF,则BF∥AC)类型三、尺规作图3.已知:∠AOB.利用尺规作:∠A′O′B′,使∠A′O′B′=2∠AOB.【思路点拨】先作一个角等于∠AOB,在这个角的外部再作一个角等于∠AOB,那么图中最大的角就是所求的角.【答案与解析】作法一:如图(1)所示,(1)以点O圆心,任意长为半径画弧,交OA于点A′,交OB于点C;(2)以点C为圆心,以CA′的长为半径画弧,•交前面的弧于点B′;(3)过点B′作射线O B′,则∠A′O′B′就是所求作的角.作法二:如图(2)所示,(1)画射线O′A′;(2)以点O为圆心,以任意长为半径画弧,交OA于点C,交OB于点D;(3)以点O′为圆心,以OC的长为半径画弧,交O′A•′于点E;(4)以点E为圆心,以CD的长为半径画弧,交前面的弧于点F,再以点F为圆心,•以CD 的长为半径画弧,交前面的弧于点B′;(5)画射线O′B′,则∠A′O′B′就是所求作的角.【总结升华】本题考查作一个倍数角等于已知角,需注意作第二个角的时候应在第一个角的外部.•作法一在已知角的基础上作图较为简便一些.类型四、平行的性质与判定综合应用4.如图所示,AB∥EF,那么∠BAC+∠ACE+∠CEF=( )A.180° B.270° C.360° D.540°【答案】C【解析】过点C作CD∥AB,∵ CD∥AB,∴∠BAC+∠ACD=180°(两直线平行,同旁内角互补)又∵ EF∥AB∴ EF∥CD.(平行公理的推论)∴∠DCE+∠CEF=180°(两直线平行,同旁内角互补)又∵∠ACE=∠ACD+∠DCE∴∠BAC+∠ACE+∠CEF=∠BAC+∠ACD+∠DCE+∠CEF=180°+180°=360°【总结升华】这是平行线性质与平行公理的推论的综合应用,利用“两直线平行,同旁内角互补,”可以得到∠BAC +∠ACE+∠CEF=360°.举一反三:【变式】如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系.【答案】平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.平行线的性质
【基本目标】
1.探索平行线的性质,并掌握它们的文字语言、符号语言和图形语言;
2.会用平行线的性质进行简单的计算和推理,结合平行线对图形进行简单的平移.
【教学重点】掌握平行线的性质.
【教学重点】平行线的性质的应用.
一、情境导入,激发兴趣
1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?
2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?
【教学说明】平行线的判定与平行线的性质有密切的联系,通过第2个问题,让学生对要探究的问题有一个初步的印象,为后面的总结归纳奠定基础.
二、合作探究,探索新知
1.实验观察,发现平行线第一个性质
(1)请同学们观察你的练习本,每一页上都有许多互相平行的横线条,任取其中两条平行的线条,如图l1∥l2,请同学们任意的画一条直线l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?
(2)请同学们再作出直线l4与它们相交,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?
小结归纳:平行线性质:两条平行线被第三条直线所截,同位角相等.简单说就是:两直线平行,同位角相等.
如上图:∵l1∥l2(已知)
∴∠1=∠2(两直线平行,同位角相等)
【教学说明】学生通过动手操作发现规律,再通过∠3和∠4的测量进行验证,教师再提示学生对照平行线的判定方法一进行总结,归纳出平行线的性质一.
2.演绎推理,发现平行线的其它性质
(1)已知:如图①,直线AB,CD被直线EF所截,AB∥CD.
求证:∠1= ∠2.
图①
(2)已知:如图②,直线AB,CD被直线EF所截,AB∥CD.
求证:∠1+∠2=180°.
图②
小结归纳:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行, 内错角相等.
如图①:∵AB∥CD.(已知)
∴∠1=∠2(两直线平行,内错角相等)
两条平行线被第三条线所截,同旁内角互补.简单说成:两直线平行, 同旁内角互补.
如图②∵AB∥CD.(已知)
∴∠1+∠2=180°(两直线平行,同旁内角互补)
【教学说明】渗透逻辑推理的思想将是本节教学中的一个非常重要的知识.在几何学上,对数学语言的训练是初学者最难以理解的东西,所以在教学中必须时时重视.
3.平行线判定与性质的区别与联系
投影:将三条判定与性质全部打出.
(1)性质:根据两条直线平行,去证角的相等或互补.
(2)判定:根据两角相等或互补,去证两条直线平行.
联系:它们的条件和结论是互逆的.
区别:性质与判定要证明的问题是不同的.
【教学说明】平行线的判定与平行线的性质两者间的关系应该加以注意,毕竟两者的联系是非常紧密的,而且借助平行线的识别来学习可以达到事半功倍作用.
三、示例讲解,掌握新知
例1如图,已知直线a∥b,∠1=50°,求∠2的度数.
分析:由于a∥b,根据两直线平行,内错角相等,可得∠1=∠2.又∠1=50°,因此∠2=50°.
【教学说明】这个例题比较简单,可以让学生自主完成,但是要注意格式的规范性.
例2如图在四边形ABCD中,已知AB∥CD,∠B=60°,求∠C的度数.能否求得∠A的度数?
分析:由于AB∥CD ,
根据两直线平行,同旁内角互补,
可得.
又∠B=60°,因此∠C= .
根据题目的已知条件,无法求出∠A的度数.
【教学说明】对于第一问,可以让学生自主完成,第二问教师可适当引导学生进行观察思考后回答,对于出现的问题及时予以纠正和强调.
例3结合平行线对图形进行简单的平移,
将如图所示的方格纸中的图形向右平移4格,并向上平移3格,画出平行移动后的图形.
【教学说明】先让学生观察思考,提出思路,再让学生比较各种方法,找到最佳方案,然后教师再引导学生总结规律.平移时,找到关键的点进行平移,再进行连接.有关图形的平移,应抓其点与形的关系,即如何做到以点代形,以点代面.
四、练习反馈,巩固提高
1.如图1,已知∠1=100°,AB∥CD,则∠2= ,∠3= ,∠4= .
2.如图2,直线AB、CD被EF所截,若∠1=∠2,则∠AEF +∠CFE = .
3.如图3所示
(1)若EF∥AC,则∠A +∠= 180°,∠F + ∠= 180°().
(2)若∠2 =∠,则AE∥BF.
(3)若∠A +∠= 180°,则AE∥BF.
4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .
5.如图5,推理填空:
图5
(1)∵∠A =∠(已知),
∴AC∥ED();
(2)∵∠2 =∠(已知),
∴AC∥ED();
(3)∵∠A +∠= 180°(已知),
∴AB∥FD();
(4)∵∠2 +∠= 180°(已知),
∴AC∥ED().
【教学说明】学生独立完成,对于第3题,图形比较复杂,可以提示学生将图形进行分解,得出结论,第5题是对学生的推理能力进行训练,要注意学生语言的规范性.
【答案】1.100°100°80°
2.180°
3.(1)∠AEF∠ABF两直线平行,同旁内角互补(2)∠4(3)∠1
4.120°
5.(1)∠BED同位角相等,两直线平行
(2)∠DFC内错角相等,两直线平行
(3)∠AFD同旁内角互补,两直线平行
(4)∠AFD同旁内角互补,两直线平行
五、师生互动,课堂小结
1.平行线性质:
(1)两条平行线被第三条直线所截,同位角相等.简单说就是:两直线平行,同位角相等.
(2)两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.
(3)两条平行线被第三条线所截,同旁内角互补.简单说成:两直线平行, 同旁内角互补.
2.平行线判定与性质的区别与联系
(1)性质:根据两条直线平行,去证角的相等或互补.
(2)判定:根据两角相等或互补,去证两条直线平行.
联系:它们的条件和结论是互逆的.区别:性质与判定要证明的问题是不同的.
【教学说明】教师引导学生对本节课知识进行总结,加深印象,重点是总结平行线的判定与性质的区别与联系.对出现的疑惑及时予以解答,使学生更好的掌握本节课知识.
完成本课时对应的练习.
本节课首先提出问题:
1.请同学们回顾前面学过的平行线的判定方法,并说出它们的已知和结论分别是什么?
2.把这三句话的已知和结论颠倒一下,可得到怎样的语句?它们正确吗?
这样通过复习旧知,引出新知,通过提问,让学生思考,针对问题,敢于发表自己的见解.紧接着让学生动手操作,画出两条互相平行的直线的截线,找出其中的同位角.让学生通过测量验证同位角之间的关系,把验证的结论告诉大家,从而得出平行线的性质一.用这样的方法可以让学生都参与到教学中来,提高了他们动手、动脑的能力,而且增加了学习兴趣.再让学生用“∵”、“∴”的推理形式,也就是数学符号语言的形式把性质一.表示出来.这样可以增强学生的数学符号感.另外两个性质让学生想办法验证,再利用性质一来推导,加强了学生的逻辑推理能力.在教学过程中,进行推理论证是学生学习的难点,教师要做好引导.注意格式的规范性和严密性.。

相关文档
最新文档