5.3.1平行线的性质(第1课时) 教案
教学设计6:5.3.1 平行线的性质

5.3.1平行线的性质一、教学目标知识与能力:1、了解并掌握平行线的性质,并能利用平行线的性质进行相关的数学计算。
2、能够区分平行线的性质和判定,能够利用平行线的性质进行简单的逻辑推理。
方法与过程:经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算。
情感态度与价值观:经历自己探索平行线性质的过程,进一步培养学生的逻辑思维能力,提高学生对简单几何图形的感知能力。
二、教学重难点教学重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。
教学难点:能区分平行线的性质和判定,平行线的性质应用。
三.教具准备多媒体课件,直尺,三角板,粉笔四、教学设计活动2:二、探索发现,讲授新知问题1、作业本有平行线吗?请你找出两条平行线来?问题2、同学们你们将用什么方法在两平行线上来寻找同位角之间的关系?(1) 在我们刚才的一组平行线a∥b的基础上,再画一条截线c,使之与直线a、b相交,并标出所形成的八个角.(2) 测量上面一组同位角的大小,记录下来.同桌互相讨论一下从中你能发现什么结论?说出你的猜想:两条平行线被第三条直线所截,同位角相等教师活动:幻灯片展示问题,指导学生自己动手参与平行线的西瓜汁探索过程,教师巡视加以指导。
引导学生大胆的猜想。
学生活动:在教师的引导下,积极地动手参与活动,探索发现结论,经历平行线性质的探索过程。
学生活动:根据探索过程,总结相关结论,举手回答问题教师活动:根据学生的猜想,请学生回答得到的结论,并根据学生的结论给出平行线的性质1,(幻灯片出示性质一)。
10分钟活动3:讨论:如果直线a与b不平行,你的猜想还成立吗?再任意画一条直线d,同样度量并计算各个角的度数,你的猜想还成立吗?同桌互相讨论一下从中你能发现什么结论?平行线的性质1(公理):两条平行线被第三条直线所截,同位角相等。
简单说成:两直线平行,同位角相等。
教师活动:将学生分成若干小组,讨论两直线不平行的时候结论是否成立,并在教室巡视,针对个别情况进行指导学生活动:小组讨论交流。
《平行线的性质》教案

《平行线的性质》教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质。
2. 培养学生运用平行线的性质解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队合作能力。
二、教学内容1. 平行线的定义:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的性质:a. 平行线永不相交。
b. 平行线在同一平面内。
c. 平行线之间的距离相等。
三、教学重点与难点1. 教学重点:平行线的性质及其应用。
2. 教学难点:平行线之间的距离相等概念的理解和运用。
四、教学方法1. 采用问题驱动法,引导学生探索平行线的性质。
2. 利用多媒体动画演示,增强学生对平行线性质的理解。
3. 开展小组讨论,培养学生的团队合作精神。
五、教学过程1. 导入:利用实际场景,如操场、教室地板等,引导学生发现平行线的例子,激发学生的兴趣。
2. 新课导入:介绍平行线的定义,引导学生理解平行线的概念。
3. 探索平行线的性质:引导学生通过观察、实验、讨论等方式,探索平行线的性质。
4. 讲解与演示:教师讲解平行线的性质,利用多媒体动画演示平行线的性质。
5. 练习与巩固:布置相关的练习题,让学生巩固所学知识。
6. 拓展与应用:引导学生运用平行线的性质解决实际问题,如设计路线、计算面积等。
7. 总结与反馈:教师引导学生总结本节课所学内容,收集学生的反馈意见。
六、教学评价1. 评价内容:学生对平行线性质的理解和运用能力。
2. 评价方法:课堂提问、练习题、小组讨论、课堂展示等。
3. 评价标准:能准确描述平行线的性质,能运用平行线的性质解决实际问题。
七、教学资源1. 多媒体课件:包含平行线的图片、动画、练习题等。
2. 教学道具:如直尺、三角板等,用于演示和实验。
3. 练习题:包括填空题、选择题、解答题等,用于巩固所学知识。
八、教学进度安排1. 第1周:学习平行线的定义。
2. 第2周:探索平行线的性质。
3. 第3周:讲解与演示平行线的性质。
4. 第4周:练习与巩固平行线的性质。
浙教版七年级数学下册《平行线的性质》第一课时教学设计

浙教版七年级数学下册《平行线的性质》第一课时教学设计一、教学内容《平行线的性质》第一课时:课程导入二、教学目标1. 了解本单元教学内容,初步理解平行线的定义。
2. 激发学生学习数学的兴趣,培养学生学习数学的自信心。
三、教学重点1. 了解本单元教学内容。
2. 理解平行线的定义。
四、教学难点1. 激发学生学习数学的兴趣。
2. 培养学生学习数学的自信心。
五、教学方法板书法、讲授法、互动法六、教学过程Step 1 自我介绍及课程导入(5分钟)1. 教师自我介绍并简单介绍本单元教学内容。
2. 学生们进行自我介绍,并介绍自己对数学学习的看法。
Step 2 导入(10分钟)1. 教师介绍平行线的概念,强调平行线的重要性。
2. 点名,提问学生学习平行线的目的,并请学生回答。
3. 整理学生的回答,强调平行线的定义具有普适性。
Step 3 课堂互动(30分钟)1. 分组让同学们自由讨论平行线的特点,发现平行线的重要性。
2. 根据同学们的讨论内容,教师逐步引导学生领悟平行线的相关性质,如等角相似、夹角等于180°等等。
3. 教师适当引导同学们提出自己感兴趣的问题,向学生介绍数学竞赛、趣味数学等相关课程,激发同学们兴趣。
Step 4 归纳总结(5分钟)让学生做简单的小结,并请他们在小结中照顾到平行线的定义及性质等。
七、课堂巩固回答教师出的几道平行线有关的问题。
八、课后作业1. 完成课堂上有关平行线的问题,并对答案进行检查;2. 了解关于平行线的相关知识,为下节课做好准备。
九、板书设计《平行线的性质》第一课时一、导入二、平行线的概念三、平行线的定义四、课堂互动五、小结十、教学反思这节课,通过自我介绍及课程导入,教师向学生介绍平行线的概念,强调平行线的重要性。
之后就引导学生发现平行线的相关性质,包括等角相似、夹角等于180°等等,激发同学们兴趣。
最后让学生做小结,并在小结中照顾平行线的定义及性质等。
此次课程互动性很强,能够有效提高学生学习数学的兴趣,但也存在教学时间过长的问题,可以在下次课程中适当掌握好时间。
《平行线的性质》教案

《平行线的性质》优秀教案一、教学目标1. 知识与技能:使学生掌握平行线的性质,能够运用平行线的性质解决实际问题。
2. 过程与方法:通过观察、操作、推理等过程,培养学生的空间观念和逻辑思维能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。
二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。
2. 平行线的性质:(1)平行线上的对应角相等。
(2)平行线之间的夹角相等。
(3)平行线与截线所形成的内错角相等。
(4)平行线与截线所形成的同位角相等。
三、教学重点与难点1. 教学重点:平行线的性质及其应用。
2. 教学难点:平行线性质的推理和证明。
四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质。
2. 利用几何画板等软件,直观展示平行线的性质。
3. 组织小组讨论,培养学生的合作能力。
五、教学过程1. 导入新课:通过生活中的实例,引出平行线的概念。
2. 自主探究:学生独立观察、操作,发现平行线的性质。
3. 小组交流:学生之间分享探究成果,讨论平行线性质的应用。
4. 教师讲解:总结平行线的性质,并进行推理和证明。
5. 练习巩固:设计相关练习题,让学生运用平行线的性质解决问题。
6. 课堂小结:回顾本节课所学内容,总结平行线的性质及应用。
7. 作业布置:布置适量作业,巩固所学知识。
六、教学策略1. 实践操作:提供实物模型和几何画板,让学生动手操作,加深对平行线性质的理解。
2. 案例分析:通过分析实际问题,让学生学会将平行线的性质应用于解决生活中的问题。
3. 思维训练:设计富有挑战性的思考题,培养学生的逻辑思维和解决问题的能力。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的完成质量,评估学生对平行线性质的掌握程度。
3. 单元测试:进行单元测试,全面评估学生对平行线性质的理解和应用能力。
5.3 平行线的性质(第1课时)教案.doc

5.3平行线的性质一、教材分析:本节课是平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分。
二、教学目标:知识与技能:掌握平行线的性质,能应用性质解决相关问题。
数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。
三、教学过程:(一)创设情境,设疑激思:1.播放一组幻灯片。
内容:①火车行驶在铁轨上;②游泳池;③横格纸。
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?学生活动:思考回答。
①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;教师:首先肯定学生的回答,然后提出问题。
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?引出课题——平行线的性质。
(二)数形结合,探究性质1.画图探究,归纳猜想12345678abc任意画出两条平行线(a∥b),画一条截线c与这两条平行线相交,标出8个角(如图)。
问题一:指出图中的同位角,并度量这些角,把结果填入下表:学生活动:画图——度量——填表——猜想结论:两直线平行,同位角相等。
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?学生:探究、讨论,最后得出结论:仍然成立。
2.教师用《几何画板》课件验证猜想3.性质1. 两条直线被第三条直线所截,同位角相等。
(两直线平行,同位角相等)(三)引申思考,培养创新问题三:请判断内错角、同旁内角各有什么关系?学生活动:独立探究——小组讨论——成果展示。
教师活动:评价,引导学生说理。
因为a∥b 因为a∥b所以∠1=∠2 所以∠1=∠2又∠1=∠3 又∠1+∠4=180°所以∠2=∠3 所以∠2+∠4=180°语言叙述:性质2 两条直线被第三条直线所截,内错角相等。
5.3.1 平行线的性质 教案

课题§ 5.3.1 平行线的性质课时第1课时课型新授教学目标知识与技能1、探究直线平行的性质,掌握平行线的三条性质;2、能灵活运用平行线的性质进行简单的推理和计算。
过程与方法经历平行线性质的探究过程,从中体会研究几何图形的方法。
情感、态度与价值观通过观察、交流等活动,进一步发展空间思维能力,推理能力和有条理的表达能力;教学重点探究平行线性质,理解平行线的性质并能进行简单推理和计算。
教学难点能区分平行线的性质和判定,平行线的性质与判定的混合应用。
教学方法探究、归纳教学准备教案教学过程一、问题引入:引导学生逆向思维:同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行。
反过来,如果两直线平行,同位角、内错角、同旁内角又有什么样的关系呢?在这一节课里,同学们把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达呢?这就是接下来我们要研究的问题。
二、探究:1、学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P18图5.3-1)。
2、现在请同学们用量角器把自己画的图中各个角测出度数,把结果填入表内。
角∠1 ∠2 ∠3 ∠4 ∠5 ∠6 ∠7 ∠8度数3、请同学们根据上表测量所得数据作出猜想:(1)图中哪些角是同位角?它们具有怎样的数量关系?(2)图中哪些角是内错角?它们具有怎样的数量关系?(3)图中哪些角是同旁内角?它们具有怎样的数量关系?4、验证猜想:学生活动:再任意画一条截线d,同样度量并比较各对同位角的度数,你的猜想还成立吗?2、实践操作、得出结论:线段B 1C 1,B 2C 2……B 5C 5同时垂直于两条平行直线A 1B 5和A 2C 5,并且它们的长度相等。
3、两条平行线间距离的定义:线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段;第二点线段B 1C 1同时垂直这两条平行线。
人教版七年级数学下册教学课件《平行线的性质》(第1课时)

5.3 平行线的性质
考 点 1 利用“两直线平行,同位角相等”求角的度数 如图,D是AB上一点,E是AC上一点,∠ADE=60°,∠B=60°,
∠AED=40°.(1)DE和BC平行吗?为什么?
A
(2)∠C是多少度?为什么?
D
E
解:(1)DE∥BC,
B
C
∵∠ADE=60°,∠B=60°,∴∠ADE= ∠B.
解: ∵ AB∥DE( 已知 ),
C
∴∠A= ∠__C__P_D_ ( 两直线平行,同位角相等 ).
∵AC∥DF( 已知 ),
B
DP A
E
∴∠D+ _∠__C_P_D__=180o ( 两直线平行,同旁内角互补 ).
∴∠A+∠D=180o( 等量代换 ).
课堂检测
拓广探索题
5.3 平行线的性质
如图,潜望镜中的两面镜子是互相平行放置的,光线经过镜子
解: ∵a//b (已知),
∴ 1= 2(两直线平行,同位角相等). a
1
∵ 1+ 4=180°(邻补角的性质),
4
∴ 2+ 4=180°(等量代换).
b
2
c
探究新知
5.3 平行线的性质
性质3:两条平行线被第三条直线所截,同旁内角互补.
简单说成:两直线平行,同旁内角互补.
几何语言:
∵a∥b(已知),
∴∠2+∠4=180 °
a
1
b
4 2
(两直线平行,同旁内角互补).
c
探究新知
5.3 平行线的性质
考 点 1 利用“两直线平行,同旁内角互补”求角的度数
如图是一块梯形铁片的残余部分,量得∠A=100°, ∠B=115°,梯形的另外两个角的度数分别是多少?
教学设计4:5.3.1 平行线的性质

5.3.1 平行线的性质教学目标1、知识与技能:经历探索平行线性质的过程,掌握平行线的三条性质,并能用它们进行简单的和计算。
2、过程与方法目标:经历观察、测量、推理、交流等活动,进一步发展空间观念,能有条理地思考和表达自己的探索过程和结果,从而进一步分析、概括、表达能力。
3、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。
教学过程设计本节课的流程分五部分:创设情境激发兴趣;数形结合探究性质;归纳性质说理证明;应用新知巩固练习;课堂小结布置作业.(一)创设情境激发兴趣出示问题:已知公路c分别与两条互相平行的公路a,b相交,两辆汽车在公路a,b上同向行驶,拐弯后上公路c又同向行驶。
(1) 如果公路c与公路a的交角为70O,那么公路c与公路b的交角是多少度呢?(2) 如果两条直线平行,同位角,内错角,同旁内角各有什么关系呢?【设计意图】设计意图:利用情景导入,引出新问题,为学生将新知识纳入自己的认知体系做好铺垫,使学生认识到数学知识来源与生活,应用与生活,激发他们的求知欲望。
(二)探究新知实验猜想问题1:作出两条平行直线a、b被第三条直线c所截,标出所得的8个角,你能借助你所画的图想办法解决如果已知两条直线平行,同位角有怎样的数量关系这个问题吗?如果两直线平行,内错角、同旁内角又各有怎样的数量关系呢?【设计意图】通过动手画图,度量角度等简单易行的操作,调动所有学生参加到课堂教学的活动中来,再通过自己的独立思考,小组交流验证自己的结论是否正确,使学生体验到成功的喜悦,使学生乐学爱学。
问题2:大家解决问题的方法一样吗?得到的结论相同吗?学生以四人合作小组为单位进行交流讨论.学生可能想到的方法:(1)用量角器进行度量;(2)通过剪纸拼图进行比较.。
鼓励学生在独立思考的基础上与他人合作交流,每个学生的独立思考为合作交流奠定了基础,同伴间的合作交流又能弥补个人的思考有时难以全面和深入的情况,从而帮助学生获得较强的感性认识,充分体现认知过程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3.1 平行线的性质(第1课时)
平行线的性质(一)
教学目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.
重点、难点
重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.
难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.
教学过程
一、引导学生逆向思维
现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补, 判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?
二、实践探究
1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).
图中哪些角是同位角?它们具有怎样的数量关系?
图中哪些角是内错角?它们具有怎样的数量关系?
图中哪些角是同旁内角?它们具有怎样的数量关系?
在详尽分析后,让学生写出猜想.
4.学生验证猜测.
学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?
5.师生归纳平行线的性质,教师板书.
c b a
4
3
2
1
平行线具有性质:
性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行, 同位角相等.
性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行, 内错相等.
性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行, 同旁内角互补. 教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定.
平行线的性质 平行线的判定 因为a ∥b, 因为∠1=∠2, 所以∠1=∠2 所以a ∥b. 因为a ∥b, 因为∠2=∠3, 所以∠2=∠3, 所以a ∥b.
因为a ∥b, 因为∠2+∠4=180°, 所以∠2+∠4=180°, 所以a ∥b.
6.教师引导学生理清平行线的性质与平行线判定的区别. 学生交流后,师生归纳:两者的条件和结论正好相反:
由角的数量关系(指同位角相等,内错角相等,同旁内角互补), 得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.
由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等, 同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论. 7.进一步研究平行线三条性质之间的关系.
教师:大家能根据性质1,推出性质2成立的道理吗? 结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化? 学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程.
因为a ∥b,所以∠1=∠2(两直线平行,同位角相等); 又∠3=∠1(对顶角相等),所以∠2=∠3.
教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由. 学生仿照以下说理,说出如何根据性质1得到性质3的道理. 8.平行线性质应用.
例 (课本P23)如图是一块梯形铁片的线全部分,量得
∠A=100°,∠B=115°, 梯形另外两个角分别是多少度?
教师把学生情况,可启发提问:①梯形这条件如何使用?②∠A 与∠D 、∠B 与∠C 的位置关系如何,数量关系呢?为什么?
讲解按课本. 三、巩固练习 1.课本练习(P22).
2.补充:如图,BCD 是一条直线,∠A=75°,∠1=53°,∠2=75°,求∠B 的度数.
E
2
1
D
C
B
A
本题综合应用平行线的判定和性质,教师要引导学生观察图形,考察已知角的数量关系,确定解题的思路. 四、作业
1.课本P25.1,2,3,4,6.
2.补充作业:
D C B
A
一、判断题.
1.两条直线被第三条直线所截,则同旁内角互补.( )
2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )
3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.( ) 二、填空题.
1.如图(1),若AD ∥BC,则∠______=∠_______,∠_______=∠_______, ∠ABC+∠_______=180°; 若DC ∥AB,则∠______=∠_______, ∠________=∠__________,∠ABC+∠_________=180°.
87
6
5
43
2
1
D
C
B
A
F
E
D
C B A
(1) (2) (3)
2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.
3.因为AB ∥CD,EF ∥CD,所以______∥______,理由是________.
4.如图(3),AB ∥EF,∠ECD=∠E,则CD ∥AB.说理如下: 因为∠ECD=∠E,
所以CD ∥EF( ) 又AB ∥EF,
所以CD ∥AB( ). 三、选择题.
1.∠1和∠2是直线AB 、CD 被直线EF 所截而成的内错角,那么∠1和∠2 的大小关系是( ) A.∠1=∠2 B.∠1>∠2; C.∠1<∠2 D.无法确定
2.一个人驱车前进时,两次拐弯后,按原来的相反方向前进, 这两次拐弯的角度是( ) A.向右拐85°,再向右拐95°; B.向右拐85°,再向左拐85° C.向右拐85°,再向右拐85°; D.向右拐85°,再向左拐95° 四、解答题
1.如图,已知:∠1=110°,∠2=110°,∠3=70°,求∠4的度数.
4
3
2
1
D
C
B
A
2.如图,已知:DE ∥CB,∠1=∠2,求证:CD 平分∠ECB.
E
2
1
D
C
B
评价与反思
本节课研究的内容是平行线的性质,它是在学生学习了平行线的判定之后来学习的,因此,从复习平行线的判定入手,创设一个疑问来激发学生思考,进而引导学生进行平行线性质的探究。
本节课最关注的是平行线性质的得出过程,它是通过学生自主探索、试验、验证发现的,即学生在充分活动的基础上,由学生自己发现,并用自己的语言来归纳的,这对学生增强学习兴趣和自信心都又好处。
对两直线不平行时,同位角、内错角、同旁内角之间关系的探究有助于学生加深对平行线性质的理解,区分性质与判定方法,以及对三个性质之间内在联系的理解,都为学生正确应用平行线的性质打好基础。