第4章4 储层参数测井解释模型
四种类型储气层的气测井解释

第 13 卷 第 4 期
纪 伟等: 四种类型储气层的气测井解释
25
表 1 气层( 气水同层) 显示统计表
井号 井 段 m
Q
241
1 668~ 1 675
Q
241
1 677~ 1 679
Q
241
1 682~ 1 692
Q
241
1 855~ 1 861
Q
241
1 866~ 1 872Q2411 792~ 1 797
水溶气的增多, 全脱烃气总量相对增大, 一般小于或等于随钻值( 表 1, 图 1) 。
( 3) 含气水层的判别方法
a. 含气水层的曲线形态特征: 天然气在储集层内以两种基本方式与水发生关系 即溶
解气和游离气。由于干气与重烃相比易溶于水, 密度小, 扩散能力大, 因此在油气圈闭内的中 上部的含水储集层中, 大多可见到含有溶解气的水层, 随着水溶解饱和气体数量的增多, 欠饱
油气地球物理测井第四章资料

与三侧向比较,七侧向分层能力不如三侧向高, 主要是由于三侧向的电流层厚度约0.3m比七侧 向电流层度(约0.8m)小,受井眼影响大,二者 探测深度几乎相等。
五 双侧向(深、浅双侧向)
双侧向吸取了三侧向和七侧向优点,它的探测深度和分层能力均优于三 、侧向,可用来划分地层剖面,求取地层电阻率Rt,定性判断含油性。
根据电位叠加原理求UM、UN R a=KUMN/Io
七侧向小结
与三侧向一样,七侧向也是一种聚焦电阻率测井法,其 极系特点是七个电极,以主电极Ao为中心,两对监督 电极,一对屏蔽电极上下对称分布,测井时自动调节 屏蔽电流强度,使主电流聚焦,并水平地进入地层, 七侧向记录的是任一监督电极的电位,该电位大小与 地层电阻率有关,所以七侧向测井曲线反映地层电阻 率变化情况与三侧向一样,七侧向受围岩,泥浆的影 响也很小;分层能力强,但受侵入带影响,在高矿化 度泥浆井中使用效果最好,用其于求地层电阻率Rt。
第四章侧向测井 Laterolog 或Focused Log
•总 述
• 1. • 2. • 3. 电流聚焦测量深、中、浅三种不同径 向电阻率Rt、Ri、Rxo • 4.用于划分岩性、
一、为什么要提出测向测井
• 1. 盐水泥浆、高阻薄层,将产生泥浆分流、测不到地层电阻 • 2. 高阻屏蔽使普通电阻率法无法进行,所以提出聚焦测井法 使电流进入地层。其办法是把主电流聚焦,用电子线路把电 流挤入地层,与普通视电阻率差别在于供电方式不一样。
六、其他侧向测井 1.微侧向
六、其他侧向测井 2. 邻近侧向和微球形聚焦
• (ii)侵入带影响: Gi Ri的影响,侵 入深、电极聚焦 能力差,Gi值大, • Ri在总测量值中 占的分量大,所 以高阻侵入比低 •
页岩气储层测井解释

页岩气储层测井解释1.页岩油气储层地质特征(1)连续型油气聚集单元页岩油气藏的形成和富集有着自身独特的特点,其分布在盆地内,沉积厚度大、分布范围广的页岩地层中,自生自储,页岩即是烃源岩,也做为储集层,与常规油气藏不同,没有油水界面、气水界面等流体界面概念,属于连续型油气聚集单元。
(2)岩石矿物组成复杂页岩油气储层不只是指黑色页岩,一切富含有机质,且天然气以吸附态、游离态赋存于岩石中的致密细碎屑岩都可统称为页岩油气储层。
页岩油气储层矿物组成十分复杂,主要有石英、方解石、粘土矿物、黄铁矿等,而且不同盆地页岩油气储层的矿物含量差别很大。
根据矿物组成的不同,页岩油气储层大致可分为三类:一类是富含方解石的钙质页岩油气储层;另一类是富含石英的硅质页岩油气储层,以及符合粘土矿物的粘土质页岩油气储层。
(3)富含有机质,储集空间类型复杂页岩油气储层既是储集层,又是烃源岩,富含有机质,储集空间类型复杂,主要孔隙类型以粒间孔隙和有机质成熟后热解生成的孔隙为主,部分储层还发育天然裂缝。
(4)基质渗透率极低页岩油气储层物性极差,储层孔隙度一般小于10%,基质渗透率一般为0.0001~0.001mD,渗透率极低,一般以长距离水平钻井结合多级压裂方式求产。
(5)游离与吸附态两种赋存方式页岩气主要有游离态、吸附态两种赋存状态,游离气是以游离状态赋存于孔隙和微裂缝中的天然气;吸附气则是吸附于有机质和粘土矿物表面的天然气,以有机质吸附为主,粘土矿物吸附可以忽略。
致密砂岩气则主要是游离气,煤层气主要是吸附气。
2.页岩油气储层测井评价在页岩油气储量评估中,测井专业的主要任务可分为两个部分内容:一是储层的定性识别;二是储层参数的定量计算。
在储层参数的定量计算中主要包括有机碳含量、有机质成熟度、孔隙度、饱和度以及吸附气含量等几个要点。
(1)页岩油气储层定性识别页岩油气储层由于含有丰富的有机质,测井响应特征与常规储层有明显不同。
通常情况下,干酪根形成于还原环境,可以使铀沉淀下来,从而具有高自然伽马放射性特征,干酪根的密度较低,介于0.95~1.05g/cm3之间。
3-四性关系PPT课件

10
细砂质粉砂岩
10
粗粉砂岩
粉砂岩
细粉砂岩
细砂岩 粉砂质细砂岩 细砂质粉砂岩 粗粉砂岩 粉砂岩 细粉砂岩
1
0
30
60
90
120
150
GR(API)
细砂岩: Rt>-0.1688*GR+24.798 粉砂岩: Rt<=0.1688*GR+24.798 and Rt>5.5 2021/7/2泥3 岩:Rt<=5.5
2021/7/23
2
测井储层参数定量研究
1 测井资料预处理
2 储层四性特征及四性关系研究
3 储层参数测井解释模型的建立
4 测井资料二次数字处理
5
2021/7/23
结论与建议
3
1.测井资料预处理
测井曲线环境校正
测井曲线环境校正主要是消除井眼的影响。井眼条件的 影响一般包括两个部分:一是泥浆的影响,二是指井眼几何 形状的影响,本次研究利用FORWARD2.7面向对象测井解 释平台中测井资料预处理模块对部分测井曲线进行环境校正, 主要是对易受井眼条件影响的声波时差曲线和易受泥浆侵入 影响的感应测井曲线的环境校正。
GCUR:为地区经验参数,对第三纪地层为3.7,对老地层为2。
2021/7/23
25
3.储层参数测井解释模型的建立
骨架图版
50
POR=0.195AC-36.075 R=0.76 N=1012
40
30
POR(%)
20
10
0
100
160
220
280
340
400
A C ( ms / m )
2021/7/23
4+泥质砂岩储层测井评价_pdf.unlocked

2、含油泥质砂岩电导率(Ct)与含水饱和度(Sw)
• 假设: 油层(Sw<1)可交换阳离子的有 Qv Q = 效浓度Qv’与Qv和Sw有关, 即: v Sw
1 有: C t = * − n* F Sw ⎛ Qv ⎜ ⎜Cw + B S w ⎝ ⎞ ⎟ ⎟ ⎠
• 问题: 没有对B值的影响因素进行完整测量。
一、粘土矿物/泥质的基本性质
1、定义 2、粘土矿物的化学结构 3、粘土矿物在岩石中的分布形式及产状 4、粘土矿物的电荷
二、阳离子交换性吸附及阳离子交换量 三、扩散双电层理论
1、粘土/泥质的定义
• 粘土:直径小于2μm(1/256mm 或8φ) 的层状硅酸盐矿物颗粒; • 泥质:粘土和其它细颗粒组分组成的混 合物。
20
15
10
W& T h B '_m ax B _m ax
5
0 0 50 100 150 200 250
温度,℃
钠离子最大当量电导与温度的关系
W~S模型:
(电导率形式)
1 C o = ∗ (C w + BQv ) F Qv ⎞ 1 ⎛ ⎟ C t = * − n* ⎜ Cw + B ⎜ Sw ⎟ F Sw ⎝ ⎠
在扩散层中,Stern层的厚度可以用XH表示,即外Holmholtz 平面距粘土颗粒表面的距离:
X H = 2 rw + 3rw + rNa = 6.18 × 10 −8 cm
其 中 rw 为 水 分 子 的 半 径 , 1.4 。 rNa 为 钠 离 子 的 半 径 , 0.96。 根据Gouy-Chapman扩散模型,25℃时扩散层的理论厚度Xd与 溶液浓度<n>有关:
测井资料综合解释原理与方法基础

孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。 岩石具有由各种孔隙、孔洞和裂缝(隙)形成的流体储存空间的性质称为
孔隙性;而它在一定压差下允许流体在岩石中渗流的性质称为渗透性。 孔隙性和渗透性是储集层必须同时具备的两个最基本的性质,这两者合称
按岩石颗粒的大小(即粒径),可把碎屑岩分为砾岩、砂岩、 粉砂岩和泥岩等。
从理论上考虑,对于同直径的圆球颗粒,如果相邻四个球心构成正方形 时,则不论颗粒直径大小,其孔隙度都是47.6%;如果相邻四个球心构成斜 菱形(最紧排列),则孔隙度降为25.9%,渗透性也变差,且颗粒愈细,渗透 性愈差。
测井资料储集层评价基础
为储集层的储油物性。储集层是形成油气层的基本条件,因而是应用测井资料 进行地层评价和油气分析的基本对象。
测井资料储集层评价基础
地质上常按成因和岩性把储集层划分为: 碎屑岩储集层(砂岩类---砾、砂、粉砂、泥岩储集层) 碳酸盐岩储集层(泥岩储集层、碳酸盐储集层) 其他岩类储集层
岩浆岩储集层(大港、吐哈) 变质岩储集层 膏岩剖面储集层
2、碳酸盐岩剖面
(2)碳酸盐岩储集层特点 碳酸盐岩储集层的另一特点是:一般都出现在巨厚的致密碳酸盐岩地层
中。这类碳酸盐岩储集层的上,下围岩,是岩性相同的致密碳酸盐岩,而不 是泥岩,这就是碳酸盐岩剖面的典型特征。
碳酸盐岩剖面测井解释的任务,就是从致密围岩中找出孔隙型、裂缝型 和洞穴型储集层,并判断其含油(气)性。
测井资料储集层评价基础
1、碎屑岩剖面
目前世界上已发现的储量中大约有40%的油气储集于这一类储集层。该 类储集层更是我国目前最主要、分布最广的油气储集层。 (1)碎屑岩组成
准噶尔盆地永进油田特低孔超低渗储层测井解释模型研究

准噶尔盆地永进油田特低孔超低渗储层测井解释模型研究X孙晓霞(中国石油化工股份有限公司胜利油田分公司地质科学研究院,山东东营 257015) 摘 要:准噶尔盆地永进油田西山窑组储集层孔隙度的分布范围在4%~6%之间,渗透率分布范围在0.01×10-3~0.30×10-3L m 2之间,属典型的特低孔、超低渗储层。
由于该类储层结构复杂,利用测井信息精确地求解储层物性参数难度很大。
本文以取芯井分析化验、试油、试采资料为基础,研究了西山窑组储层岩石的岩性、物性、电性及含油性之间的关系,建立储层孔隙度、渗透率、含油饱和度测井解释模型。
应用解释模型对研究区7口井进行了二次解释,结果表明,该解释模型具有较高的精度,为地质建模和方案设计研究提供了可靠的储层参数。
关键词:准噶尔盆地;永进油田;特低孔超低渗储层;孔隙度;渗透率;含油饱和度 中图分类号:P631.8+4 文献标识码:A 文章编号:1006—7981(2012)06—0139—03 永进油田位于准噶尔盆地腹部的负向构造区,属于中央坳陷昌吉凹陷西段,构造为呈西南倾的单斜。
其目的地层为侏罗系西山窑组地层。
研究区储层埋藏深(5800~6000m ),压力大(静压97.45MPa ),岩心分析平均孔隙度6%,平均渗透率0.33×10-3Lm 2,属于特低孔、超低渗的储集层[1]。
西山窑组主要为河流-三角洲及滨浅湖相沉积。
储层受沉积环境、成岩作用、构造等因素影响,具有低孔隙度、低渗透率、油层薄、非均质性强等特点,属典型的特低渗透非均质岩性油藏。
低渗透储层有着不同于常规储层的测井响应,其测井响应中来自油气的成分少,有生产能力的低孔隙度储层与无效层段之间的差异很小,测井解释的难度很大。
针对上述实际情况,抓住二次测井解释的关键-“四性”关系分析和解释模版确定,并结合岩心分析资料、试油试采资料,研究出适合该区的测井解释模型,提高了解释精度[2-3]。
储层参数计算.

SP SP min I sh SP max SP min 2GCUR I sh 1 Vsh GCUR 2 1
– 方法二:
SP Vsh 1 SSP
• SSP:目的层段中纯砂岩水层静自然电位。
三、储层参数计算及处理
4、泥质含量计算
3)自然伽马能谱
– 同时测量U、TH、K、SGR(无UGR)、CGR,除U外,都能用 来求泥质含量,用CGR较好。 – 方法同GR. – 当用多种方法求泥质含量时,最终应取多种方法求得的最 小者
¬ md Ê £ ¸ Â ø Í É
×Ï ¿ ¶ ¶ È £ ¬ £ ¥
三、储层参数计算及处理
2、渗透率计算
2)用孔隙度和束缚水饱和度求取 如Timur公式
0.136 4.4 K 2 S wb
•Swb,%;φ,%;K,10-3μm2
三、储层参数计算及处 b D ma f
H H ma N H f H ma
S
t t ma t f t ma
ma——骨架 f ——流体
该公式称为平均时间公式或Wyllie-Rose公式
三、储层参数计算及处理
1、孔隙度计算
2)体积法:
适用范围:平均时间公式适用于压实和胶结良好的纯砂岩地层。在这
种砂岩中,矿物颗粒间接触良好,孔隙直径较小,故可以忽略矿物颗粒与孔隙流
体交界面对声波传播的影响,可认为声波在岩石中是直线传播的。但是对于未胶
结、又未压实的疏松砂层,矿物颗粒间接触不好,故矿物颗粒与孔隙水的交界面 对声波传播影响较大,使孔隙度相同的疏松砂层的声波时差要比压实的砂层大, 因此需要用压实校正系数校正: S
1 t t ma Cp t f t ma