测井解释(重要)

合集下载

测井解释报告最终版

测井解释报告最终版

测井解释报告一.计算原理1)计算泥质含量V sℎ:地层的泥质含量V sℎ是一个重要的地质参数,泥质含量V sℎ不仅反映地层的岩性,而且地层有效孔隙度、渗透率、含水饱和度和束缚水饱和度等储集层参数,均与泥质含量V sℎ有密切关系。

且由于自然伽马对于泥质含量比较敏感,故可由自然伽马来计算泥质含量V sℎ,公式如下:V sℎ=2GCUR∙∆GR−1 2GCUR−1式中GCUR—希尔奇指数,它与地层地质时代有关,可根据取心分析资料与自然伽井测井值进行统计确定,对北美第三系地层取3.7,在本报告中取2。

∆GR—自然伽马相对值,也称泥质含量指数。

∆GR=GR−GR min GR max−GR min在报告中,GR即是实际测量值;GRmin代表大套纯砂岩层,根据实际测井曲线可判断值为70;GRmax代表大套纯泥岩,根据实际测井曲线可判断值为140,由此即可求出全段泥质含量。

2)计算孔隙度∅:分析可知,在分层之后,针对含泥质砂岩水层情况下可由密度来计算∅,公式如下:ρb=(1−SH−∅)ρma+SHρSH+∅ρf化简如下: ∅=ρma−ρbρma−ρf−SHρma−ρSHρma−ρf式中,骨架密度ρma取 2.65g/cm3,孔隙流体密度ρf取1 g/cm3,孔隙泥质密度ρSH取2.32 g/cm3,而泥质含量V sℎ为之前所求,体积密度ρb为测量值,代入即可求孔隙度∅,其中某些异常值可以改变取值以满足要求。

3)计算含水饱和度S w和冲洗带中残余油气饱和度S hr:通常含水饱和度又是划分油、水层的主要标志,是以电阻率测井为基础的阿尔奇(Archie)公式来计算S w,公式如下:F=R oR w=a∅mI=R tR o=R tFR w=bS w n由以上两式,可推出阿尔奇公式:S w=√abR w ∅m R tn式中,参数a,b都和岩性有关,可取为1,胶结指数m和饱和度指数n均取为2;地层水电阻率R w取为0.01Ω/m,孔隙度∅之前所求,而地层真电阻率值则采用深侧向LLD数值,即可求出含水饱和度S w。

测井名词解释

测井名词解释

测井名词解释●油矿地球物理测井的定义:是应用地球物理方法,研究油气田钻井地质剖面,解决某些地下地质问题和钻井技术问题的一门应用技术科学;也是直接获取地层信息的方法之一。

●泥岩基线:均匀、较厚的泥岩地层对应的变化不大、稳定的自然电位曲线连线,是平行于深度轴的直线。

(但也有倾斜或偏移)。

●自然电场:在钻开岩层时井壁附近产生的电化学活动而造成的电场,它取决于井孔剖面的岩层性质●离子扩散:两种不同浓度的盐溶液接触时,在渗透压的作用下高浓度溶液中的离子,穿过渗透性隔膜迁移到低浓度溶液中的现象●溶液的矿化度:溶液含盐的浓度。

溶质重量与溶液重量之比。

●泥浆滤液:在一定压差下,进入到井壁地层孔隙内的泥浆●几何因子:主电流经过的空间部分介质对测量结果的贡献,是指介质的空间位置、体积大小,形状等几何因子有关的各种影响的总和,把主电流经过的整个空间的几何因子看成1。

●增阻泥浆侵入:当地层中原有流体的电阻率比较低,电阻率较高的泥浆滤液侵入后,侵入带电阻率大于原始地层电阻率,常见淡水泥浆钻井的水层。

减阻泥浆侵入:当地层中原有流体的电阻率比较高,泥浆滤液侵入后,侵入带电阻率小于原始地层电阻率,常见淡水泥浆钻井的油气层或盐水泥浆钻井的水层及油气层。

●含氢指数:任何物质单位体积(1cm3)的氢核数与同样体积淡水氢核数的比值。

根据规定,淡水(纯水)含氢指数为1,而任何其它物质的含氢指数将与其单位体积内的氢核数成正比。

它反映了地层的减速能力●传播效应:电磁波在均匀无限均质中传播时,出现幅度衰减和相位移动时的现象,尤其是在高电导地层中,当传播效应的影响越大时,测得的的,井内有钻井液污染,地层厚度有限,上下有围岩,在井中所测量的电阻率不是地层真电阻率,而是井内钻井液.渗透层的侵入.上下围岩的电阻率等各项因素都影响的电阻率.其中:K-电极系系数,是与电阻率测井仪有关的系数。

视电阻率曲线的影响因素:电极距,井,围岩和层厚,高阻邻层的屏蔽,地层倾角以及侵入的影响. ●标准测井:在一个地区或一个油田,为了研究岩性的变化、构造的形态和大段油层的划分等工作,常用相同的深度比例(一般为1:500)及相同的横向比例,在全井段进行几种方法测井,如一条电阻率、一条自然电位,有的包括井径或自然伽马等,作为划分标准层及进行地层对比之用。

测井解释

测井解释

1.测井数据处理常用的原始输入资料有(测井曲线图)、(存放于磁带的数据)、(直接由终端输入的表格数据)和由井场或异地经卫星传送的数据。

2.国外测井公司一般运用(自然伽马曲线)曲线作为深度控制曲线进行深度校正。

3.碎屑岩储集层空隙空间的大小和形状是多样的,按孔隙成因,可将碎屑岩分为粒间空隙、微孔隙和(溶蚀孔隙)、(微裂缝)。

4.对于石油地质和测井来说,有重要意义的粘土矿物只要是高岭石、(蒙脱石)、(伊利石)和混层粘土矿物。

5.按照产状分类,裂缝可以分为高角度裂缝、(低角度裂缝)和(网状裂缝)。

6.按照成因分类,裂缝可以分为构造裂缝、(溶蚀裂缝)、(压溶裂缝)和风化裂缝。

1.Schlumberger公司用户磁带格式是(DLIS)2.阿特拉斯公司用户磁带格式是(CLS)3.下列哪一条测井曲线(自然伽马)的平均探测深度约为15CM。

4.下列哪一条测井曲线(岩性-密度测井)的平均探测深度约为5CM。

5.(方解石、白云石)是碳酸盐岩的主要造岩矿物。

6.下列哪种岩石(石膏)的中子孔隙度(%)接近50.7.对于油基泥浆井,下列哪一种电阻率测井系列(感应测井)比较适用。

8.对于油基泥浆井,下列哪一种测井曲线(自然电位测井)一般不测量。

9.盐水泥浆井中,储层段自然电位曲线一般显示(正幅度差异)。

10.当两种或两种以上的流体同时通过岩石时,对其中某一流体测得的渗透率,称为岩石对流体的(有效渗透率)。

1.简述频率交会图的概念。

答:频率交会图就是在x-y平面坐标上,统计绘图井段上各个采样点的A、B两条曲线的数值,落在每个单位网格中的采样点数目(即频率数)的一种直观的数字图形,简称为频率图。

2.简述Z值图的概念。

答:Z值图是在频率交会图基础上引入第三条曲线Z做成的数据图形,Z值图的数字表示同一井段的频率图上、每个单位网格中相应采样点的第三条线Z的平均级别。

3.简述三孔隙度重叠显示可动油气和残余油气的方法原理。

答:由Rt和Rx0曲线按阿尔奇公式或其他饱和度方程得出的Sw和Sx0,可计算地层含水孔隙度Φw和冲洗带含水孔隙度Φx0:Φw=Φ*Sw;Φx0=Φ*Sx0,由Φ、Φx0、Φw三孔隙度曲线重叠,可有效地显示地层的含油性、残余油气和可动油气,即有:含油气孔隙度:Φh=Φ-Φw 残余油气孔隙度:Φhr=Φ-Φx0 可动油气孔隙度:Φhm=Φx0-Φw因此,Φ与Φx0幅度差代表残余油气,Φx0与Φw幅度差代表可动油气。

石油勘探中的测井技术与解释

石油勘探中的测井技术与解释

石油勘探中的测井技术与解释石油勘探是指在地表以下进行物探、地球化学、地震勘探等一系列技术手段的应用,以找到地下石油、天然气的蕴藏情况,并评价资源的量与质。

在这个过程中,测井技术与解释被广泛应用,为石油勘探提供了重要的参考和决策依据。

一、测井技术在石油勘探中的作用测井技术是通过电测、声波、核子、射线等物理参数的反演,对地层构造、岩性、流体性质等进行检测和解释的一种手段。

在石油勘探中,测井技术具有以下作用:1. 评价储层岩性:测井仪器通过记录不同物性参数的变化,可以判断地层的岩性类型、颗粒度、含量等。

岩性是石油勘探中评价储层质量和寻找有效储集层的重要指标之一。

2. 判别储集层:测井技术可以通过测量地层的孔隙度、渗透率、饱和度等物理参数,判别储集层的存在与否、储集层的性质及其储集能力。

这对石油勘探的钻井方案设计、油层测试、储层描述等方面具有重要意义。

3. 识别含油气区域:测井技术可以通过记录油气层的厚度、含量、产能、压力等参数,实现对含油气区域的识别。

这对石油勘探的勘探方向和资源评价提供了重要依据。

4. 评估地层油气资源:测井技术可以计算地层的储量、收益、生产指标等,为石油勘探的盈亏评估提供依据。

同时,通过测井技术可以评估地下水含量和质量,避免资源开采对环境的负面影响。

5. 判别油气藏类型:测井技术可以通过分析记录的数据,判别油气藏的类型。

不同类型的油气藏开采方式和开采效果不同,因此了解油气藏类型对于石油勘探具有重要意义。

二、测井解释的重要性测井解释是指根据测井数据及地层物理性质,进行数据分析、解释,并综合其他勘探资料,获得地质与物理参数的定性定量评价。

测井解释对石油勘探具有重要的意义:1. 确定储层分界面:通过测井数据的解释,可以确定不同地层之间的分界面,为钻井工程提供重要参考。

储层分界面是勘探阶段设计合理的钻井方案、防漏井策略、完井方案的重要依据。

2. 识别异常地质体:测井技术可以在勘探过程中识别异常地质体,如断层、构造变形、溶蚀洞等。

测井解释的作用和意义

测井解释的作用和意义

测井解释的作用和意义嘿,你知道测井解释有多重要吗?就好比你在黑暗中摸索,突然有了一盏明灯为你照亮前路!测井解释呀,那可真是地质勘探中的大功臣呢!比如说,我们要了解地下的情况,就像你想知道一个神秘盒子里装的是什么。

测井数据就像是从盒子的缝隙里透出来的一点点信息,而测井解释呢,就是把这些零散的信息拼凑起来,让我们能看清盒子里的全貌。

想象一下,地质学家们就像侦探一样,通过测井解释这个神奇的工具来破解地下的秘密。

他们能从那些复杂的数据中解读出地层的结构、岩石的性质、流体的分布等等。

这不就跟侦探从蛛丝马迹中推断出案件的真相一样吗?测井解释能告诉我们哪里有石油、哪里有天然气,这可关系到能源的开发和利用啊!要是没有它,我们不就像无头苍蝇一样乱撞吗?我记得有一次,一个勘探团队在一个地区进行测井,数据出来后大家都有点摸不着头脑。

这时候,测井解释专家出马了!他仔细分析那些数据,就像一个经验丰富的老中医在给病人号脉一样。

最后,他得出了准确的结论,为后续的勘探工作指明了方向。

大家都对他佩服得五体投地!测井解释还能帮助我们评估储层的质量和产能。

这就好比你去买水果,你得知道哪个水果甜、哪个水分多,才能挑到最好的。

通过测井解释,我们可以了解储层的渗透性、孔隙度等关键参数,从而判断它的开发价值。

总之,测井解释的作用和意义简直太重大了!它就像一把钥匙,能打开地下宝藏的大门。

我们可不能小瞧了它,一定要重视起来,让它为我们的地质勘探事业发挥更大的作用!我的观点就是,测井解释是地质勘探中不可或缺的关键环节,没有它,很多工作都无法顺利开展。

测井资料解释(煤田测井解释)

测井资料解释(煤田测井解释)
为使煤层模型更接近于原生状态,模型中的灰分还包含有泥质及其它矿物成分在原生 状态下所含有的水及其在燃烧过程中的挥发物。为与化验室中的灰分相区别,这部分 成分称湿灰分;
对比泥质砂岩体积模型和煤的体积模型: 泥质砂岩的岩石骨架相当于碳分, 泥质相当于灰分, 而孔隙水则相当于水分。
煤的声波测井、密度测井及中子测井解释公式与泥质砂岩的测井解释公式具有相 同的形式:
t 1 Vatc Vata t f b 1 Vac Vaa f N 1 Vac Vaa f
上式中Va’=V0/V为灰分的相对体积含量;Δtc、Δta、Δtf分别为碳、灰、水的声波时差; δc、δa、δf分别为碳、灰、水的体积密度;Φc、Φa、Φf分别为碳、灰、水的含氢指 数;为水分的相对体积含量。
煤层的井径曲线受钻井工艺和钻井液性能影响,煤层会发生垮塌,使井径扩大。 煤层的声反射系数比其它地层都小,声波井周成像是记录声波在井壁处反射波的 能量,由于煤层反射系数小,声波透过地层的能量多,而反射的能量少,因此图像 颜色深。
煤储层孔渗特征
1. 煤储层孔隙结构 属裂缝—孔隙型结构,煤基质被天然裂缝(割理)网分隔成许多方块,每个方块 由煤粒和微孔隙组成。基质是储气空间,甲烷被吸附在微孔的表面,渗透率很低, 一般为(10-2~10-6)×10-3μm2。在浓度差的作用下,甲烷透过基质扩散到裂缝中, 裂缝在煤的总孔隙体积中占次要地位,储气功能很低,可有少量游离气储存其中, 但裂缝的渗透率高,是甲烷渗流的主要通道。 煤中的天然裂缝(割理)是煤化作用和构造应力影响的结果。成大致相互垂直的两 组,主要的、延伸较大的一组叫面割理,次要的、与面割理大致垂直的一组叫端割 理。割理是煤中流体运移的主要通道,并且有方向性,因而它是控制煤层气方向渗 透的主要因素,割理间距是煤储层模拟中的一个重要参数。

测井原理与解释

测井原理与解释

测井原理与解释
测井是一种勘探地下介质的物理和化学性质的方法,主要通过测量井眼周围的压强、温度、压力、化学成分和流量等参数来确定地下介质的类型、孔隙结构、类型和含水量等信息。

测井原理主要有以下几种:
1. 地震测井:利用井壁上的地震波的传播规律和反射特性,通过地震仪记录地震波的反射和回波时间等信息来计算压强和温度。

2. 热测井:利用井底温度和地下介质的热传递特性,通过热仪记录井底和地下介质的温度,通过温度变化来计算孔隙度和含水量。

3. 声波测井:利用声波在地下介质中的传播速度和衰减特性,通过声波仪记录声波的传播时间和频率等信息来计算压强、温度和化学成分。

4. 射电测井:利用射电电场和电磁波在地下介质中的传播规律,通过射电仪记录电磁波的传播时间和衰减特性来计算压强、温度、含水量和岩石类型等。

以上这些方法都具有一定的准确度和局限性,根据不同的地质情况和目的,可以选择不同的方法进行测井。

同时,在测井过程中还需要考虑到井壁稳定、井口振动、地震波传播方向等因素。

测井名词解释

测井名词解释

名词解释:1、储集层的厚度:储集层顶、底界面之间的厚度即为储集层的厚度。

2、油气层有效厚度:指在目前经济技术条件下能够产出工业性油气的油气层实际厚度,即符合油气层标准的储集层厚度扣除不合标准的夹层(如泥质夹层或致密夹层)剥下的厚度。

3、高侵剖面:冲洗带电阻率Rxo明显大于原状地层电阻率Rt称为泥浆高侵,高侵地层电阻率的径向变化称为高侵剖面。

4、低侵剖面:Rxo明显低于Rt,称为泥浆低侵,低侵地层电阻率的径向变化称为低侵剖面。

5、自然电位:在电阻率测井过程当中,在供电电极不供电时,仍可在井内测量到电位的变化,这个电位是自然存在的,故称为自然电位。

6、泥饼:泥浆在失水时所形成的附着于井壁的泥糊叫泥饼。

7、标准测井在一个地区,为了进行地层对比,选择几种有效的测井方法,分别对每口井全井段进行该套测井项目的测井,深度比例为1:500,横向比例与综合测井相同。

8、地层水电阻率地层孔隙中所含水的电阻率,用Rw表示。

9、泥浆滤液电阻率泥浆经过渗滤,除去固体颗粒后所剩余液体的电阻率。

10、泥浆侵入在钻井时,为防止井喷和工程上的需要,通常井内泥浆柱的静压力要略高于地层压力,此压力差将造成泥浆滤液进入渗透层,即所谓泥浆侵入。

简答题:1、声波(时差)测井的主要用途?答:(1)声波(时差)测井可以用来求储层孔隙度;(2)与中子或密度结合可以确定岩性;(3)识别气层,气层纵波时差有周波跳跃现象。

2、如何用声变测井资料评价套管固井质量?答:声变测井资料包括声幅(首波)及全波变密度信息,声幅大说明固井质量差,反之固井质量好。

当胶结好时,地层波信号很强,套管波信号很弱,当胶结不好时,相反。

3、、水层的主要电性特征?1)自然电位异常大,一般大于油层,这是地层岩性较纯、渗透性较好和厚度较大的水层的标志;2)深探测电阻率数值低,砂泥岩剖面水层电阻率一般为2—3欧姆米;3)明显高侵、即浅探测电阻率明显大于深探测电阻率淡水泥浆中,水层由于泥浆侵入的影响,使浅探测电阻率较高,有时会接近于油层,淡水层的深探测电阻率明显低值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通过区域一些井的试油、试采结果,统计电性与含油性的关系,如:制作 地层真电阻率与纯水层电阻率交会图版;地层真电阻率与自然电位相对值的图 版等,对应用电阻率进行储层油、气、水性质判别起到较大作用。
当引入声-感测井系列后,由于声波测井可以计算地层孔隙度,为判断砂岩储层的物 性提供了基础,感应测井求取地层真电阻率更方便,电阻率与孔隙度配合可以近似求 取储层含油饱和度,这使得测井解释技术向前迈进了一步。
骨架
泥质 孔隙
Vma V
Vsh Vφ
V= Vma+ Vφ+Vsh
第二部分 测井综合解释评价
一、测井综合解释基础
测井解释的主要对象是储集层——石油和天然气都是储存在储集层中。
碎屑岩:包括砾岩、砂岩、粉砂岩和泥质砂岩
按岩性可分为: 碳酸盐岩:主要岩石类型石灰岩、白云岩
储集层的分类及特点
特殊岩性:包括岩浆岩、变质岩、泥岩等
第二部分 测井综合解释评价
测井资料解释技术发展史
第一阶段:60-80年代裸眼井测井系列是横向测井和 声-感测井定性解释阶段
当时用手工方法根据横向测井地层电阻率特征,结合自然电位、井径曲线划分 储层,在根据微梯度与微电位曲线之间的差异,自然电位幅度大小所反映的储 层渗透性的好坏,对储层进行评价,结合录井的岩屑、井壁取芯、钻井取芯的 显示定性判别储层油、气、水性质。
△tsh —泥岩声波时差,μs/ft; Vsh—泥质含量,f
电 阻 率
图版
声波时差
测井解释模型
有效储层厚度划分标准
曲线 特征 储层 类别
总孔隙度 (%)
Ⅰ类储层
≥8 4—8
Ⅱ类储层 3—8
Ⅲ类储层 2.5—3
裂缝孔隙度 (%)
— ≥0.1 <0.1 ≥0.1 <0.01 ≥0.01
深侧向 电阻率 (Ω.m)
按储集空间结构:
孔隙型 裂缝型
洞穴型
储集层的基本参数
孔隙度:总孔隙度、有效孔隙度、原生孔隙度、次生孔隙度
饱和度:储集层的含油性指示,孔隙中油气所占孔隙的相对体积称含油饱和度。
岩层厚度:指岩层上下界面之距离,以岩性或孔隙度、渗透率的变化为其 特征。
渗透率:一定粘度的流体通过地层的畅通性的度量,有绝对渗透率、相对渗透
思路 地层
第二部分 测井综合解释评价
AC - 180
1
POR= 620 - 180 .
CP
交会
k
0.136 率
电阻率

岩性曲线

Sw
(
abRw m Rt )
1 n
SH=(SHLG-Gmin)/(Gmax-Gmin) Vsh=(2 GCUR×SH-1)/(2 GCUR-1)
第二部分 测井综合解释评价
XX井常规裸眼井测井解释成果图
测井解释模型组成
tma lim e 47.5 dolo 43.5
b t tma Vsh tsh tma
tf tma
tf tma
lime—石灰岩含量;
dolo—白云石含量;
Φb—基质孔隙度,f
△t —声波时差,μs/ft;
△tf —流体声波时差,μs/ft; 解释公式 △tma —混合骨架声波时差,μs/ft;解释参数
第二部分 测井综合解释评价
测井资料解释技术发展史
第二阶段:80年代中期-90年代末,称为半定量解释阶段
80年代中期开始,由于计算机工业的发展,测井资料采集技术得到极大的提高, 先后问世的CSU、CLS3700、MAX-500等测井系统使测井系列得到极大丰富,测井资 料解释摆脱手工定性解释阶段,开始进入应用计算机的半定量解释阶段。解释评价软 件有:POR、SAND、CRA等,各油田还根据自己的的特点研制开发了自动判别油气 水层程序等多种应用软件,可以定量计算孔、渗、饱、泥质含量、可动油饱和度、束 缚水饱和度等参数,还可以通过地倾角测井,解释地层倾向、倾角、断层等构造问题, 研究沉积相变化等
表格 无铀伽马
(API)
资料使用情况
≤700 ≤200 200-2000 ≤200
2000-4000 <2000
共使用 5 口井(板
≤25
深 4、6、7、8、 千 12-18 井)85 层
资料。
解释程序模块
其他信息
含水纯岩石体积物理模型
泥质岩石体积物理模型
骨架
Vma V

孔隙
V= Vma+ Vφ
第二部分 测井综合解释评价
◆测井解释中引用了哪几种饱和度概念?
测井解释成果
目前,测井解释中引用的饱和度概念有以下 几种: ⑴ 原状地层的含烃饱和度Sh Sh=1—SW。 如果用SO表示含油饱和度,Sg表示含气饱和 度,则Sh=SO+Sg,按定义,对于含油、气、 水的储集层,显然有SO+Sg+SW=1; ⑵ 冲洗带的残余烃饱和度Shr Shr=1—Sxo; ⑶ 可动油(烃)饱和度Smo Smo=Sxo—Sw或 Smo=Sh—Shr; ⑷ 束缚水饱和度Swi。
率、有效渗透率
第二部分 测井综合解释评价
◆测井所提供的是什么概念上的孔隙度?
测井解释成果
一般地说,孔隙度测井所提供的孔隙度是总 孔隙度(Φt)。
具体地讲:①对于碎屑岩的储集层,Φs、 ΦN和ΦD等于Φt。其中:纯地层,通常认 为总孔隙度等于有效孔隙度Φe(即 Φt=Φe);含泥质地层,有效孔隙度等于 孔隙测井值减泥质校正量,最简单形式的校 正量为VshΦssh(或VshΦNsh或VshΦDsh)。 ② 对于碳酸盐岩储集层,ΦN和ΦD为总孔 隙度,Φs一般认为不包括次生孔隙度Φ2, 即Φ2=ΦN—Φs(或ΦD—Φs)。③ 对与 复杂岩性(双矿物或多矿物岩性),须采用 两种或三种孔隙度测井组合确定总孔隙度, 但当储集层含有次生孔隙时,声波测井不能 参加组合。
提纲
绪论
第一部分 常规裸眼井测井基本原理及应用
岩性测井 物性测井 电性测井
第二部分 测井综合解释评价

测井综合解释基础
用测井资料评价储集层岩性 和孔隙度的基本方法
用测井资料评价储集层含油性的基本方法
第二部分 测井综合解释评价
◆何为测井综合解释?
测井资料记录的一般都是各种不同的物 理参数,如电阻率、自然电位、声波速度、 岩石体积密度等,可统称为测井信息。而 测井资料解释与数字处理的成果,如岩性、 泥质含量、含水饱和度、渗透率等,可统 称为地质信息。确定测井信息与地质信息 之间应用的关系,采用正确的方法把测井 信息加工成地质信息,是测井资料综合解 释的核心。
第三阶段:定量解释和多井评价阶段
从90年代末发展起来的成像测井技术,为测井资料解释展现了广阔平台,现代的 测井解释在第二阶段的基础上,可以确定地层矿物成分及含量,确定有效孔隙度、 流体性质,对于碳酸岩盐及特殊岩性储层可以直观看到裂缝、孔洞,并定量计算孔 洞、裂缝的大小。还可以与地震资料结合进行多井评价、储层横向预测、油藏描述 等。
相关文档
最新文档