第四章 煤层气的赋存状态
关石焦煤矿煤层气赋存情况探析

关石焦煤矿煤层气赋存情况探析摘要:关石焦煤矿处于贵州省关岭自治县沙营乡辖区内,煤层气为矿区内主要有益矿产,煤层气俗称“瓦斯”俗称“瓦斯”,是一种高效、洁净的气体清洁能源。
本文对区内煤层进行了结构、厚度、顶底板情况、煤层含气量等方面的描述、测试实验等,对区内煤层气的含量、丰度、赋存状态有一定的了解。
关键词:关石焦煤矿煤层气含气量。
1 井田概况关石焦煤矿位于关岭自治县城西部沙营乡境内,南至沙营乡运距约6 km,距贵阳150km,交通较为方便。
关石焦煤矿区属侵蚀溶蚀地貌,山脊与地层走向基本一致。
总体地势南高北低,地形变化较大,南部为飞仙关组地层形成的陡壁,北部为龙潭组及茅口组地层形成的沟谷地形,其中上二叠统龙潭组为含煤地层。
2 地质条件2.1 地层关石焦煤矿区及周边出露地层为二叠系中统茅口组至三叠系下统永宁镇组,区内含煤地层为二叠系上统龙潭组。
2.2 构造井田位于花江背斜之西南翼西部,总体倾向南,为一单斜构造,区内地层走向没有变化,倾角有一定程度的变化,断层发育较少,规模不大,构造复杂程度暂定为简单构造。
3 储藏特征3.1 煤层特征龙潭组地层全层厚314.32~405.08m,平均厚度为360.31m,含煤18~23层,含可采煤层6层,编号为5、8、10、30、31、32,可采煤层总厚4.89~14.32m,平均10.47m,可采含煤系数2.91%;区内可采煤层对比可靠,其中5号、31号煤层为全区可采较稳定煤层,8、32号煤层为大部可采较稳定煤层,10、30号煤层为局部可采不稳定煤层。
3.2 煤质特征(1)物理性质:区内可采煤层颜色为黑色、褐黑色,粉粒状为主,少量碎块状、块状和粒状,内生裂隙较发育,偶见少量外生裂隙,充填薄膜状、网格状、脉状方解石,含较多结核状、透镜状、浸染状、星散状、团块状黄铁矿。
煤岩类型主要为半亮型、半暗型。
(2)化学性质及煤类:本区煤层煤类主要为瘦煤。
依据《煤炭质量分级(硫分)》,GB/T15224.2~94的规定,5、8、10、30、31、32号煤层均属于高硫分煤(HS)。
煤层气与页岩气开发地质条件及其对比分析

煤层气与页岩气开发地质条件及其对比分析OFweek节能网讯:煤层气和页岩气是世界上已进行商业开发的两种重要的非常规天然气资源。
我国煤层气产业已进入商业化生产阶段1;而我国页岩气开发尚处于起步阶段,目前主要在四川盆地及其周缘开展开发试验。
美国1821年开始页岩气勘探,但规模化开发和产量快速增长始于2003年应用水平井钻井技术,2011年年产量已接近1800×10m(引自资料),约占其天然气总产量的23%,分析北美页岩气开发地质条件,主要表现为黑色页岩的有机碳(TOC)含量大于2%,有机质成熟度(R)为1.1%一3.5%,页岩单层厚度大于15m,脆性矿物(石英、斜长石)含量大于40%,黏土含量小于40%,处于斜坡或凹陷区,保存条件较好等。
随着北美页岩气勘探开发区带的快速扩展和页岩气产量的大幅飙升,页岩气迅速成为天然气勘探开发新热点。
2005年以来,国内学者从生气条件、储层条件和保存条件及页岩开发技术等方面开展了相关的研究工作,页岩气研究在四川盆地及其周缘取得了显著进展和成效。
2010年,我国在四川盆地南部率先实现页岩气突破,威201等多口井在下寒武统筇竹寺组和下志留统龙马溪组海相页岩地层获得工业气流。
煤层气/页岩气开发地质条件是指与煤层气/页岩气开发工程活动有关的地质条件和工程力学条件的综合。
这些因素包括煤层气/页岩气的成藏地质条件、赋存环境条件和开发工程力学条件等方面。
煤层/页岩层既是生气层又是储集层,其储集和产出机理就比常规天然气储层复杂的多。
因此对于煤层气/页岩气开发,既要研究煤层气/页岩气的生成、储集和保存等成藏条件;又要研究煤层气/页岩气的赋存环境条件;还要研究煤层气/页岩气开发工程力学条件及工艺技术等问题。
尽管相关部门和学者已开展了页岩气的地质调查与开发试验研究工作,但主要集中资源地质评价方面,对开发地质条件则缺乏相应的研究工作。
煤层气与页岩气均为自生自储式非常规天然气资源,在成藏地质条件、赋存环境条件和工程力学条件等方面都有诸多共性,但也存在一定的差异性,且它们在诸多盆地伴生存在,因此,研究煤层气/页岩气开发地质条件及其评价的共性和差异性对指导我国煤层气和页岩气勘探开发具有重要意义。
探讨煤层气和页岩气的对比问题

探讨煤层气和页岩气的对比问题一前言当前,煤层气/页岩气开发的过程中,很多开发队伍没有考虑到地质条件的特殊性,导致后期开发问题重重,所以,新一步分析煤层气/页岩气开发的地质条件很有必要。
二煤层气/页岩气开发地质条件页岩气与煤层气一样都属于自生自储式的非常规天然气。
煤层气是主要以吸附状态赋存于煤层中的非常规天然气;而页岩气(ShaleGas)是主要以吸附和游离状态赋存于富含有机质页岩/泥岩中的非常规天然气。
煤层气/页岩气的解吸与吸附是可逆过程,在温度、压力条件变化下相互转化。
富含有机质的页岩,在地质作用下,生成的大量烃类(油、气),部分被排出、运移到渗透性岩层(如砂岩、碳酸盐岩等)中,聚集形成了构造、岩性等油气藏,其余部分仍滞留在页岩中,富集形成页岩气藏。
1.煤层气/页岩气成藏地质条件常规天然气有生、储、盖、运、圈、保基本成藏地质条件;而煤层气/页岩气赋存于煤层/页岩中的一种自生自储式非常规天然气,其富集成藏主要取决于“生、储、保”基本地质条件是否存在、质量好坏以及相互之间的配合关系。
煤层气/页岩气开发地质条件不仅决定于煤层气/页岩气成藏地质条件,还取决于煤层气/页岩气赋存环境条件以及煤层气/页岩气开发工程力学条件,它们在煤层气/页岩气开发过程中缺一不可,且相互联系。
煤层气/页岩气成藏地质条件包括生气条件、储气条件和保存条件,这些因素相互耦合作用从而决定了煤层气/页岩气在储层中的富集程度,并控制煤层气/页岩气开发效果。
2.煤层气/页岩气赋存环境条件煤/页岩储层处在特定的环境条件(地应力、地温和地下水)之中,赋存环境因素是地球内能以不同形式在地壳上的表现,煤层气/页岩气开发地质条件受控于地应力场、地下水压力场和地温场等多场耦合作用。
煤层气与页岩气主要以3种形式赋存在煤/页岩层中,即吸附在煤/页岩基质孔隙表面上的吸附状态,分布在煤/页岩的孔隙及裂隙内呈游离状态和溶解在煤/页岩水中呈溶解状态。
煤层气的赋存状态随不同煤化程度有较大差异,并随赋存环境条件而发生变化。
煤与瓦斯共采理论与实践课件

制定安全规程
制定详细的安全操作规程,确保作业人员熟悉并 遵守。
实施安全检查
定期对煤与瓦斯共采设备进行安全检查,确保设 备正常运转,消除安全隐患。
ABCD
强化安全培训
定期对作业人员进行安全培训,提高他们的安全 意识和应对突发情况的能力。
建立应急预案
制定应急预案,对可能发生的瓦斯泄漏、火灾等 事故进行及时处置,减少事故损失。
特点
该技术具有高效、安全、环保等特点, 能够实现煤炭和瓦斯资源的双重利用, 提高矿井经济效益和资源利用率。
煤与瓦斯共采的重要性
01
提高煤炭开采效率
通过同时开采煤炭和瓦斯,可以 缩短采煤周期,提高矿井生产能 力。
02
充分利用资源
03
保障矿井安全
瓦斯是一种清洁能源,可用于发 电、供暖等领域,实现资源的多 重利用。
煤与瓦斯共采技术可以降低矿井 瓦斯浓度,减少瓦斯积聚,从而 降低瓦斯爆炸等事故风险。
煤与瓦斯共采的历史与发展
历史
煤与瓦斯共采技术起源于20世纪 初,经过多年的研究和实践,逐 渐发展成熟。
发展
近年来,随着科技的不断进步和 环保意识的提高,煤与瓦斯共采 技术不断创新和完善,成为煤炭 开采领域的重要发展方向。
强化安全管理
加强煤与瓦斯共采过程中的安全管理,确保开 采过程的安全性和稳定性。
优化采掘协调
通过优化采掘协调,提高开采效率,降低生产成本。
感谢您的观看
THANKS
煤与瓦斯共采典型案例
山西焦煤集团
该集团采用地面钻井抽采技术和井下瓦斯抽采技术相结合的方式,实现了煤与瓦斯的共采,提高了煤 矿的安全性和经济效益。
平顶山煤业集团
该集团采用采空区瓦斯抽采技术,成功地解决了采空区瓦斯涌出量大的问题,提高了煤矿的安全性和 经济效益。
煤层气ppt课件

成藏模式及开采特征
开采效果
煤层气的产出是一个“排水-降压-解吸-扩散-渗流”的 过程。有效应力效应、基质收缩效应和克林肯伯格效应三种 效应共同作用决定了煤储层渗透率的动态变化过程,而这一 过程对煤层气井的开发效果有直接的影响。根据渗透率及产 气量可以将煤层气的开采效果分为三类:
排采动态分析预测
产量递减法
产量递减法是使用递减曲线分析预测煤层气产量的方法。最 早是由Hanby(1991)在使用指数递减对美国黑勇士盆地的 煤层气井进行经济评估时提出来的。
该方法主要是通过研究煤层气井的产出规律、分析气井的生 产特性和历史资料来预测储量。假设一旦煤层气井达到了实 际高峰值,产气量就开始下降,持续呈典型的可预测的递减 趋势,并沿着一条拟定的递减率曲线变化,由此就可以利用 传统递减分析法及开采特征
开采特征
外输型:多位于构造翼部、非均质性强的地区。气产量一部分通 过本井降压解吸半径内从本井产出,大部分通过高渗通道或沿上 倾部位扩散到其他井内产出。排采井一般位于构造翼部、非均质 性较强的地区。日产气量呈不产—上升—缓慢递减三个阶段。此 类井多低产。
成藏模式及开采特征
开采特征
排采动态分析预测
因为缺乏科学的工具,早期对煤层气排采动态分析预测是很困 难的。大多数煤层气井初始排采时气、水产能较高,经过一段 时间(如数月)的抽排后,出现产量衰减甚至被迫关闭,对后 续产能缺乏系统的预测,极大地制约着煤层气产业的发展。通 过近几十年发展,国内外诸多学者对煤层气井的排采动态分析 预测进行了相应的研究和探讨。当前在国外对煤层气井煤层气 排采动态分析预测采用较多的方法主要是产量递减法及数值模 拟法。
第三章 煤层气的储层压力及赋存状态

φi = φi (Tr , p r )
式中: 气体的对比温度; 式中:Tr—气体的对比温度;pr—气体的对比压力 气体的对比温度 气体的对比压力
根据系统的温度和压力以及气体的临界温度和压力求得: 根据系统的温度和压力以及气体的临界温度和压力求得:
Tr = T / Tc
界压力,MPa
p r = p / pc
fi—气体的气相逸度
φi
1、逸度的计算
逸度可以根据逸度因子的定义来求取 :
fi φi = p
式中: φi —组分 i 的逸度因子;p—系统的压力,MPa
由于气体在水中的溶解已经处于临界温度之上, 由于气体在水中的溶解已经处于临界温度之上,临界条件下的 饱和蒸汽压力便失去了物理意义。 饱和蒸汽压力便失去了物理意义。物理化学研究表明逸度因子 与对比压力和对比温度有关 :
2、地应力 、
3、水文地质 、
开放体系
P=Gp·H P—储层压力,MPa; 储层压力,MPa; 压力梯度(单位垂深内的储层压力增量) Gp—压力梯度(单位垂深内的储层压力增量), MPa/100m MPa/100m; H—煤层中心埋藏深度,m 煤层中心埋藏深度,
p′ p′
=h·Gw =h·
—视储层压力,MPa 储层压力, 0.98MPa/100m(咸水) 98MPa/100m 咸水)
3、溶解度的计算
根据以上的逸度及逸度因子的计算公式可导出: 根据以上的逸度及逸度因子的计算公式可导出:
f i φi p ci = = Hi Hi
假设地表温度为290 K,地温梯度为 ℃/100 m,静水压力梯度 假设地表温度为 ,地温梯度为3℃ , 取一值进行计算, 为1 MPa/100 m。从地表每 。从地表每100 m取一值进行计算,求取不同 取一值进行计算 埋深CO 溶解度,并计算其比值。 埋深 2与CH4溶解度,并计算其比值。
煤层气组成与性质解析PPT课件

1、 煤级
中国煤层气甲烷碳同位素组成
含煤时代
褐煤
δ13C1平均值,‰
长焰煤
气煤
肥煤
新生界古近系
-63.1/1 -49.2/6 -43.3/2 -47.7/2
中生界侏罗-白垩系
-57.3/1 -59.1/4 -56.2/2
上古生界石炭-二叠系 焦煤
瘦煤
-58.4/30 贫煤
56.2/27
无烟煤
-55.0/7 -55.3/2 -41.8/4 -36.7/7
0.069 12.07
第25页/共31页
临界温度
是指气相纯物质维持液相的最高温度,高于这 一温度,气体即不能用简单升高压力的办法(不降 低温度)使之转化为液体;
临界压力
是指气、液两相共存的最高压力,即在临界温 度时,气体凝析所需的压力。高于临界温度,无论 压力多大,气体不会液化;高于临界压力,不管温 度多少,液态和气态不能同时存在。
(3)瘦煤至无烟煤阶段
生气270~422m3/t,烃类气体占70%,其中CH4占绝对 优势(97~99%),几乎没有重烃。
第6页/共31页
不同煤类的产气量和吸附能力
煤类 褐煤 长焰煤 气煤 肥煤 焦煤 瘦煤 贫煤 无烟煤
产气量m3/t 38~68 138~168 182~212 199~230 240~270 257~287 295~330 346~422
4)煤成气具明显的姥鲛烷优势,姥鲛烷/植烷 (Pr/Ph )=0.68~11.6,其中绝大多数大于2.1, 而Ⅰ、Ⅱ型干酪根生成原油的Pr/Ph=1.43, 为姥植均势。
5)煤型(层)气的汞含量比油型气高,煤型气含汞8 万微克/m3,油型气7千微克/m3。
第15页/共31页
新技术 新工艺 新设备 新材料及岗位标准(采煤工)

教案附页时间教学过程(含教师的学习行为及学生的学习行为) 教学手段及教具2课时导语:近年来,我国煤炭开采与生产技术取得巨大的进步,减轻了煤矿工人的劳动强度,减少了各类事故的发生,提高了劳动生产率,增加了企业的经济效益;为煤矿安全生产形势的好转提供了坚强的保障,有力地促进了煤炭工业的发展,下面简单介绍几种采煤新技术;第一章、无人工作面第一节、无人工作面采煤:工人不出现在回采工作面内,而是在回采工作面以外的地点操作和控制机电设备,完成工作面内的各项工序;是一种先进、高效的回采工艺;第二节、煤锯无人工作面开采:主要用来开采厚度0.3—5m的围岩稳定的倾斜和急倾斜煤层,如果煤层有软或较软的夹层,且煤层节理裂隙发育更为有利;设备简单,大大减轻了工人的劳动强度;一、煤锯采煤及其装置:二、走向长壁煤锯无人工作面开采:三、倾向长壁煤锯无人工作面开采:四、对煤锯采煤的评价:第三节、螺旋钻机无人工作面开采:主要用来开采倾角15度、厚度5—1.5m的缓倾斜煤层;用人少,效益较好;第四节、刨煤机无人工作面开采:一、刮刨机刀柱式无人工作面开采:二、刮刨机—楔形支架无人工作面开采:三、刮刨机综合机组无人工作面开采:四、刨煤机液压支架综合机械化无人开采:第五节、综合机械化无人工作面开采:一、缓倾斜薄煤层短壁综合机械化无人工作面开采:二、倾斜煤层短壁综合机械化无人工作面开采:三、急倾斜煤层短壁综合机械化无人工作面开采:四、气垛支架长壁无人工作面开采:第二章、高产高效综采一次采全高采煤技术第一节、概述一、高产高效矿井的特点:1、矿井井型大型化:1)、产量大(日产1.0—1.5万t);2)、效率高(全员效率40—60t/工):3)、年产300--500万t,甚至更高;4)、井田范围逐渐增大:5)、外部条件均符合需要:2、开拓布置单一化:1)、在一个水平开采一个煤层;2)、沿煤层布置开拓大巷,沿大巷两侧布置条带工作面;3)一个高产高效工作面、一个掘进工作面和一套连续采煤机;3、煤炭生产集中化:1)、工作面长度一般在200m以上,走向长度不断加大;2)、上下巷采用大断面多巷式布置,一般为双巷或三巷,主要是满足通风和辅助运输的需要;3)、采煤机割煤方式多采用单向进刀方式;4、设备选型合理化:以生产能力和可靠性协调配套为主;1)、全套国产设备装备的高产工作面,其产量可稳定在7000t/d左右;2)、部分引进设备和部分国产设备装备的高产高效工作面,其产量可达到7000t—10000t/d,但引进设备的效能难以充分发挥,3)、引进的大功率、高可靠性的设备装备的高产高效工作面,其产量可达到10000t/d以上;5、培训管理科学化:6、工作面搬迁快速化:1)、美国使用无轨胶轮车实行“面到面”快速搬迁,一般只用5—7d,最高记录仅用46h;2)、我国搬迁一次停产25—30d,平均用工6500多个;7、巷道掘进联合机组化:美国、澳大利亚的矿井全部使用连续采煤机或掘锚联合机组开掘高产高效工作面平巷;8、房柱式开采边角煤:美国、澳大利亚等国的绝大多数高产高效矿井使用连续采煤机开采边角煤和回收煤柱,开采方法为房柱式;9、通风系统简单实用化:美国、澳大利亚等先进国家的高产高效综采工作面全部采用多巷进风和回风,既可满足综采工作面需要风量,同时,又降低风阻,有利于通风管理;二、国内高产高效矿井实例:大柳塔矿(600万t):第二节、高产高效综采工作面参数确定一、高产高效综采工作面平巷布置:一)、平巷数目及布置:1、单巷式布置:2、双巷式布置:1)、下侧双巷布置:2)、两侧双巷布置:3、多巷布置:二)、易燃煤层无煤柱开采平巷布置:三)、长—短—长工作面布置:二、高产高效工作面走向长度确定:三、高产高效综采工作面长度确定:四、采煤工艺:五、综采工作面设备快速搬迁:课后小结:无人工作面采煤,使工人摆脱了较危险的工作地点,把工人从繁重的体力劳动和恶劣的2课时工作环境中解放出来;且人员少,劳动生产率高,并能使一些用普通方法无法开采或很难开采的煤层得到开发,提高了资源利用程度;第三章、综采放顶煤技术第一节、放顶煤开采方法及综放工艺:一、放顶煤开采方法:1、按倾角划分:1)、a >35°,采用水平分段放顶煤;2)、a >25°,采用长壁放顶煤;2、按分层划分:1)、整层开采煤层全厚:厚度﹤10m--15 m,局部厚度可达20m;2)、煤层厚度>15 m时,分层放顶煤,每一分层厚度﹤10m--15 m;3)、当煤层厚度>8m时,具有高瓦斯或坚硬顶板时,预采顶分层;3、按设备分:1)、综放开采:(1)、常规装备放顶煤;(2)、轻放装备放顶煤;2)、简易放顶煤:(1)、整体支架、滑移支架、悬移支架;(2)、单体支柱、铰接顶梁、Ⅱ型梁;二、长壁综放采煤法的工艺类型:1、一次采全厚综采放顶煤;2、预采顶分层放层间顶煤综采放顶煤;3、倾斜分层综采放顶煤;第二节、综采放顶煤支架一、综采放顶煤支架类型:1、单输送机高位放顶煤支架;2、双输送机中位放顶煤支架;3、双输送机低位放顶煤支架;二、综采放顶煤支架的要求:1、支护强度与采场压力相适应;2、当顶煤厚度不大且破碎时,支架应全封闭支护顶板;3、确定合理的放煤步距,以选择放煤方式及支架尺寸;4、底板强度应保证工作面能及时移架;5、煤层倾角较大时,必须设有防倒、防滑装置;6、支架断面应满足通风需要;三、综采放顶煤支架的安全使用:1、操作使用:2、注意事项:第三节、综采放顶煤工作面安全出口支护一、两巷超前支护:二、端头支护:1、铰接顶梁配合单体液压支柱的支护形式:2、有过渡支架的端头支护:3、无过渡支架的端头支护:第四节、综采放顶煤工作面的采煤工艺:一、综放工作面的采煤工艺:1、单输送机放顶煤支架工作面的采煤工艺:“两采一放”完成一个循环;2、双输送机放顶煤支架工作面的采煤工艺:“一刀一放”完成一个循环:1)、割煤—推移前部输送机—移架—放顶煤—拉后部输送机;2)、割煤—移架—放顶煤—拉后部输送机—推移前部输送机:二、放顶煤工艺:1、有关规定:1)、放煤步距应根据相关因素为依据:2)、放煤方式应根据相关因素选择并通过实践来确定;3)、加强对放煤操作的管理;4)、大块煤卡住放煤口时,严禁用炸药爆破;第四章、煤层气开采技术第一节、国内外煤层气开发利用现状:一、国内外煤层气开发利用现状:一)、世界煤层气开发利用现状:二)、我国煤层气开发利用现状:二、我国煤层气开发的政策与法规:一)、国际社会对中国煤层气开发的援助:1、GEF项目:2、UNDP项目:3、USEPA项目:4、APEC项目:5、USDOE项目:二)、我国煤层气开发鼓励政策:三)、我国煤层气开发的相关法规:第二节、煤层气基础知识:一、煤成气、煤层气和瓦斯的概念:1、煤成气:2、煤层气:3、瓦斯:二、瓦斯在煤层中的赋存状态:基本形式:第三节、煤层气勘探:第四节、煤层气开发:井下抽放煤层气:1、井下抽放煤层气概述:2、抽放煤层气工程设计:3、井下抽放煤层气技术:4、抽放钻孔的施工与密封:5、煤层气抽放系统及设施:6、抽放煤层气的计量与检测:7、提高煤层气抽放率的方法:课后小结:通过这门功课的学习和了解,深刻感觉到煤矿开采技术的日新月异,发展得非常快,因此,作为一名煤矿采煤工人,必须掌握工作中所需要的各种新技术,以便适应工作环境,更好地干好本职工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q q immΣ
式中:Q — 吸附时释放出的热量;qimm某中 性液体中的浸润热; —固体的比表面积
煤的比表面积相当大,采用CO2做介质测得煤的比表面积大体为 50~200 cm2/g
表面能的差异性决定了煤对气体吸附能力的不同。表面能 越高,煤吸附气体的能力就越大。表面能的大小又受控于 煤的变质程度、煤体结构和组分等因素。 通常情况下,煤对煤层气的吸附属于快速、可逆的物理吸 附,是通过煤分子与气体分子之间的分子间作用力-van
der Waals力中的Debye诱导力、London色散力和静电引力
来实现的 ,并由此形成吸附势阱深度Ea(势垒)。自由 气体分子只有损失部分能量Ea才能停留在煤孔隙表面上,
因此煤对煤层气的吸附过程是一个放热过程。
煤具有对煤层气的吸附作用,其关键就在于煤表面具有一 定的表面能,具有把周围介质中的气体分子吸到表面上的 能力,主要表现在:
h3
h4 h5
-7.40674×102
2.18330×100 -2.20999×10-3
-5.46350×103
2.77573×10-1 -3.87416×10-3
s0
s1 s2 s3
1.19784×10-1
-7.17823×10-4 4.93854×10-6 -1.03826×10-8
1.64764×10-1
ZnRT
n=
M
—(mol 数)
所以:
pV =
ZMRT
表示气体压缩的另一种方法是等温压缩系数(Cg)法,即在一定温度下,随压力改变,气 体体积的变化率
Cg
nRTZ ,则 p
1 1 V p V p
因V
V T = nRT p
p
Z Z p p2
1 1 Z Cg p Z p
3.0
2.0
0.5
1.0
2.0
1. 1. 0 1
1.0
1 .5
1.3
1 .1
Φ
0.8 0.6 0.5 0.4 0.3
Tr
0. 6
1.3
1.5
0.8 0.6 0.5 0.4
1. 0
0 .8 0. 7
=0
0 .9
.5
0.3
0.98
0.2
0. 9 6
0. 9
0.2
0.1 0.2 0.3 0.4 0.6 0.8 1.0 2 Pr 3 4 5 6 8 10 20 30 40
i i (Tr , pr )
式中:Tr—气体的对比温度;pr—气体的对比压力
根据系统的温度和压力以及气体的临界温度和压力求得:
Tr T /Tc
界压力,MPa
pr p / pc
式中:T—系统的温度,K;p—系统的压力,MPa;Tc—气体临界温度,K;pc—气体的临
CH4和CO2的临界温度和临界压力
气体
临界温度(K) 临界压力(MPa)
CO2
304.3 7.38
CH4
190.7 4.64
30
1.0 0.9 0.8 0.7 0.6 0 0.1
Tr =0
2.0
.5
1.6 1.4 1.2 1.1 0.9 5 0 . 8 5 0 .9 0 0 .7 0 . 8 0 0.5 5 5 0. 60 0. 0. 7 65 0 0.4 0.3 0.2
(1)在煤表面的碳原子由于作用力不平衡,有向 煤体内部运动的趋势。这种趋势使其获得一种额 外的能量——表面能,从而吸附煤表面上的气体 分子。(2)从煤的有机结构方面分析,低中变质 程度煤中有机质的芳香结构层很少,且随机分布, 并由大量的含氧官能团、含氧桥和脂肪族侧键联 结和支撑,随着煤化程度的提高逐渐脱落为小分 子,如CH4、CO2、H2O等,结果使煤体本身的价键 和作用力发生不平衡,导致吸附作用的产生。
0.030 CO 2 ■ 0.025 ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
■
溶 解分数 (mol/mol)
0.020
■
0.015
■
■ 0.010 ■ 0.005 CH 4
0.000 0 500 1000 埋深(m) 1500 2000 2500
这表明整个地质环境下总是有利于 CO2的溶解运移分馏,且分馏强度与 煤层埋深存在如下关系:(1)当煤 层埋深小于800 m时,甲烷和二氧化 碳分馏效应在不断加强;(2)当煤 层埋深在800~1500 m时,二氧化碳 分馏效应随着埋藏深度增加而减弱; (3)当煤层埋深大于1500 m时,甲 烷和二氧化碳的分馏效应再次加强, 并且较浅部分馏效应要强。
I
II
III
IV
V
体积
压力
吸附等温线的五种类型
15 理论 含气 量14m 3/t 实际 含气 量13.7m /t
3
10
9.3m 3/t
临界解吸压力8.1MPa
5
R o =1.23% 6
0
2
4
8 压力 (MPa)
10
12
14
16
吸附等温线与煤层气产出、压力的关系
吸附等温线在煤层气 研究中的应用主要表 现在以下四个方面: ① 评价煤层对气体的 最大吸附能力,实测 值往往偏低; ② 预测生产过程中储 层压力降低时释放出 气体的最大值和释放 速率; ③ 确定临界解吸压力。 ④ 确定气饱和度。特 别是在气体处于未饱 和状态,即所含气体 量未达到最大吸附能 力时,这一测试相当 重要。
k s (T ) s j T j
j 0
5
式中:sj—相关系数,由实验获得
当气体溶于纯水时,亨利常数公式则可简化表示为:
H i h jT j
j 0
5
气体溶解度参数
系数 h0 h1 h2 CO2 7.83656×107 1.96025×106 8.20754×104 CH4 2.39893×109 8.71412×107 -1.115263×105
第四章 煤层气的赋 存状态
目前,关于煤层气在煤层中的赋存状态 比较一致的观点是煤层气在煤中有三种赋 存状态:以吸附态形式存在于煤层有机质 的微孔隙和微裂隙表面中,称为吸附气; 以游离态形式存在于煤层大中孔隙和大中 裂隙中,称为游离气;以及以溶解态形式 存在于煤层中的水里,称为水溶气。
Van Bergen等认为在煤层中煤层气有四种赋存状 态:(1)吸附在微孔隙中;(2)被包裹在煤基 质孔隙中;(3)游离在煤中割理和裂隙中;(4) 溶解在煤中的裂隙水中。 Crosdale等人认为在煤中煤层气的赋存状态也有 四种:(1)压缩在孔隙中的游离态气体;(2) 浓缩为固相或液相;(3)溶解在煤结构中;(4) 吸附在煤内表面上。 Collions提出的煤层气在煤层中存在的四种赋存 状态:煤层气在煤中处于平衡状态时,在煤孔隙 中由表面向外依次为孔隙表面的单分子吸附相、 类液态相、孔隙气态相和游离态相。
0.1
气体普遍化逸度因子图
二、气体亨利常数的计算
常温常压下,气体在纯水中溶解的亨利常数大多可以在各种 《化工手册》中查出 。 亨利常数表达为: H h jT j 10[ mk s (T )] i
j 0 5
式中:hj—相关系数,由实验获得 j—为 0 到 5 的整数;T—系统温度,K; m—盐的摩尔浓度,mol/kg; k s (T ) 为盐度相关系 数,其值可根据 下式求得:
第一节 溶解态
对天然气而言,在高压条件下甲烷在水中的溶解 度可达到数十m3(气)/m3(水) 。 通常用亨利定律描述煤层气在水中的溶解度,利 用气体逸度和亨利常数的不同可以更加合理地解 释气体在水中的溶解现象。
亨利定律最初表达式为 :
pi H i ci
式中:pi—气体组分 i 所受到的压力,MPa;Hi—气体组分 i 的亨利常数,MPa;ci—气体 组分 i 在溶剂中的摩尔分数,mol/mol
400
80 C 。 60 C ●● 120。C ● 矿化度 10306.63mg/L
。
300
● ● ●
200
●● ●
100
●● ● 泉280气(伴生气)
0 1 5 3 4 2 3 3 溶解度(m /m )
溶解度与压力的关系
① 煤层气在地层水中的溶解度随压力增加而 增大;② 图中曲线具上陡下缓的特征,表明 在低压条件下压力的变化对溶解度影响较大, 在高压条件下影响相对变小。
煤层气在地层水中的溶 解度随矿化度的升高而 降低,在低压条件下矿 化度影响较小,在高压 条件下则影响较大。例 如四川盆地泉36井气在 60 ℃、100 Pa时,矿化 度为l0000 mg/L和 57000 mg/L的溶解度分 别为1.65和1.16,两者 相差0.49。压力为400 Pa时,两者溶解度分别 为4.22和3.19,差值为 1.03,矿化度对溶解度 的影响更加明显
■ ■ ■
28
溶解度随埋深变化关系图
溶解度 比值 (CO 2 /CH 4)
26 24 22 20 18 16 14 12 10 8 0
■ ■
■ ■
■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ 1500 埋深(m) 2000 2500
二氧化碳与甲烷溶解度比率随埋深变化
500
1000
压力 1号样 /M Pa 5 22 36 1.162 3.898 4.530
2号样
3号样
4号样
● 2 ●
● ●
2.111 4.650 5.418
1.924 3.959 5.071
1.582 4.134 4.804
● 1 ● 0 60
● ● 80
● ●
● ●