自由度工业机器人结构

合集下载

三自由度圆柱坐标型工业机器人设计

三自由度圆柱坐标型工业机器人设计

三自由度圆柱坐标型工业机器人设计引言工业机器人在现代制造业中起着至关重要的作用。

圆柱坐标型工业机器人是一种具有三个自由度的机器人,它可以在三维空间内进行精确的定位和操作。

本文将着重讨论三自由度圆柱坐标型工业机器人的设计原理和关键技术。

一、设计原理三自由度圆柱坐标型工业机器人的设计原理基于坐标变换。

它由一个立柱状的垂直轴和一个平行于地面的基座组成。

机器人的主要部件包括立柱、支撑臂、关节和末端执行器。

机器人的立柱可以在垂直方向上运动,提供Z轴位移。

支撑臂位于立柱的顶部,可以绕水平方向的Y轴旋转,提供Y轴位移。

末端执行器连接在支撑臂的末端,可以绕垂直方向的Z轴旋转,提供X轴位移。

二、关键技术1.位置传感器:为了实现精确的定位和操作,对机器人的运动进行准确的测量是必不可少的。

位置传感器可以用来测量机器人各个关节的角度以及末端执行器的位置信息。

2.逆运动学:逆运动学是指通过末端执行器的位置和姿态计算出机器人各个关节的角度。

通过逆运动学算法,可以实现机器人在三维空间内的精确定位。

3.控制系统:控制系统是三自由度圆柱坐标型工业机器人的核心。

它接收来自传感器的反馈信息,计算机器人的位姿,并输出相应的指令控制机器人的运动。

控制系统需要具备实时性和稳定性,以确保机器人的运动精度和安全性。

4.动力学分析:动力学分析可以帮助我们理解机器人在运动过程中的力学特性。

通过动力学分析,可以确定机器人在给定任务下所需的扭矩和力,并进行相应的力矩配平和选型。

三、设计步骤1.确定任务需求:在开始机器人设计之前,首先需要明确机器人所要完成的任务和工作环境。

2.选择结构参数:根据任务需求和工作环境,选择机器人的结构参数,包括立柱高度、支撑臂长度和末端执行器负载能力等。

3.逆运动学分析:根据机器人的结构参数和任务需求,进行逆运动学分析,得到机器人各个关节的角度和末端执行器的位姿。

4.控制系统设计:设计机器人的控制系统,选择合适的控制算法和硬件设备,实现机器人的运动控制和姿态调整。

工业机器人自由度一般有几个,自由度越多越好吗-

工业机器人自由度一般有几个,自由度越多越好吗-

工业机器人自由度一般有几个,自由度越多
越好吗?
机器人机构能够独立运动的关节数目,称为机器人机构的运动自由度,简称自由度。

通常自由度作为机器人的技术指标,能反映机器人动作的灵活性,可用轴的直线移动、摆动或旋转动作的数目来表示。

目前工业机器人采用的控制方法是把机械臂上每一个关节都当作一个单独的伺服机构,即每个轴对应一个伺服器,每个伺服器通过总线控制,由控制器统一控制并协调工作。

工业机器人具备自动控制及可再编程、多用途功能,机器人操作机具有三个或三个以上的可编程轴,在工业自动化应用中,机器人的底座可固定也可移动,可见工业机器人的轴数是其重要技术指标。

工业机器人自由度一般有几个?大多数工业机器人有3~6个运动自由度,其中腕部通常有1~3个运动自由度;驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作;控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。

机器人自由度越多越好吗?一般情况下,机器人的自由度越多,就越接近人手的动作技能,通用性也就越好,但自由度越多,其结构就会更加的复杂,那么对机器人的整体要求就越高,在设计和制造方面就越困难。

虽然随着轴数也就是自由度的增加,机器人的灵活性也随之增长,但在目前的工业应用中,用的较多的也就是三轴、四轴、五轴双臂和六轴的工业机器人,轴数的选择通常取决于具体应用。

这是因为在更加具体的行业应用中,往往并不需机器人具备很高的灵活性,而三轴、四轴机器人具有更高的成本效益,并且在速度上也具有更大的优势。

毕业设计四自由度机器人

毕业设计四自由度机器人

毕业设计四自由度机器人毕业设计题目:四自由度机器人的设计与控制一、引言四自由度机器人是一种常见的工业机器人,其基础结构包括底座、臂部、腕部和末端执行器。

在工业生产线上,四自由度机器人广泛应用于装配、焊接、喷涂等需要精确操作的工艺环节。

本篇毕业设计论文将对四自由度机器人的设计与控制进行研究和分析。

二、机器人的设计1.结构设计:为了实现机器人的灵活和精确操作,我们将设计一个四自由度机器人。

该机器人的结构由底座、臂部、腕部和末端执行器组成。

底座提供了机器人的稳定性和机动性,臂部负责机器人进行大范围的空间运动,腕部通过关节连接臂部和末端执行器,末端执行器完成具体的操作任务。

2.运动学设计:机器人的运动学设计是机器人设计中的重要一环。

我们将采用世界坐标系和本体坐标系的方法,建立逆运动学模型和正运动学模型,以实现机器人的运动控制。

具体设计中,我们将采用符号法推导机器人的运动学方程,通过求解并进行数值模拟验证,实现机器人的精确运动。

三、机器人的控制1.控制系统设计:机器人的控制系统是实现机器人精确操作的核心。

我们将采用开环控制和闭环控制相结合的方法,设计机器人的控制系统。

开环控制系统通过预设关节角度实现机器人的运动,闭环控制系统通过传感器反馈实时监控机器人的运动,并进行误差修正,实现机器人的精确操作。

2.控制算法设计:我们将采用PID控制算法对机器人进行控制。

PID控制算法具有稳定性好、计算简单等优点,适用于工业机器人的控制。

我们将根据机器人的运动学特性,根据机器人的误差信号设计合适的PID参数,以优化机器人的运动轨迹和操作精度。

3.编程与仿真设计:为了验证机器人的设计和控制系统的有效性,我们将使用MATLAB和Simulink进行编程和仿真设计。

通过编写机器人运动学模型和控制算法的代码,并在Simulink中搭建机器人的控制系统,实现机器人精确操作的仿真。

四、总结本篇毕业设计论文对四自由度机器人的设计与控制进行了研究和分析。

三个自由度工业机器人

三个自由度工业机器人

工业机器人课程作业报告院(系)名称:机电工程学院作业题目:三自由度圆柱坐标工业机器人班级:姓名:学号:目录1.作业要求 (3)1.1作业目的 (3)1.2作业数据 (3)1.3运动功能图符号(本次作业圆柱坐标型) (3)2.总体设计 (4)2.1组成和关系 (4)2.2设计分析 (4)3.机械系统的设计 (5)3.1末端执行机构设计 (5)3.2手臂机构的设计 (6)3.3机座机构的设计 (7)4.附件 (8)4.1总装图 (8)1.作业要求1.1作业目的1:综合运用所学只是,搜集有关资料,独立完成三自由度圆柱坐标工业机器人操作机和驱动但愿的设计工作。

如驱动元、传动机构、腰身、手臂、手腕、手抓、关节、抓钳尺寸、开合力大小等,至少设计两种以上方案。

(注意:此处无需考虑传感器,控制部分和力学计算)1.2作业数据1:自动线上A、B两条输送带之间距离为1.5米,需设计工业机器人将一个零件从A带送到B带。

2:零件尺寸:内孔Φ100、壁厚10、高100。

3:零件材料:45钢1.3运动功能图符号(本次作业圆柱坐标型)表1-1 运动功能图符号(GB/T12643-90)2.总体设计2.1组成和关系工业机器人在GB/T12643-90定义为“是一种能自动控制、可重复编程、多功能、多自由度的操作机,能搬运材料、工件或操持工具,用以完成各种作业”由执行系统、驱动系统、控制检测系统及检测系统组成。

a)机械系统:是执行完成抓取工件,实现抓取动作的必需的机构。

内容保函如下:手部(末端执行器):直接抓取工件或夹具机构。

臂部:支承腕部的机构,作用是承受工件的负荷,并把它传递到预定的位置。

腕部:连接手部和臂部的机构,作用为调整及改变手部的动作。

机座:是机器人的基础部件支承手臂的部件,并承受相应的载荷,作用是带动臂部转动、升降动作。

b)驱动系统:为执行系统提供动力。

常用传动方式有机械传动、液压传动、气压传动和电传动。

c)控制系统:控制驱动系统,使执行系统按照产品的要求以及抓取的工件要求进行相应的动作,当发生系统错误或执行故障时发出提示报警信号。

六自由度机器人结构设计

六自由度机器人结构设计

六自由度机器人结构设计六自由度机器人是一种具有六个独立自由度的机器人系统,允许其在六个不同的方向上进行平移和旋转运动。

这种机器人系统被广泛应用于工业自动化、医疗、航天航空等领域。

在设计六自由度机器人结构时,需要考虑机器人的运动灵活性、精度和稳定性等因素。

本文将探讨六自由度机器人的结构设计。

1.机械结构设计六自由度机器人的机械结构设计是其最基本的设计要素之一、一般而言,六自由度机器人由底座、连接杆、关节和末端执行器等部分组成。

在设计机械结构时,需要考虑机器人的工作空间要求、重量和刚度等因素。

一种常见的结构设计是将机器人分为两个连杆外部结构和四个内部关节连杆结构,以实现较高的精度和稳定性。

2.关节传动系统设计关节传动系统是六自由度机器人结构中的核心组成部分。

六自由度机器人通常使用直流电动机或步进电动机作为驱动器。

在选择驱动器时,需要考虑其扭矩、精度和响应速度等因素。

同时,传动系统也需要选择合适的减速器、链条或齿轮传动等机械传动装置来实现关节的运动。

3.传感器系统设计传感器系统是六自由度机器人结构中的关键部分,用于实现机器人对外部环境和自身状态的感知。

常用的传感器包括编码器、力/力矩传感器、视觉传感器等。

编码器可用于测量关节的位置和速度,力/力矩传感器用于感知机器人对外部环境的力或力矩作用,视觉传感器用于感知机器人周围的物体和环境。

传感器系统设计需要考虑传感器的精度、可靠性和与其他系统的配合等因素。

4.控制系统设计控制系统设计是六自由度机器人的关键环节,用于实现机器人的运动控制和路径规划。

控制系统通常采用计算机或嵌入式系统来实现。

在控制系统设计时,需要考虑机器人的动力学和运动学模型,以及相应的控制算法和控制器设计。

常见的控制算法包括PID控制算法、模糊控制算法和神经网络控制算法等。

5.安全系统设计安全系统设计是六自由度机器人结构设计的重要组成部分,用于保证机器人的运行安全。

安全系统设计包括安全门、急停按钮、碰撞检测装置等。

三自由度圆柱坐标工业机器人详解

三自由度圆柱坐标工业机器人详解

三自由度圆柱坐标型工业机器人设计学院:机电工程学院班级:姓名:学号:1.末端执行机构设计采用内撑连杆杠杆式夹持器,用小型液压缸驱动夹紧,它的结构形式如图。

内撑连杆杠杆式夹持器采用四连杆机构传递撑紧力,即当液压缸1工作时,推动推杆2向下运动,使两钳爪3向外撑开,从而带动弹性爪4夹紧工件。

该种夹持器多用于内孔薄壁零件的夹持。

2.弹性爪的结构设计:这种结构是在手爪外侧用螺钉固定弹性片两端。

当弹性手工作时,由于夹紧过程具有弹性,就可避免易损零件被抓伤、变形和破损。

3.手臂机构的设计本设计中手臂由滚珠丝杠驱动实现上下运动,结构简单,装拆方便,还设计有两根导柱导向,以防止手臂在滚珠丝杠上转动,确保手臂随机座一起转动。

它的结构如下图。

选用轴向脚架型液压缸,活塞杆末端为外螺纹结构,手臂与末端执行器连同活塞杆一起转动。

4.腰部和基座设计1——支座,2——步进电机,3——谐波齿轮,4——转动机座5——支承槽钢梁,6——滚珠丝杠,7——导向柱,8——锥环无键联轴器通过安装在支座上的步进电机和谐波齿轮直接驱动转动壳体转动,从而实现机器人的旋转运动;通过安装在顶部的步进电机和联轴器带动滚珠丝杠转动实现手臂的上下移动。

采用双导柱导向,防止手臂在滚珠丝杠上转动,确保手臂随机座一起转动。

支撑梁采用槽钢,以减轻重量和节省材料,它的结构如上图。

5.驱动方式的选择由上表知步进电机应用于驱动工业机器人有着许多无可替代的优点,如控制性能好,可精确定位,体积较小可用于程序复杂和运动轨迹要求严格的小型通用机械手等,所以本设计采用它来实现机器人的旋转和上下移动。

选电机为BF反应式步进电机,型号为:90BF001。

由上表知,液压驱动方式反应灵敏,可实现连续轨迹控制,液体压力高,可获得较大的输出力,因此机器人的伸缩运动采用液压驱动方式来实现,从而使机器人容易找准工件。

它的型号为Y-HG1-C50/28×100LJ1HL1Q,它的主要技术参数如下表6.工业机器人的计算机控制系统概述工业机器人具有多个自由度,每个自由度一般包括一个伺服机构,它们必须协调起来,组成一个多变量控制系统。

六自由度机器人结构设计

六自由度机器人结构设计

六自由度机器人结构设计
六自由度机器人是一种常见的机器人结构,它具有六个自由度,可以在三维空间中进行复杂的运动和操作。

这种机器人结构设计广泛应用于工业生产线、医疗机器人、危险环境处理等领域。

在本文中,将详细介绍六自由度机器人的结构设计及其相关内容。

首先,六自由度机器人的结构设计包括机身结构、关节结构和执行器结构三个方面。

机身结构方面,需要考虑机器人的整体刚度和轻量化设计。

一般采用铝合金或碳纤维等轻质材料制作机身结构,以提高机器人的运动速度和机械臂的载荷能力。

同时,采用模块化设计,使得机身结构可以方便更换和维修。

关节结构方面,关节是机器人运动的关键部件。

六自由度机器人通常采用旋转关节和直线推动关节的组合形式。

旋转关节通过电机驱动实现机械臂的旋转运动,而直线推动关节通过气动或液压系统实现机械臂的伸缩运动。

关节结构的设计需要考虑机械臂的运动范围、精度和承载能力等因素,以满足机器人的工作需求。

除了以上三个方面的设计,还需考虑机器人的运动控制和感知系统等方面。

在六自由度机器人的运动控制方面,通常采用闭环反馈控制系统,通过编码器或传感器等装置实时监测机械臂的位置和姿态,并根据设定的轨迹和工作要求进行控制。

感知系统方面,采用视觉、力觉或力矩感知等技术,使机器人能够感知周围环境和物体特征,实现精确的位置和力量控制。

四自由度工业机器人的本体结构设计和建模

四自由度工业机器人的本体结构设计和建模

立柱作升降运动, 获得较大的升降行程。升降过程由 电动机带动螺柱旋转, 与螺柱配合的手臂完成上下往 复的升降运动。 手臂的回转由电动机带动减速器轴上 的齿轮旋转 , 从而带动了机身的旋转 , 满足运动的四 个 自由度要求。.手部的结构设计。 I I 由于所上的物料 属于小回转体 , 手部在工作时, 应具有适 当的夹紧力 和合理设计手部的开闭角度, 以保证夹持稳定可 , 靠 变形小 , 且不损坏工件的已加工表面。因此采用最常 用的外卡式两指钳爪,夹紧方式用常闭式弹簧夹紧, 松开时, 用单作用式液压缸。l 2腕部的结构设汁。腕 部是联结手部和臂部的部件, 腕部运动主要用来改变 被夹物体的方位, 腕部具有回转这一个 自由度, 可采 用具有 —个 自由度的 回转缸驱动 的腕部结构 。1 手 - 3 臂的结构设计。 手臂是机械手的主要执行部件。 它的 作用是支撑腕部和手部, 并带动它们在空间运动。为 使机器人的运动精准, 在设计手臂的 结构时必须选择 合适的导向装置和定位方式。A I 升降机构的 计 螺 设 。 杆是机械手的主支承件, 并传动使手臂上下运动。 2基于Sl w rs oi ok 的机器人的建模。Sl wrs d od ok i 模型由零件, 装配体和工程图等文件组成, D, 由2 3 D 草图直接生成 3 D模形和工程图时, 如果修改了草图 的标注尺寸, 3 其 D模形和工程图会同步更新; 相反, 如果修改了工程图的标注尺寸, 3 其 D模形和草图也 会同 步更新。 软件使用起来非常方便, 大大减少了 设 计人员的工作量, 提高了工作效率。利用该软件实现 了该四自由度机器人的建模。

31 —
科 技论 坛 ff f
段成燕 王 金 王东胜 刘 喜平 刘 春香

四 自由度工业机器人 的本体结构设计和建模
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1工业机器人的发展过程及其应用
20世纪50年代是工业机器人的萌芽时期,1954年美国戴沃尔发表了“通用重复
型机器人”的专利论文,第一次提出了“工业机器人”的概念。1958 年美国联合控制公司研制出第一台数控工业机器人原型。1959 年美国 UNIMATION 公司推出第一台工业机器人。美国是机器人的故乡。
20世纪80年代工业机器人进入普及时代,汽车、电子等行业开始大量使用工业机器人,推动了机器人产业的发展。工业机器人的应用满足了人们特性化的要求,产品的批量越来越大,品种越来越多,而且产品的一致性也大大提高,为商家占有了更多的市场份额,获得了更多的市场利润。
20世纪90年代初期,工业机器人的生产与需求达到了一个高峰期。1990年世界上新装备工业机器人80943台,1991年装备了76443台,到1991年底世界上己有53万台工业机器人工作在各条战线上[1]~[5]。
1.2工业机器人研究的现状与意义
机器人涉及到机械、电子、控制、计算机、人工智能、传感器、通讯与网络等多个学科和领域,是多种高新技术发展成果的综合集成。因此它的发展与上述学科发展密切相关。机器人在制造业的应用范围越来越广阔,其标准化、模块化、网络化和智能化的程度也越来越高,功能越来越强,并向着成套技术和装备的方向发展。机器人应用从传统制造业向非制造业转变,向以人为中心的个人化和微小型方向发展,并将服务于人类活动的各个领域。总趋势是从狭义的机器人概念向广义的机器人技术(RT) 概念转移;从工业机器人产业向解决工程应用方案业务的机器人技术产业发展。机器人技术(RT)的内涵已变为“灵活应用机器人技术的、具有实在动作功能的智能化系统。”目前,工业机器人技术正在向智能机器和智能系统的方向发展,其发展趋势主要为:结构的模块化和可重构化;控制技术的开放化、PC 化和网络化;伺服驱动技术的数字化和分散化;多传感器融合技术的实用化;工作环境设计的优化和作业的柔性化以及系统的网络化和智能化等方面。
目前工业机器人主要应用于制造业中,特别是电器制造、汽车制造、塑料加工、金属加工以及金属制品业等。在日、美、西欧等一些工业发达的国家中,工业机器人得到越来越广泛的应用。随着生产的发展,机器人功能和性能的不断改善和提高,机器人的应用领域日益扩大,其应用范围已不限于制造业,还用于农业、林业、交通运 输业、原子能工业、医疗、福利事业、海洋和太空的开发事业中。
现代科学技术的迅速发展,尤其是进入20世纪80年代以来,机器人技术的进步与其在各个领域的广泛应用,引起了各国专家学者的普遍关注。许多发达国家均把机器人技术的开发、研究列入国家高新技术发展计划。世界各国普遍在高等院校为大学本科生及研究生开设了介绍机器人技术的有关课程。为了培养机器人开发、设计、生产、维护方面的人才,我国很多高校也为本科生和研究生开设了机器人学课程。
在工业领域广泛应用着工业机器人。我国科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器”。一个典型的机器人系统由本体、关节伺服驱动系统、计算机控制系统、传感系统、通讯接口等几部分组成。一般多自由度串联机器人具有4~6个自由度,其中2~3个自由度决定了末端执行器在空间的位置,其余2~3个自由度决定了末端执行器在空间的姿态。本文设计的机器人具有三个自由度,也就是机器人的整个手臂部分,来决定了末端执行器在空间的位置。
我国的工业机器人发展的历史已经有20多年,从“七五”科技攻关开始,正式列入国家计划,在国家的组织和支持下,通过“七五”、“八五”科技攻关,不仅在机器人的基础理论和关键技术方面取得重大突破,而且在工业机器人整机方面,己经陆续掌握了喷漆、弧焊、点焊、装配和搬运等不同用途、典型的工业机器人整机技术,并成功的应用于生产,掌握了相关的应用工程知识。但总的看来,我国的工业机器人 技术及其工程应用的水平和国外的相比还有一定的距离。我国目前大约有 4000台工业机器人,其中仅有1/5是国产的,其余的则是从40多个国外厂商进口的机器人。总之,各种各样机器人的出现和应用是人类走向文明和发展的一个巨大进步和标志,在未来社会中,机器人的广泛应用和发展是一个必然的发展趋势。相信在不远的将来,机器人技术将一定能够为人类带来更多的方便,为人类的文明和发展带来更大的机会。
随着科学和技术的不断发展,在过去的几个世纪里,人类在许多方面都取得了重大的进展。机器人技术作为人类最伟大的发明之一,自20世纪60年代初问世以来,经历了短短的40年,已取得长足的进步。工业机器人在经历了诞生、成长、成熟期后,已成为制造业中必不可少的核心装备,而且工业机器人不仅在工厂里成了工人必不可少的伙伴,而且正在以惊人的速度向航空航天、军事、服务、娱乐等人类生活的各个领域渗透。据联合国经济委员会和国际机器人联合会去年关于世界机器人的报 告,仅2003年新投入使用的机器人接近10万个,使世界目前使用的机器人总数超过75万。世界使用机器人最多的国家是日本,约38 .9万;其次为德国(9.1万)、美国 (9万)、意大利(3.9万)、韩国(3.8万)、法国(2.1万)、西班牙(1.3万)和英国(1.2 万),并且报告估计2004年,全世界使用的机器人总数将超过100万。
20世纪60年代随着传感技术和工业自动化的发展,工Байду номын сангаас机器人进入发展期,机器人开始向适用化发展,并被用于电焊和喷涂作业。20世纪70年代随着计算机和人工智能的发展,机器人进入适用化时代。日本虽起步较晚,但结合国情,面向中小企业,采取了一系列鼓励使用机器人的措施。其机器人拥有量很快超过了美国,一举成为“机器人王国”。
五自由度工业机器人结构设计
1
工业机器人,一般指的是在工厂车间环境中,配合自动化生产的需要,代替人来完成材料或零件的搬运、加工、装配等操作的一种机器人。国际标准化组织(ISO)在 对工业机器人所下的定义是“机器人是一种自动的、位置可控的、具有编程能力的多功能机械手,这种机械手具有几个轴,能借助于可编程序操作来处理各种材料、零件、工具和专用设备,以执行种种任务” 。
相关文档
最新文档