混合粒子群算法(基于自然选择)
粒子群算法以及应用原理

粒子群算法介绍优化问题是工业设计中经常遇到的问题,许多问题最后都可以归结为优化问题. 为了解决各种各样的优化问题,人们提出了许多优化算法,比较著名的有爬山法、遗传算法等.优化问题有两个主要问题:一是要求寻找全局最小点,二是要求有较高的收敛速度. 爬山法精度较高,但是易于陷入局部极小. 遗传算法属于进化算法( Evolutionary Algorithms) 的一种,它通过模仿自然界的选择与遗传的机理来寻找最优解. 遗传算法有三个基本算子:选择、交叉和变异. 但是遗传算法的编程实现比较复杂,首先需要对问题进行编码,找到最优解之后还需要对问题进行解码,另外三个算子的实现也有许多参数,如交叉率和变异率,并且这些参数的选择严重影响解的品质,而目前这些参数的选择大部分是依靠经验.1995 年Eberhart 博士和kennedy 博士提出了一种新的算法;粒子群优化(Partical Swarm Optimization -PSO) 算法 . 这种算法以其实现容易、精度高、收敛快等优点引起了学术界的重视,并且在解决实际问题中展示了其优越性.粒子群优化(Partical Swarm Optimization - PSO) 算法是近年来发展起来的一种新的进化算法( Evolu2tionary Algorithm - EA) .PSO 算法属于进化算法的一种,和遗传算法相似,它也是从随机解出发,通过迭代寻找最优解,它也是通过适应度来评价解的品质. 但是它比遗传算法规则更为简单,它没有遗传算法的“交叉”(Crossover) 和“变异”(Mutation) 操作. 它通过追随当前搜索到的最优值来寻找全局最优 .粒子群算法1. 引言粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),有Eberhart博士和kennedy博士发明。
源于对鸟群捕食的行为研究PSO同遗传算法类似,是一种基于叠代的优化工具。
基于改进蝙蝠算法的混合整数规划问题

基于改进蝙蝠算法的混合整数规划问题
赵乃刚;李勇
【期刊名称】《微电子学与计算机》
【年(卷),期】2017(34)6
【摘要】针对非线性混合整数规划问题,提出了一种改进的蝙蝠算法.构造出一种自适应调整的局部搜索步长,同时对整数变量采用单位步长搜索,以此逐步提高蝙蝠算法的局部开发能力;引入自然选择原理,平衡改进蝙蝠算法的全局搜索能力;初始一个可行解,保证算法的正确搜索方向.通过13个常见的测试函数测试结果表明,改进的蝙蝠算法对求解非线性混合整数规划问题,在成功率和精度方面都不亚于改进的粒子群算法.
【总页数】5页(P94-98)
【关键词】蝙蝠算法;非线性混合整数规划;自适应搜索步长;自然选择
【作者】赵乃刚;李勇
【作者单位】山西大同大学数学与计算机科学学院
【正文语种】中文
【中图分类】TP18
【相关文献】
1.基于改进果蝇算法求解混合整数非线性规划问题 [J], 朱志同;赵阳;李炜;郭星
2.混合整数非线性规划问题的改进差分进化算法 [J], 邓长寿;任红卫;彭虎
3.*1非线性混合整数规划问题的改进量子粒子群算法 [J], 张甲江;高岳林;高晨阳
4.求解一般整数规划问题的改进蝙蝠算法 [J], 马祥丽;张惠珍;马良
5.双层过道布置问题的混合整数非线性规划模型及两阶段改进模拟退火算法 [J], 管超;张则强;朱立夏;毛丽丽
因版权原因,仅展示原文概要,查看原文内容请购买。
求解0_1整数规划的混合粒子群优化算法_薛峰

0- 1 整数规划问题的数学模型为 min f ( x 1 , x 2 , ,, x n ) ,
收稿日期: 2011- 02- 22
基金项目: / 青蓝工程0 资助( 苏教师( 2010) 27 号) ; 江苏省高校自然科学基础研究课题( 08K JB520003) 作者简 介: 薛 峰( 1957 ) ) , 男, 四川 人, 高 级 实验 师, 研 究方 向: 计 算 机网 络系 统集 成( E - mail: gao_ shang @ h otm ail. com ) ; 陈 刚
第 30 卷第 1 期 20 11 年 3月
计算 技术与自动化 Co mputing T echnolog y and A utomation
文章编号: 1003- 6199( 2011) 01- 0086- 04
V ol1 30, N o1 1 Mar. 2 0 1 1
求解 0- 1 整数规划的混合粒子群优化算法
( 2) 将 old1 的 j1 , j2 , ,, jk 的位置数值由 o ld2 相应的部分代替。
具体变异操作可以采用下面三种
1) 变异策略 A : ( 1) 在解空间( x 1 , x 2 , ,, x n ) T 中随机选择 一块区域, 如( x i , x i+ 1 , ,, x j ) T ; ( 2) ( x i , x i+ 1 , ,, x j ) T ¬ (xi , x i+ 1 , ,, xj ) T 。 / / 取反运算
薛 峰, 陈 刚, 高 尚
( 江苏科技大学 计算机科学与工程学院, 江苏 镇江 212003)
摘 要: 经典的粒子群是一个有效的寻找连续函数 极值的方 法, 结合 遗传算法 的思想提 出的混 合粒子
基于高斯扰动和自然选择的改进粒子群优化算法

基于高斯扰动和自然选择的改进粒子群优化算法作者:艾兵董明刚来源:《计算机应用》2016年第03期摘要:为了有效地平衡粒子群算法的全局与局部搜索性能,提出一种基于高斯扰动和自然选择的改进粒子群优化算法。
该算法在采用简化粒子群优化算法的基础上,考虑到个体最优粒子间的相互影响,使用所有融入高斯扰动的个体最优的平均值代替每个粒子的个体最优值,并且借鉴自然选择中适者生存的进化机制提高算法优化性能;同时通过含有惯性权重停止阈值的自适应调节余弦函数递减策略来实现对惯性权重的非线性调整并采用异步变化调整策略来改善粒子的学习能力。
仿真实验结果表明,所提算法在收敛速度和精度等方面均有提高,寻优性能优于近期文献中的几种改进的粒子群优化算法。
关键词:粒子群优化;高斯扰动;自然选择;惯性权重;异步变化中图分类号: TP18 文献标志码:A0引言粒子群优化(Particle Swarm Optimization, PSO)算法是由Kennedy和Eberhart提出的一种新的基于群体智能的随机搜索策略的优化算法,其思想源于鸟群觅食行为规律的研究,粒子群中每个粒子通过对自己及群体所处在的最优值的跟踪并动态调整自己的前进速度和方向从而实现个体在可解空间中的寻优[1-3]。
由于PSO算法具有简单易实现、效率高且调整参数少的特点,在函数优化及工程等领域都得到了广泛的应用。
但大量的研究表明标准PSO算法存在许多不足和缺陷,比如在寻优过程中易出现早熟收敛,难以跳出局部极值点。
针对上述情况,大多数研究者对其进行了大量改进。
比如文献[4]在算法中引入高斯学习机制、随机反向学习以及历史最优平均值,提出了一种高斯反向粒子群优化算法(Particle Swarm Optimization Algorithm with Gaussian Opposition based Learning, GOLPSO)。
文献[5]通过利用高斯函数的分布性、局部性等特点,对惯性权重进行非线性调整,提出一种基于高斯函数递减惯性权重的粒子群优化算法(Particle Swarm Optimization Algorithms with Decreasing Inertia Weight based on Gaussian Function)。
遗传粒子群优化算法混合

遗传粒子群优化算法混合遗传算法(Genetic Algorithm,GA)和粒子群优化算法(Particle Swarm Optimization,PSO)是两种常见的进化优化算法,它们各自有着优点和不足。
为了充分发挥它们的优势并弥补其不足之处,研究者们对这两种算法进行了混合。
本文将详细介绍遗传粒子群优化算法混合的相关内容。
首先,我们来了解一下遗传算法和粒子群优化算法的原理和特点。
遗传算法是一种模拟生物进化过程的优化算法,其基本思想是通过生物进化中的遗传、变异和选择等算子来最优解。
遗传算法通常由编码、适应度评价、选择、交叉和变异等步骤组成。
编码将待优化问题的解表示为染色体,适应度评价函数用于度量染色体的优劣,选择算子根据适应度选择个体进行繁殖,交叉算子和变异算子模拟生物的遗传和变异操作。
粒子群优化算法是一种模拟鸟群觅食行为的优化算法,其基本思想是通过多个粒子在解空间中的和迭代来找到最优解。
每个粒子都有自己的位置和速度,通过更新速度和位置来不断调整方向和距离。
粒子群优化算法主要包括初始化粒子群、更新速度和位置、更新最优个体和全局最优个体等步骤。
遗传粒子群优化算法混合的基本思想是将粒子群优化算法的能力和遗传算法的全局优化能力结合起来,形成一种新的混合优化算法。
具体来说,在遗传算法的基础上引入粒子群优化算法的思想和操作,使得算法能够更好地在空间中寻找到全局最优解。
将遗传算法和粒子群优化算法进行混合有以下几种常见的方式:1.遗传算法与粒子群优化算法交替使用:先使用遗传算法进行初始化种群和进行交叉变异操作,然后再使用粒子群优化算法进行和更新操作。
通过交替使用这两种算法,可以综合利用它们的优点,提高算法的效率和精度。
2.遗传算子和粒子群优化算法算子的融合:将遗传算法和粒子群优化算法的算子进行融合,形成一种新的算子。
例如,可以将遗传算法的交叉操作与粒子群优化算法的速度更新操作相结合,形成一种新的交叉操作方式;或者将遗传算法的变异操作与粒子群优化算法的位置更新操作相结合,形成一种新的变异操作方式。
混合粒子群算法

混合粒子群算法
混合粒子群算法(Mixed Particle Swarm Optimization,MPSO)是一种基于粒子群优化算法和遗传算法的混合模型。
它采用了粒子群优化算法中的速度和位置更新策略,并结合遗传算法的交叉和变异操作来提高算法的搜索能力和收敛速度。
MPSO算法的基本步骤包括:
1. 初始化算法参数,包括粒子群大小、遗传算法参数等;
2. 随机生成初始粒子群,并初始化粒子的位置和速度;
3. 根据粒子的位置和适应度函数计算粒子的适应度值;
4. 根据适应度值更新全局最优解和个体最优解;
5. 根据全局最优解和个体最优解,更新粒子的速度和位置;
6. 针对当前粒子群的一部分个体,采用遗传算法的交叉和变异操作进行优化;
7. 判断停止条件是否满足,若满足则输出当前最优解,否则返回步骤3。
MPSO算法相较于传统粒子群算法具有更强的全局搜索能力和局部搜索能力,适用于复杂多峰函数的优化问题。
粒子群算法介绍

1.介绍:粒子群算法(Particle Swarm Optimization, PSO)最早是由Eberhart 和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。
设想这样一个场景:一群鸟在随机搜寻食物,在这个区域里只有一块食物,所有的鸟都不知道食物在哪里,但是它们知道当前的位置离食物还有多远。
那么找到食物的最优策略是什么呢?最简单有效的就是搜寻目前离食物最近的鸟的周围区域。
经过实践证明:全局版本的粒子群算法收敛速度快,但是容易陷入局部最优。
局部版本的粒子群算法收敛速度慢,但是很难陷入局部最优。
现在的粒子群算法大都在收敛速度与摆脱局部最优这两个方面下功夫。
其实这两个方面是矛盾的。
看如何更好的折中了。
粒子群算法主要分为4个大的分支:(1)标准粒子群算法的变形在这个分支中,主要是对标准粒子群算法的惯性因子、收敛因子(约束因子)、“认知”部分的c1,“社会”部分的c2进行变化与调节,希望获得好的效果。
惯性因子的原始版本是保持不变的,后来有人提出随着算法迭代的进行,惯性因子需要逐渐减小的思想。
算法开始阶段,大的惯性因子可以是算法不容易陷入局部最优,到算法的后期,小的惯性因子可以使收敛速度加快,使收敛更加平稳,不至于出现振荡现象。
经过本人测试,动态的减小惯性因子w,的确可以使算法更加稳定,效果比较好。
但是递减惯性因子采用什么样的方法呢?人们首先想到的是线型递减,这种策略的确很好,但是是不是最优的呢?于是有人对递减的策略作了研究,研究结果指出:线型函数的递减优于凸函数的递减策略,但是凹函数的递减策略又优于线型的递减,经过本人测试,实验结果基本符合这个结论,但是效果不是很明显。
对于收敛因子,经过证明如果收敛因子取0.729,可以确保算法的收敛,但是不能保证算法收敛到全局最优,经过本人测试,取收敛因子为0.729效果较好。
对于社会与认知的系数c2,c1也有人提出:c1先大后小,而c2先小后大的思想,因为在算法运行初期,每个鸟要有大的自己的认知部分而又比较小的社会部分,这个与我们自己一群人找东西的情形比较接近,因为在我们找东西的初期,我们基本依靠自己的知识取寻找,而后来,我们积累的经验越来越丰富,于是大家开始逐渐达成共识(社会知识),这样我们就开始依靠社会知识来寻找东西了。
遗传算法 蚁群算法 粒子群算法 模拟退火算法

遗传算法蚁群算法粒子群算法模拟退火算法《探究遗传算法、蚁群算法、粒子群算法和模拟退火算法》一、引言遗传算法、蚁群算法、粒子群算法和模拟退火算法是现代优化问题中常用的算法。
它们起源于生物学和物理学领域,被引入到计算机科学中,并在解决各种复杂问题方面取得了良好的效果。
本文将深入探讨这四种算法的原理、应用和优势,以帮助读者更好地理解和应用这些算法。
二、遗传算法1. 概念遗传算法是一种模拟自然选择过程的优化方法,通过模拟生物进化过程,不断改进解决方案以找到最优解。
其核心思想是通过遗传操作(选择、交叉和变异)来优化个体的适应度,从而达到最优解。
2. 应用遗传算法在工程优化、机器学习、生物信息学等领域有着广泛的应用。
在工程设计中,可以利用遗传算法来寻找最优的设计参数,以满足多种约束条件。
3. 优势遗传算法能够处理复杂的多目标优化问题,并且具有全局搜索能力,可以避免陷入局部最优解。
三、蚁群算法1. 概念蚁群算法模拟蚂蚁在寻找食物过程中释放信息素的行为,通过信息素的沉积和蒸发来实现最优路径的搜索。
蚁群算法具有自组织、适应性和正反馈的特点。
2. 应用蚁群算法在路径规划、网络优化、图像处理等领域有着广泛的应用。
在无线传感网络中,可以利用蚁群算法来实现路由优化。
3. 优势蚁群算法适用于大规模问题的优化,具有分布式计算和鲁棒性,能够有效避免陷入局部最优解。
四、粒子群算法1. 概念粒子群算法模拟鸟群中鸟类迁徙时的行为,通过个体间的协作和信息共享来搜索最优解。
每个粒子代表一个潜在解决方案,并根据个体最优和群体最优不断更新位置。
2. 应用粒子群算法在神经网络训练、函数优化、机器学习等领域有着广泛的应用。
在神经网络的权重优化中,可以利用粒子群算法来加速训练过程。
3. 优势粒子群算法对于高维和非线性问题具有较强的搜索能力,且易于实现和调整参数,适用于大规模和复杂问题的优化。
五、模拟退火算法1. 概念模拟退火算法模拟金属退火时的过程,通过接受劣解的概率来跳出局部最优解,逐步降低温度以逼近最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主程序:
%------基本粒子群优化算法(Particle Swarm Optimization)-----------
%------名称:混合粒子群优化算法(PSO)(粒子群基于自然选择的算法)
%------作用:求解优化问题
%------说明:全局性,并行性,高效的群体智能算法,混合粒子群算法指的是借鉴其他一些智能优化算法的思想而形成的粒子群算法,其除了粒子群算法外,还有遗传算法、模拟退火算法以及神经网络等智能算法
%------初始格式化--------------------------------------------------
clear all;
clc;
format long;
%------给定初始化条件----------------------------------------------
c1=1.4962; %学习因子1
%c1=3;
%c2=2;
c2=1.4962; %学习因子2
w=0.7298; %惯性权重
MaxDT=500; %最大迭代次数
D=6; %搜索空间维数(未知数个数)
N=20; %初始化群体个体数目
eps=10^(-6); %设置精度(在已知最小值时候用)
%------初始化种群的个体(可以在这里限定位置和速度的范围)------------
for i=1:N
for j=1:D
x(i,j)=randn; %随机初始化位置
v(i,j)=randn; %随机初始化速度
end
end
%------先计算各个粒子的适应度,并初始化Pi和Pg----------------------
figure(3)
for i=1:N
P(i)=fitness2(x(i,:));
y(i,:)=x(i,:);
end
Pg=x(N,:); %Pg为全局最优
for i=1:(N-1)
if fitness2(x(i,:))<fitness2(Pg)
Pg=x(i,:);
end
end
%------进入主要循环,按照公式依次迭代,直到满足精度要求------------
for t=1:MaxDT
for i=1:N
v(i,:)=w*v(i,:)+c1*rand*(y(i,:)-x(i,:))+c2*rand*(Pg-x(i,:));
x(i,:)=x(i,:)+v(i,:);
fx(i)=fitness2(x(i,:));
if fx(i)<P(i)
P(i)=fx(i);
y(i,:)=x(i,:);
end
if P(i)<fitness2(Pg)
Pg=y(i,:);
end
end
[sortf,sortx]=sort(fx); %将所有粒子按适应只值排序
exIndex=round((N-1)/2);
x(sortx((N-exIndex+1):N))=x(sortx(1:exIndex));%将最好的一半粒子的位置替换掉最差的一半
v(sortx((N-exIndex+1):N))=v(sortx(1:exIndex)); %将最好的一半粒子的位置替换掉最差的一半
Pbest(t)=fitness2(Pg);
end
plot(Pbest)
TempStr=sprintf('c1= %g ,c2=%g',c1,c2);
title(TempStr);
xlabel('迭代次数');
ylabel('适应度值');
%------最后给出计算结果
disp('*************************************************************')
disp('函数的全局最优位置为:')
Solution=Pg
disp('最后得到的优化极值为:')
Result=fitness2(Pg)
disp('*************************************************************')。