细胞生理学汇总.ppt
合集下载
生理学细胞转导PPT课件

A:失活型G蛋白的亚单位是与GDP结合的,但 未结合在受体上。
B:当细胞外信号分子(配体) 与受体结合后,受体活化并与G 蛋白亚单位结合,使之发生构 象变化,亚单位随之与GDP解 离而与胞浆中的GTP结合,形成 激活型G蛋白。
D:由于亚单的GTP酶活性,可将与它结合的GTP 水解生成GDP, 并与GDP和-亚单位再结合,回到失 活型G蛋白状态,从而终止信号转导过程。
16
三、酶联型受体介导的信号转导
酶联型受体(enzyme-linked receptor)也是一种跨膜蛋白,但每个受体分子只有1次穿膜,是一种 单穿膜受体。
受体蛋白结合配体的结构域(受体部分)位于质膜的外表面,而其面向胞质的结构域具有酶活性,
或者能与酶分子直接结合。因此,酶联型受体可分成两大类:
第二节 细胞的信号转导
多细胞生物体为适应内、外环境变化所进行的任何一种生命活动,都需要许多细胞的相互协调和相互 配合,这就要求在不同细胞之间建立起信号交流机制,而信号转导(signal transduction)就是细胞实 现彼此之间信息交流和功能协调的手段,也是细胞最基本和最重要的功能之一。
信号转导的本质是:细胞受到来自于其周围环境的不同理、化刺激(信号)之后,通过质膜上和胞浆
• 与PKA一样,PKC也是丝氨酸/苏氨酸蛋白激酶,激活的PKC可使底物蛋白磷酸化而产生多种生物学效 应。
15
(三)G蛋白耦联受体的信号转导特点
转导速度慢:G蛋白耦联受体介导的信号转导需 要多级信号分子的中继,因而需要较长的反应时 间(从几百毫秒到几分钟),较离子通道受体介 导的信号转导慢得多。
活后可引起离子的跨膜流动,所以又称为促离子型受体(iontropic receptor)。
02生理学-细胞

跳跃式传导
局部电流发生在相邻的郎飞氏结之间 传导速度快
第三节 肌细胞的收缩功能
一、神经—肌接头处的兴奋传递
(一)神经—肌接头处的结构
囊泡内含乙酰胆碱(ACh) 电压依从式钙通道 2、接头间隙: 细胞外液,50-60nm 3、接头后膜(终板膜):
1、接头前膜(轴突末梢膜):
皱褶
N2型ACh受体阳离子通道 胆碱酯酶
(三)动作电位的特征
1.“全或无”现象(all or none) 2.不衰减性传导 3.脉冲式
(四)动作电位的传导
在一般可兴奋细胞和无髓神经纤维:
—
局部电流
在有髓神经纤维:
—
跳跃式传导
局部电流
静息部位膜内 负外正,兴奋 部位膜极性反 转,兴奋区与 未兴奋区之间 存在电位差, 形成局部电流, 使邻近未兴奋 膜去极化达阈 电位而产生动 作电位。
概念 : 水溶性或脂溶性很小的小分子物质或离子,借助细胞 膜上特殊蛋白质的帮助,从细胞膜的高浓度一侧向低 浓度一侧转运的过程。
特点 : ⑴ 转运非脂溶性或脂溶性很小的物质 ⑵ 不耗能,顺浓度差转运,属被动转运 ⑶ 需要膜蛋白的帮助 分类 : ⑴ 载体转运 转运对象:葡萄糖(Glu) 氨基酸(AA) 特点:特异性 饱和性现象 竞争性抑制
eg.氧气(O2)、二氧化碳(CO2)、氮气(N2)等 脂溶性小分子 水、乙醇、尿素、甘油等分子量小的极性分子
影响因素:⑴ 细胞膜两侧浓度差(正比) ⑵ 细胞膜对该物质的通透性(正比)
一、细胞膜的物质转运功能
常见的物质跨膜物质转运形式:
单纯扩散 易化扩散
主动转运
入胞和出胞
(二)易化扩散
生理学 第2章细胞

(1)不是“全或无”的,而是随着阈下刺激的增大而增 大,呈等级性反应; (2)衰减性传播(电紧张性扩布):局部电位可向周围
传播,但随着传播距离的增加,其电位变化幅度减
小最后消失故不能在膜上作远距离的传播; (3)可以总和 ①空间性总和 ②时间性总和
01:04
小结:局部反应与动作电位之比较
项 目 局 部 反 阈下刺激 较少 小(在阈电位以下波动) 有(时间或空间总和) 无 呈电紧张性扩布,随时间 和距离的延长迅速衰减, 不能连续向远处传播 应 动 作 电 多 大(达阈电位以上) 无 有 能以局部电流的形式 连续而不衰减地向远 处传播 位
01:04
(三)产生机制
产生条件主要有两个: • ①细胞内外各种离子的浓度分布不均(外Na+内K+状态), 即存在浓度差; • ②在不同状态下,细胞膜对各种离子的通透性不同。 安静状态时,细胞膜主要对K+通透,K+顺浓度差外流, 随着K+外流,膜内外K+浓度差(化学驱动力)↓ , K+外 流引起的由细胞外向细胞内的电场力(阻力)↑,当动 力和阻力相等时,K+净移动为0,此时膜两侧的电位差 也稳定于某一数值,称为K+平衡电位。
01:04
受体是指细胞膜或细胞内一些能与某些化学物质特异 性结合并产生特定生理效应的蛋白质。可分为膜受体和胞 内受体,通常指膜受体。 受体基本功能: 1.能识别和结合体液中的特殊物质,具有高度特异性,
保证信息传递准确、可靠。
2.能转导各种化学信号,激发细胞内产生相应的生理 效应。
01:04
第三节 细胞的生物电现象
门控离子通道分为三类: 1) 电压门控通道:在膜去极化到一定电位时开放,如神经 元上的Na+ 通道;K+ 通道等。
传播,但随着传播距离的增加,其电位变化幅度减
小最后消失故不能在膜上作远距离的传播; (3)可以总和 ①空间性总和 ②时间性总和
01:04
小结:局部反应与动作电位之比较
项 目 局 部 反 阈下刺激 较少 小(在阈电位以下波动) 有(时间或空间总和) 无 呈电紧张性扩布,随时间 和距离的延长迅速衰减, 不能连续向远处传播 应 动 作 电 多 大(达阈电位以上) 无 有 能以局部电流的形式 连续而不衰减地向远 处传播 位
01:04
(三)产生机制
产生条件主要有两个: • ①细胞内外各种离子的浓度分布不均(外Na+内K+状态), 即存在浓度差; • ②在不同状态下,细胞膜对各种离子的通透性不同。 安静状态时,细胞膜主要对K+通透,K+顺浓度差外流, 随着K+外流,膜内外K+浓度差(化学驱动力)↓ , K+外 流引起的由细胞外向细胞内的电场力(阻力)↑,当动 力和阻力相等时,K+净移动为0,此时膜两侧的电位差 也稳定于某一数值,称为K+平衡电位。
01:04
受体是指细胞膜或细胞内一些能与某些化学物质特异 性结合并产生特定生理效应的蛋白质。可分为膜受体和胞 内受体,通常指膜受体。 受体基本功能: 1.能识别和结合体液中的特殊物质,具有高度特异性,
保证信息传递准确、可靠。
2.能转导各种化学信号,激发细胞内产生相应的生理 效应。
01:04
第三节 细胞的生物电现象
门控离子通道分为三类: 1) 电压门控通道:在膜去极化到一定电位时开放,如神经 元上的Na+ 通道;K+ 通道等。
生理学课件之细胞3静息电位产生的机制

• 阈刺激:相当于阈强度的刺激
2、阈电位(threshold potential):
能触发AP的膜电位临界值 一般比静息电位小1020mv
25
(四) 动作电位的传播
细胞外
局部电流 未兴奋段膜去极化 并达阈电位
细胞内 相邻膜仍处于静
11
动作电位的特点
(1)“全或无”:刺激未达到强度,AP不会产 生(无),刺激达到强度就引发AP,AP一经 出现,其幅度就达到最大值,不因刺激的增强 而随之增大
(2)不衰减传播:其幅度和波形始终保持不变 (3)脉冲式发放:多个AP互不融合
12
(二)AP的的产生机制
AP产生的基本条件: ①离子的电-化学驱动力 ②膜在受到阈刺激而兴奋时,对离子的通透性改变:电 压门控性Na+、K+通道依次激活而开放
欧姆定律:Ix =V/R=(Em- Ex)Gx
跨膜电流,易测
膜电导,要测
膜两侧电位差,此电位随离子跨膜移动而 变,用带负反馈放大器的特殊装置使膜两 侧电位固定在某一设定值,测得I,再算出 G的方法称电压钳实验
膜通透性可用膜电导Gx(膜电阻的倒数)表示
voltage clamp: 1963, Nobel Prize in Physiology or Medicine 16
• 它其实是由细胞膜上大量离子通道的单通道电 流叠加形成的,这说明膜电导变化的实质是众 多离子通道开、闭的总和效应
19
m:激活门 h:失活门
静息: m:关闭 h:开放
n:激活门
静息: n:关闭
20
AP的的产生机制
钠通道开放、 激活,Na+迅 速内流
阈电位
Na+通道失活, Na+通透性消失, K+通透性
2、阈电位(threshold potential):
能触发AP的膜电位临界值 一般比静息电位小1020mv
25
(四) 动作电位的传播
细胞外
局部电流 未兴奋段膜去极化 并达阈电位
细胞内 相邻膜仍处于静
11
动作电位的特点
(1)“全或无”:刺激未达到强度,AP不会产 生(无),刺激达到强度就引发AP,AP一经 出现,其幅度就达到最大值,不因刺激的增强 而随之增大
(2)不衰减传播:其幅度和波形始终保持不变 (3)脉冲式发放:多个AP互不融合
12
(二)AP的的产生机制
AP产生的基本条件: ①离子的电-化学驱动力 ②膜在受到阈刺激而兴奋时,对离子的通透性改变:电 压门控性Na+、K+通道依次激活而开放
欧姆定律:Ix =V/R=(Em- Ex)Gx
跨膜电流,易测
膜电导,要测
膜两侧电位差,此电位随离子跨膜移动而 变,用带负反馈放大器的特殊装置使膜两 侧电位固定在某一设定值,测得I,再算出 G的方法称电压钳实验
膜通透性可用膜电导Gx(膜电阻的倒数)表示
voltage clamp: 1963, Nobel Prize in Physiology or Medicine 16
• 它其实是由细胞膜上大量离子通道的单通道电 流叠加形成的,这说明膜电导变化的实质是众 多离子通道开、闭的总和效应
19
m:激活门 h:失活门
静息: m:关闭 h:开放
n:激活门
静息: n:关闭
20
AP的的产生机制
钠通道开放、 激活,Na+迅 速内流
阈电位
Na+通道失活, Na+通透性消失, K+通透性
生理学课件 第二章 细胞的基本功能

特点:需细胞消耗能量 逆浓度梯度或电位梯度进行 意义:细胞可以根据生理需要主动选择物质的吸收或排除;保持细胞内外 离子分布的不均衡性(细胞内高K+、细胞外高Na+)
原发性主动转运
主动转运
继发性主动转运
扩展
扩展
四、入胞和出胞
概念:一些大分子物质或团块通过细胞膜变形活动进出细胞的过程,需细 胞消耗能量 入胞 吞噬 吞饮 出胞
二、易化扩散
概念:水溶性或脂溶性很小的物质,在特殊膜蛋白的帮助下,由高浓度一 侧通过细胞膜向低浓度一侧扩散的现象。 特点:①顺浓度差:不需细胞消耗能量 ②需要特殊膜蛋白的帮助 载体转运 分类: 通道转运
1.载体转运
物质:葡萄糖、氨基酸等
特点:① 高度的特异性:一种载体一般只能第二章 细胞的基本功能
第一节 细胞膜的物质转运功能
细胞膜的结构:脂质双分子层液态镶嵌结构
一、单纯扩散
概念:是指脂溶性的小分子物质从细胞膜的高浓度一侧向低浓度一侧转 运的过程。 特点:顺浓度差;不需细胞消耗能量 物质:CO2、O2、NH3、乙醇等 注:某种物质能否通过单纯扩散方式过膜,除了取决于膜两侧浓度差, 还取决于细胞膜的通透性。
③ 竞争性抑制:一种载体同时转运两种或两种以上结构相似的物质 时,一种物质的增加,将减弱对另一物质的转运。
CONTENTS
2.通道转运
物质:无机离子、水 特点:通道的开或关 受化学因素的调控——化学门控通道 受电压因素的调控——电压门控通道
三、主动转运
概念:借助细胞膜泵蛋白的作用,将物质由低浓度一侧转运到高浓度一侧
一、骨骼肌的收缩原理
滑行学说——肌肉的缩短是通过肌小节中细肌丝与粗肌丝相互滑行的结 果(其间肌丝本身的长度不变)。
原发性主动转运
主动转运
继发性主动转运
扩展
扩展
四、入胞和出胞
概念:一些大分子物质或团块通过细胞膜变形活动进出细胞的过程,需细 胞消耗能量 入胞 吞噬 吞饮 出胞
二、易化扩散
概念:水溶性或脂溶性很小的物质,在特殊膜蛋白的帮助下,由高浓度一 侧通过细胞膜向低浓度一侧扩散的现象。 特点:①顺浓度差:不需细胞消耗能量 ②需要特殊膜蛋白的帮助 载体转运 分类: 通道转运
1.载体转运
物质:葡萄糖、氨基酸等
特点:① 高度的特异性:一种载体一般只能第二章 细胞的基本功能
第一节 细胞膜的物质转运功能
细胞膜的结构:脂质双分子层液态镶嵌结构
一、单纯扩散
概念:是指脂溶性的小分子物质从细胞膜的高浓度一侧向低浓度一侧转 运的过程。 特点:顺浓度差;不需细胞消耗能量 物质:CO2、O2、NH3、乙醇等 注:某种物质能否通过单纯扩散方式过膜,除了取决于膜两侧浓度差, 还取决于细胞膜的通透性。
③ 竞争性抑制:一种载体同时转运两种或两种以上结构相似的物质 时,一种物质的增加,将减弱对另一物质的转运。
CONTENTS
2.通道转运
物质:无机离子、水 特点:通道的开或关 受化学因素的调控——化学门控通道 受电压因素的调控——电压门控通道
三、主动转运
概念:借助细胞膜泵蛋白的作用,将物质由低浓度一侧转运到高浓度一侧
一、骨骼肌的收缩原理
滑行学说——肌肉的缩短是通过肌小节中细肌丝与粗肌丝相互滑行的结 果(其间肌丝本身的长度不变)。
细胞的基本功能-医学生理学-课件1-02

钠离子
钾离子
2. 电压门控通道 (voltage-gated ion channel)
电压门控通道跨膜信号 转导过程:
跨膜电位的改变; 结构域中精氨酸或赖 氨酸产生位移; 诱发通道“闸门”的 开放; 细胞膜出现新的电变 化。
钠离子 钾离子
上海第二医科大学生理教研室
3.机械门控通道(mechanically- gated channel) 触发因素是机械性刺激: 如内耳毛细胞听毛 受基底膜振动。
又称Ca2+-ATP酶 分布在细胞膜、肌浆网和内质网 分解一个ATP 胞浆 胞外 1Ca++ 1Ca++ 机制 作用是维持细胞内外的钙离子浓度梯度
4.继发性主动转运
(secondary active transport)
定义
—许多物质在进行逆浓度梯度或
电位梯度的跨膜转运时,所 需的能量并不直接来自ATP 的分解,而是来自Na+在膜两 侧的浓度势能差,后者是钠 泵利用分解ATP释放的能量建立 的。这种间接利用ATP能量的主 动转运过程称为~。
第二章 细胞的基本功能
细胞—人体的最基本的功能单位
本章内容: 细胞膜的物质转运功能 细胞膜的生物电现象 细胞的信号转导功能 肌细胞的收缩功能
第一节
细胞膜的结构和物质转运功能
细胞膜的作用: 细胞膜是细胞和环境之间的屏障; 细胞膜有物质转运功能; 细胞膜还有跨膜信息传递功能。
一、膜的化学组成和分子结构
钠-钾泵的作用
维持细胞膜两侧 Na+、K+的不均衡 分布; 其活动是生电性的
3 2
二、细胞的动作电位
(一)细胞的动作电位
定义:细胞膜受到阈刺激或阈上刺
生理学细胞的生物电现象 [可修改版ppt]
![生理学细胞的生物电现象 [可修改版ppt]](https://img.taocdn.com/s3/m/11edf40227d3240c8447effa.png)
度高于细胞外,细胞外Na+ 浓度高于细胞 内)。 (2)细胞膜上钾通道开放,细胞膜对K+具通透 性。
(二)静息电位的产生机制 (离子学说)
2.静息电位产生的主要机制: (1) K+外流: K+顺浓度梯度经钾通道外流,细胞内有
机负离子不能外流而留在膜内侧,形成内负外正的 跨膜电位差; (2)外流的K+在细胞膜外侧建立起正电场,阻碍K+外 流; (3)当促使K+外流的化学驱动力与阻碍K+外流的电场 驱动力相等时, K+跨膜净通量为零,形成稳定的 K+-平衡电位(即静息电位)。
(2)下降支: K+快速外流, Na+内流停止。 钠通道具有时间依赖性,开放瞬间后即失活关闭; 因去极化而使膜电位变为内正外负,阻碍K+外流
的力量减小,K+外流增强。
2.动作电位的产生过程 当刺激强度等于或大于阈强度时,引起细胞膜
去极化达阈电位水平,此时细胞膜上较多钠通道开 放,较多Na+内流,大于同时发生的K+外流而膜 去极化,膜的去极化能进一步加大膜中Na+通道开 放的概率,结果使更多Na+通道开放,更多Na+内 流而造成膜进一步去极化,如此反复促进,出现一 个使膜上钠通道开放、Na+快速内流与膜去极化之 间的正反馈过程(Na+内流的再生性循环),直至 接近Na+平衡电位,形成动作电位的上升支。
(1)“全或无 ”特性:动作电位要就一点不发生, 一旦发生即最大幅值。
如:阈下刺激时,AP一点也不产生; 阈(上)刺激时,AP产生,一产生即达最大幅值。
(2)不衰减传导性:AP一旦产生及迅速传播至整个细 胞,动作电位的幅度不会随传导距离增大而衰减。
(二)静息电位的产生机制 (离子学说)
2.静息电位产生的主要机制: (1) K+外流: K+顺浓度梯度经钾通道外流,细胞内有
机负离子不能外流而留在膜内侧,形成内负外正的 跨膜电位差; (2)外流的K+在细胞膜外侧建立起正电场,阻碍K+外 流; (3)当促使K+外流的化学驱动力与阻碍K+外流的电场 驱动力相等时, K+跨膜净通量为零,形成稳定的 K+-平衡电位(即静息电位)。
(2)下降支: K+快速外流, Na+内流停止。 钠通道具有时间依赖性,开放瞬间后即失活关闭; 因去极化而使膜电位变为内正外负,阻碍K+外流
的力量减小,K+外流增强。
2.动作电位的产生过程 当刺激强度等于或大于阈强度时,引起细胞膜
去极化达阈电位水平,此时细胞膜上较多钠通道开 放,较多Na+内流,大于同时发生的K+外流而膜 去极化,膜的去极化能进一步加大膜中Na+通道开 放的概率,结果使更多Na+通道开放,更多Na+内 流而造成膜进一步去极化,如此反复促进,出现一 个使膜上钠通道开放、Na+快速内流与膜去极化之 间的正反馈过程(Na+内流的再生性循环),直至 接近Na+平衡电位,形成动作电位的上升支。
(1)“全或无 ”特性:动作电位要就一点不发生, 一旦发生即最大幅值。
如:阈下刺激时,AP一点也不产生; 阈(上)刺激时,AP产生,一产生即达最大幅值。
(2)不衰减传导性:AP一旦产生及迅速传播至整个细 胞,动作电位的幅度不会随传导距离增大而衰减。
生理学课件细胞-1细胞膜的物质转运功能

3.糖类:与脂质或蛋白结合生成糖蛋白或糖脂 作为抗原决定簇、受体可识别部分
二、跨膜物质转运
跨膜转运 transmembrane transport 体内各种物质经过细胞膜进出细胞的过程。
转运方式:
单纯扩散
①被动转运
②主动转运
易化扩散转运 导
③膜泡运输 出胞
生理学课件细胞-1细胞膜的物质转运 功能
一、细胞膜的分子结构 液态镶嵌模型(fluid mosaic model)学说 以液态脂质双分子层为基架,其间镶嵌有 不同结构和功能的蛋白质
1.脂质双分子层:磷脂、胆固醇等双嗜分子构 成基架,体温条件下具有流动性
2.蛋白质:表面蛋白20-30%(如:RBC骨架蛋白) 整合蛋白70-80%(载体、通道、离 子泵、受体等)
肠黏膜上皮细胞顶端膜侧发生Na+-GS同向转运, GS经基底侧膜上另一种GS载体易化扩散入组织液。
肾小管上皮细胞对GS的重吸收
基底侧膜
钠泵活动
↓
Na+浓度势能差
↓ 管腔膜
Na+-GS 同向转运体
↓ GS再易化扩散
入血
在绝大多数情况下,溶质跨质膜转运的 动力来自Na+泵建立起的Na+的跨膜浓度梯 度;
③竞争性抑制competition inhibition: 当两种结构相似的物质能被同一载体转运, 则亲和力或浓度较低者转运被抑制。
转运体 transporter:
单转运体,如转运葡萄糖的载体。 同向转运体,如Na+-葡萄糖同向转运体。
反向转运体或交换体,如Na+-H+交换体。
2.经通道易化扩散 经通道易化扩散 Facilitated diffusion via channel