金属疲劳ppt课件

合集下载

《钢结构疲劳》课件

《钢结构疲劳》课件
总结词
结构细节和连接方式对钢结构疲劳性能具有重要影响,合理的细节设计和连接方式可以有效提高结构的疲劳寿命 。
详细描述
钢结构的细节设计和连接方式决定了结构内部的应力分布和传递。不合理的细节设计和连接方式可能导致局部应 力集中,加速裂纹萌生和扩展。因此,在设计和制造钢结构时,应注重细节处理和连接方式的优化,以提高结构 的疲劳性能。
超声检测
利用超声波在材料中的传播特性 ,检测内部缺陷和裂纹。
涡流检测
利用涡流对材料进行检测,通过 分析涡流的变化来检测裂纹。
损伤识别与评估
损伤识别
通过各种无损检测手段,如声发射、 红外成像等,对钢结构进行全面检测 ,以确定损伤的位置和程度。
损伤评估
根据损伤的严重程度,对钢结构的剩 余寿命和安全性进行评估,为维修和 加固提供依据。
采用无损检测技术,如超声波、磁 粉等方法,对钢结构进行监测和评 估,了解结构疲劳状况。
维修与更换
对于发现的疲劳裂纹和损伤,及时 进行修复或更换,防止裂纹扩大。
增强结构整体性
增加支撑和连接
加强节点连接
通过增加支撑和连接件,提高钢结构 的整体稳定性,减少结构变形和应力 集中。
对节点连接进行加强,提高节点刚度 和承载能力,减少应力集中和变形。
优化结构设计
对钢结构进行详细的结构分析和优化 设计,合理布置支撑和连接件,提高 结构整体性。
局部加固与修复
1 2
焊接加固
对于疲劳裂纹和损伤,可以采用焊接方法进行加 固和修复。焊接前应进行焊接工艺评定和焊接质 量检测。
粘贴钢板加固
在钢结构表面粘贴钢板,提高结构的承载能力和 刚度,适用于大型结构件和厚板的加固。
《钢结构疲劳》ppt课件

第05章 金属的疲劳1

第05章 金属的疲劳1
46
(1)基本特征: 呈现贝壳花样或海滩花样,它是以疲
劳源区为中心,与裂纹扩展方向相垂直的 呈半圆形或扇形的弧形线,又称疲劳弧线。
疲劳弧线是裂纹扩展过程中,其顶端 的应力大小或状态发生变化时,在断裂面 上留下的塑性变形的痕迹。
47
(2)贝纹花样的形成: 是由载荷变动引起的,因为机器运转时
不可避免地常有启动、停歇、偶然过载等, 均可留下塑性变形的痕迹——贝纹线(疲 劳弧线)。
r=-1称为对称循环应力;
r=0(或r=-∽)这种非对称循环又称为 脉动循环。这种载荷是一种最危险的载荷。
r偏离-1越远,应力对称性越差,疲劳 极限越高。
29
(2)循环应力的种类
(交变当)r应=-力1,;即σmin=-σmax时,称为对称循环

当r=0,即σmin=0时,称为脉动循环应力。
2
1、金属疲劳破坏的形成过程 在正常使用机械时,重复的推、拉、扭
或其他的外力情况都会造成机械部件中金 属的疲劳。
这是因为机械受压时,金属中原子的排 列会大大改变,从而使金属原子间的化学 键断裂,导致金属裂开。
3
构件承受交变应力的大小超过一定限 度,并经历了多次的循环重复后,在构件 内部应力最大处或材质薄弱处将产生细微 裂纹(称为疲劳源),这种裂纹随着应力 交变次数增加而不断向四周扩展。
53
(5)不同情况下贝纹线的形状
① 当轴类机件拉压疲劳时, 轴向应力包括拉-拉或拉-压疲劳。它的疲劳
源一般也在表面形成,只有内部有缺陷时才在缺 陷处形成。
54
若表面无应力集中(无缺口),则裂纹因截 面上应力均等而沿截面等速扩展,贝纹线呈一簇 平行的圆弧线;
55
若机件表面存在应力集中(环形缺口), 则因截面表层的应力比中间的高,裂纹沿表层 的扩展快于中间区;高应力时,瞬断区面积相 对较大,疲劳裂纹扩展区面积小,裂纹沿两边 及中间扩展差别不大。

金属疲劳

金属疲劳

劳断裂前所经历的应力循环周次越低,反之越高。根据循环
应力σmax和应力循环周次N建立S-N曲线。 由于疲劳断裂时周次很多,所以S-N曲线的横坐标取对数坐 标。
能力知识点2 疲劳极限
当应力低于某值时,材料经受无限次循环应 力也不发生疲劳断裂,此应力称为材料的疲 劳极限,记作σR(R为应力比),就是S-N曲 线中的平台位置对应的应力。 通常,材料的疲劳极限是在对称弯曲疲劳条 件下(R=-1)测定的,对称弯曲疲劳极限 记作σ-1。
第5单元 金属的疲劳
想一想
人工作久了就会感 到疲劳,难道金属 工作久了也会疲劳 吗? 金属的疲劳能得到 恢复吗?
金属材料在受到交变应力或重复循环应力时,经一定循环
次数后,往往在工作应力小于屈服强度的情况下突然断裂,
这种现象称为疲劳。
金属“疲劳”一词,最早是由法国学者J-V彭赛(Panelet) 于1839年提出来的。 1850年德国工程师沃勒(A.Woler)设计了第一台用于机 车车轴的疲劳试验机,用来进行全尺寸机车车轴的疲劳试 验。 1871年沃勒系统论述了疲劳寿命和循环应力的关系,提 出了S-N曲线和疲劳极限的概念,确立了应力幅是疲劳破 坏的决定因素,奠定了金属疲劳的基础。
四、疲劳极限的测定
常规试验法
升降法
1.常规试验法
在疲劳试验中,当试样个数有限,工程急需,或 者为了节省费用,不宜进行大量试验时,常常采 用常规试验法。 这种试验方法除了直接为工程设计部门提供疲劳 性能数据外,还可作为一些特殊疲劳试验的预备 性试验。 由于常规试验方法耗费少,周期短,因此得到广 泛采用,其中最简单的是单点法。
疲劳极限与抗拉强度的关系
试验表明,金属材料的抗拉强度越大,其疲劳极 限也越大。

金属疲劳

金属疲劳
(2)当静应力小于屈服极限或强度极限时,不会发生静力破坏;而交变应力在远小于静强度极限,甚至小于屈 服极限的情况下,疲劳破坏就可能发生。
(3)静力破坏通常有明显的塑性变形产生:疲劳破坏通常没有外在宏观的显著塑性变形迹象,哪怕是塑性良好 的金属也这样,就像脆性破坏一样,事先不易觉察出来,这就表明疲劳破坏具有更大的危险性。
相关区别
材料力学是根据静力实验来确定材料的机械性能(比如弹性极限、屈服极限、强度极限)的,这些机械性能没 有充分反映材料在交变应力作用下的特性。因此,在交变载荷作用下工作的零件或结构,如果还是按静载荷去设 计,在使用过程中往往会发生突发性故障。
疲劳破坏与传统的静力破坏有着许多明显的本质区别:
(1)静力破坏是一次最大载荷作用下的破坏:疲劳破坏是多次反复载荷作用下的破坏,它不是短期内发生的, 而是要经历一定的时间,甚至很长时间才发生破坏。
在金属材料中添加各种“维生素”是增强金属抗疲劳的有效办法。例如,在钢铁和有色金属里,加进万分之 几或千万分之几的稀土元素,就可以大大提高这些金属抗疲劳的本领,延长使用寿命。随着科学技术的发展,现 已出现“金属免疫疗法”新技术,通过事先引入的办法来增强金属的疲劳强度,以抵抗疲劳损坏。此外,在金属 构件上,应尽量减少薄弱环节,还可以用一些辅助性工艺增加表面光洁度,以免发生锈蚀。
感谢观看
金属内部结构并不均匀,从而造成应力传递的不平衡,有的地方会成为应力集中区。与此同时,金属内部的 缺陷处还存在许多微小的裂纹。在力的持续作用下,裂纹会越来越大,材料中能够传递应力部分越来越少,直至 剩余部分不能继续传递负载时,金属构件就会全部毁坏。
早在100多年以前,人们就发现了金属疲劳给各个方面带来的损害。但由于技术的落后,还不能查明疲劳破 坏的原因。直到显微镜和电子显微镜相继出现之后,使人类在揭开金属疲劳秘密的道路上不断取得新的成果,并 atigue of metal。金属疲劳是指一种在交变应力作用下,金属材料发生破坏的现象。 机械零件在交变压力作用下,经过一段时间后,在局部高应力区形成微小裂纹,再由微小裂纹逐渐扩展以致断裂。 疲劳破坏具有在时间上的突发性,在位置上的局部性及对环境和缺陷的敏感性等特点,故疲劳破坏常不易被及时 发现且易于造成事故。应力幅值、平均应力大小和循环次数是影响金属疲劳的三个主要因素。

第八章 金属疲劳试验

第八章 金属疲劳试验
分两类:曲线上有明显的水平部分。碳钢、合金钢、球铁等属于此类。试样可以经受无限次应力循环也不发生疲劳断裂的最大应力称为疲劳极限。记为σ-1。试验时常用循环周次为107也不断裂的应力。
没有水平部分。铝合金、不锈钢、高强度钢。(条件疲劳强度)
(二)疲劳曲线及疲劳极限的测定
1、方法及特点:常用旋转弯曲疲劳试验。试验机结构简单、操作方便,应用广泛。
3、冲击疲劳的特点
试验表明,冲击疲劳抗力是一个取决于强度和塑性的综合性能,具有以下特点:
①冲击能量高时,材料的冲击疲劳抗力主要取决于塑性;冲击能量低时,材料的冲击疲劳抗力主要取决于强度。从此可以看出,不能仅根据工件承受冲击就要求高的冲击吸收功。
②不同的冲击能量要求不同的强度与塑性配合。淬火回火钢的冲击疲劳抗力随回火温度的变化有一峰值,该峰值随冲击能量的增加向高温方向移动(见图5-36)。
二、冲击疲劳
1、定义:是机件在重复冲击载荷作用下的疲劳断裂。
实际工作中,很少有仅经过一次或几次冲击就断裂的机件,即便是通常认为承受剧烈冲击载荷的机件,大多数是承受小能量的多次冲击才断裂。试验表明,当试样于破坏前承受的冲击次数较少时(500~1000次),试样断裂的原因与一次冲击相同;当冲击次数>105次时。破坏具有典型的疲劳断口,属于疲劳断裂,即为冲击疲劳。
3冲击韧度对冲击疲劳抗力的影响因材料的强度水平不同而异。
高强度钢和超高强度钢的塑性和冲击韧度对冲击疲劳抗力有较大影响。
(因其强度高、冲击韧度低,适当提高韧度对提高冲击疲劳抗力的影响较突出)
中、低强度钢的塑性和冲击韧度对冲击疲劳抗力的影响较小。
(因其冲击韧度已经比较高,在增加Ak值对提高冲击疲劳抗力已影响较不大)当我被上帝造出来时,上帝问我想在人间当一个怎样的人,我不假思索的说,我要做一个伟大的世人皆知的人。于是,我降临在了人间。

金属疲劳试验目的和研究方法PPT60页

金属疲劳试验目的和研究方法PPT60页
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
金属疲劳试验目的和研究方法
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
41、学问是异常珍

第5章-疲劳断裂失效分析PPT课件

第5章-疲劳断裂失效分析PPT课件

降低
材料强度
增加
升高
材料塑性
增加
降低
温度
升高
降低
腐蚀介质

降低
2021
14
4、疲劳断裂对材料缺陷的敏感性
• 金属的疲劳失较具有对材料的各种缺陷均 为敏感的特点。因为疲劳断裂总是起源于 微裂纹处。这些微裂纹有的是材料本身的 冶金缺陷,有的是加工制造过程中留下的, 有的则是使用过程中产生的。
2021
15
2021
16
5.2 疲劳断口形貌及其特征
5.2.1 疲劳断口的宏观特征
1.金属疲劳断口宏观形貌
• 由于疲劳断裂的过程不同于其他断裂,因 而形成了疲劳断裂特有的断口形貌,这是 疲劳断裂分析时的根本依据。
2021
17
图5-1 疲劳断口示意图
2021
18
• 典型的疲劳断口的宏观形貌结构可分为疲 劳核心、疲劳源区、疲劳裂纹的选择发展 区、裂纹的快速扩展区及瞬时断裂区等五 个区域。一般疲劳断口在宏观上也可粗略 地分为疲劳源区、疲劳裂纹扩展区和瞬时 断裂区三个区域,更粗略地可将其分为疲 劳区和瞬时断裂区两个部分。大多数工程 构件的疲劳断裂断口上一般可观察到三个 区域,因此这一划分更有实际意义。
2021
39
图5-10 锯齿状断口形成过程示意图
2021
40
图5-11 锯齿状断口
2021
41
5.2.3 疲劳断口的微观形貌特征
• 疲劳断口微观形貌的基本特征是在电子显 微镜下观察到的条状花样,通常称为疲劳 条痕、疲劳条带、疲劳辉纹等。疲劳辉纹 是具有一定间距的、垂直于裂纹扩展方向、 明暗相交且互相平行的条状花样 。
2021
24

疲劳试验 ppt课件

疲劳试验  ppt课件
一疲劳曲线1对称循环疲劳曲线n曲线p96图531有水平段的疲劳曲线钢2无水平段的疲劳曲线有色金属不锈钢等三疲劳曲线和疲劳极限二疲劳极限1对称疲劳极限97循环载荷r1
第四章 疲劳试验
引言
材料构件在变动应力和应变的长期作用下, 由于累积损伤而引起的断裂的现象——疲劳。
疲劳属低应力循环延时断裂。 不产生明显的塑性变形,呈现突然的脆断。 ∴疲劳断裂是一种非常危险的断裂。 ∴工程中研究疲劳的规律、机理、力学性能指 标、影响因素等,就具有重要的意义。
(二)疲劳极限
1、对称疲劳极限 97 循环载荷,r=-1。 σ-1,τ-1,σ-1p(对称拉压)Leabharlann 2、不对称循环疲劳极限(σr)
利用已知的对称循环疲劳极限,用工程作图法求得各 种不对称循环疲劳极限。
或者采用回归的公式求得。 (1)应力幅σa~平均应力σm图
y轴上的边界点为0和σ-1 x轴上的边界点为0和σb
铜及轻合金:τ-1=0.55σ-1,铸铁τ-1=0.8σ-1 σ-1>σ-1p>τ-1
三、疲劳极限与静强度之间的关系
钢:σ-1p=0.23(σs+σb) σ-1=0.27(σs+σb)
铸铁:σ-1p=0.4σb σ-1=0.45σb
铝合金:σ-1p=σb/6 +7.5(MPa) σ-1p=σb/6 -7.5(MPa)
第二节 疲劳抗力指标及其测定
一、疲劳极限的测定
第一步 采用升降法测定条件疲劳极限, 第二步 用成组法测定σ一N曲线有限寿命段上各 点的数据, 第三步 绘制σ一N曲线。
二、不同应力状态下的疲劳极限 根据大量的实验结果,弯曲与拉压、扭转疲劳
极限之间的关系: 钢:σ-1p=0.85σ-1,铸铁σ-1p=0.65σ-1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档