(完整版)高等数学不定积分例题、思路和答案(超全)

合集下载

高等数学 第四章不定积分课后习题详解.doc

高等数学 第四章不定积分课后习题详解.doc

第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x -=,由积分表中的公式(2)可解。

解:532223x dx x C --==-+⎰★(2)dx-⎰ 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:2232122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰ ★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。

(完整版)不定积分习题与答案

(完整版)不定积分习题与答案

不定积分(A)求下列不定积分dx~~2X(x 2)2dxdx2) xV x2x .2dx 4) 1 x1、1) 3)5)7) 2、1) 3) 5) 7) 9) 11) 13) 15) 17)2 3X 53^△dx cos2x2 ;~2~dx6)cos xsin xX 3(2e )dxx求下列不定积分(第一换元法)(1 —y^'xYxdX8) x3(3 2x) dxsin t ..dtxtdxcosxsin xdx2) 32 3xdx,) xl n x In (I n x)xcos(x2)dxsinx , 厂dxcos xdx2x2 1sin 2xcos3xdxdxx x6) e e“、cos3xdx12)tan3x secxdx14)3x9 x2dx16)______ 13cos2 x—dx4sin x10 2arccosxdxarctan x ,dx 18) x(1 x)3、求下列不定积分(第二换元法)1) 2)sinxdx3) 4)2x----------- d x, (a 0)2 2.a x5)7) 4、1) 3) 5)7) 5、1)2)3)dx6)dx1 \2xdxx -J x28)dx1 T x2求下列不定积分(分部积分法)xSnxdxx2In xdxx2arcta nxdxIn2xdx求下列不定积分(有理函数积分)3xdxx 32x 32x 3xdxx(x21)1、一曲线通过点方程。

2、已知一个函数2)4)6)8)arcs inxdxe 2x sin -dx2x2cosxdx2 2 xx cos dx2(B)(M,3),且在任一点处的切线斜率等于该点的横坐标的倒数,F(x)的导函数为1 x2,且当x 1时函数值为2求该曲线的,试求此函数。

3、证明:若f(x)dx F(x)c,则f (ax b)dx 丄F(axa b) c,(a 0)o sin x4、设f(x)的一个原函数为求xf(x)dx。

(完整版)不定积分习题与答案

(完整版)不定积分习题与答案

不定积分 (A)1、求下列不定积分1)⎰2xdx 2)⎰xxdx23)dxx⎰-2)2(4)dxxx⎰+221 5)⎰⋅-⋅dxxxx32532 6)dxxxx⎰22sincos2cos7)dxxe x32(⎰+ 8)dxxxx)11(2⎰-2、求下列不定积分(第一换元法)1)dxx⎰-3)23( 2)⎰-332xdx3)dttt⎰sin4)⎰)ln(lnln xxxdx5)⎰xxdxsincos 6)⎰-+xx eedx7)dxxx)cos(2⎰ 8)dxxx⎰-43139)dxxx⎰3cossin10)dxxx⎰--249111)⎰-122xdx 12)dxx⎰3cos13)⎰xdxx3cos2sin 14)⎰xdxx sectan315)dxxx⎰+23916)dxxx⎰+22sin4cos3117)dxxx⎰-2arccos211018)dxxxx⎰+)1(arctan3、求下列不定积分(第二换元法)1)dxxx⎰+211 2)dxx⎰sin3)dxxx⎰-424)⎰>-)0(,222adxxax5)⎰+32)1(xdx 6)⎰+xdx217)⎰-+21xxdx 8)⎰-+211xdx4、求下列不定积分(分部积分法) 1)inxdxxs⎰ 2)⎰xdxarcsin3)⎰xdxx ln24)dxxe x⎰-2sin25)⎰xdxx arctan2 6)⎰xdxx cos27)⎰xdx2ln 8)dxxx2cos22⎰5、求下列不定积分(有理函数积分)1)dxxx⎰+332)⎰-++dxxxx1033223)⎰+)1(2xxdx (B)1、一曲线通过点)3,(2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。

2、已知一个函数)(xF的导函数为211x-,且当1=x时函数值为π23,试求此函数。

3、证明:若⎰+=c x F dx x f )()(,则)0(,)(1)(≠++=+⎰a cb ax F a dx b ax f 。

大学高等数学第四章 不定积分答案

大学高等数学第四章 不定积分答案

第四章 不定积分习 题 4-11.求下列不定积分: (1)解:C x x x x xx x x x+-=-=-⎰⎰-25232122d )5(d )51((2)解:⎰+x x xd )32(2C xx x ++⋅+=3ln 296ln 622ln 24 (3)略. (4) 解:⎰⎰⎰-+-=+-x x x x x x x d )1(csc d 11d )cot 11(2222=C x x x +--cot arcsin(5) 解:⎰x xxd 2103 C x x xxxx+===⎰⎰80ln 80d 80d 810 (6) 解:x x d 2sin2⎰=C x x x x ++=-=⎰sin 2121d )cos 1(21 (7)⎰+x x x xd sin cos 2cos C x x x x x x x x x x +--=-=+-=⎰⎰cos sin d )sin (cos d sin cos sin cos 22 (8) 解:⎰x xx xd sin cos 2cos 22⎰⎰-=-=x x x x x x x x d )cos 1sin 1(d sin cos sin cos 222222 C x x +--=tan cot(9) 解: ⎰⎰⎰-=-x x x x x x x x x d tan sec d sec d )tan (sec sec 2=C x x +-sec tan(10) 解:},,1max{)(x x f =设⎪⎩⎪⎨⎧>≤≤--<-=1,11,11,)(x x x x x x f 则.上连续在),()(+∞-∞x f Θ,)(x F 则必存在原函数,⎪⎪⎩⎪⎪⎨⎧>+≤≤-+-<+-=1,2111,1,21)(32212x C x x C x x C x x F 须处处连续,有又)(x F Θ)21(lim )(lim 12121C x C x x x +-=+-+-→-→ ,,21112C C +-=+-即)(lim )21(lim 21321C x C x x x +=+-+→→ ,,12123C C +=+即 ,1C C =联立并令.1,2132C C C C +==+可得.1,12111,211,21},1max{22⎪⎪⎪⎩⎪⎪⎪⎨⎧>++≤≤-++-<+-=⎰x C x x C x x C x dx x 故2. 解:设所求曲线方程为)(x f y =,其上任一点),(y x 处切线的斜率为3d d x xy=,从而 ⎰+==C x x x y 4341d 由0)0(=y ,得0=C ,因此所求曲线方程为 441x y =. 3.解:因为 x x x cos sin sin 212='⎪⎭⎫ ⎝⎛,x x x sin cos cos 212='⎪⎭⎫ ⎝⎛-x x x x cos sin 2sin 212cos 41=='⎪⎭⎫⎝⎛-所以x 2sin 21、 x 2cos 21-、 x 2cos 41-都是x x cos sin 的原函数.习 题 4-21.填空. (1)21xx d = d (x 1- + C) (2)x x d 1 = d (x ln + C) (3)x e xd = d (xe + C) (4) x x d sec 2= d (x tan + C) (5)x x d sin = d (x cos -+ C) (6) x x d cos = d (x sin + C) (7)x x d 112- = d (x arcsin + C) (8)x x x d 12- = d (21x -+ C)(9)x x x d sec tan = d (x sec + C) (10)x x d 112+ = d (x arctan + C)(11)x xx d )1(1+ = d (2x arctan + C) (12) x x d = d (22x + C)2.求下列不定积分: (1) 解:⎰+x x x d 42)4d()4(21)24d(41221222++=++=⎰⎰-x x x x=C x C x ++=++4)4(2212(2) 解:x x x d ln 4⎰C x x x +==⎰5ln )d(ln ln 54(3) 解:⎰x xexd 21C e x e x x +-=-=⎰11)1d((4) 解:⎰++x e e e x x x d )22(32C e e e e e ex x x x x x+++=++=⎰22131)d()22(4332(5) 解:⎰-294d x x C x x x x x +=-=-=⎰⎰23arcsin 31)23(1)23d(31)23(12d 22(6) 解:x x x x d )ln (ln 12⎰+C xx x x x x +-==⎰ln 1)ln d()ln (12 (7) 解:x x x x d ln ln ln 1⎰11d(ln )d(ln ln )ln |ln ln |ln ln ln ln ln x x x C x x x ===+⎰⎰(8) 解:⎰-+x e e x x d 1C e e e x x x +=+=⎰arctan )d(112 (9)解:2211()(12)24x x x C =--=--= (10)解:3222222133d d 3323x x x x x x dx x x x +-==+++⎰⎰⎰22222131131(3)ln(3)22322dx d x x x C x =-+=-+++⎰⎰ (11)解:3x x x =+2234)38x x =+-2arcsin3x C =+(12)解:211111d d d 2(2)(1)321x x x x x x x x x ⎛⎫==- ⎪---+-+⎝⎭⎰⎰⎰ 12ln 31x C x -=++ (13)解:2111sin ()d (1cos2())cos2()2()224t t t dt dt t d t ωϕωϕωϕωϕω+=-+=-++⎰⎰⎰⎰11sincos2()24t t C ωϕω=-++ (14)解:31d cos (arccos )x x arc x x ==-⎰ 21(cos )2arc x C -=+(15)解:2lncot lncot 1lncot 1lncot d d csc d dcot sin 22sin cos 2cot 2cot x x x xx x x x x x x x x x===-⎰⎰⎰⎰ 211ln cot dln cot (ln cot )24x x x C =-=-+⎰ (16)解:222x ==⎰2C =+(17) 解:⎰x x d cos 4x xx x x d 42cos 2cos 21d )22cos 1(22⎰⎰++=+= x x x d )42cos 22cos 41(2++=⎰ ++=42sin x x x x d 24cos 1⎰+++=42sin 3x x C x+44sin(18) 解:x xx xx d cos sin cos sin 3⎰-+C x x x x xx +-=--=⎰323)cos (sin 2)cos d(sin cos sin 1(19) 解:⎰x x d cos 3⎰=x x x d cos cos 2)d(sin sin 12⎰-=x x C xx +-=3sin sin 3 (20) 解:x xx d 1102arccos ⎰--=-=⎰)d(arccos 10arccos x xC x+10ln 10arccos (21) 解:x xxd 1arcsin 2⎰-C xx x +==⎰2arcsin )d(arcsin arcsin 2 (22) 解:⎰x xx d sin cos C x x x+==⎰sin 2)d(sin sin 1(23) 解:⎰x x x d cos sin 53⎰⎰--==x x x x x x cos d cos )cos 1(cos d cos sin 5252C x x +-=68cos 61cos 81 (24) 解:35tan sec d x x x =⎰⎰⎰-=x x x x x x sec d sec )1(sec sec d sec tan 4242C x x x +-=57sec 51sec 71 (25) 解:C x x x x x x x x ++-=-=⎰⎰cos 219cos 181d 2sin 9sin d 4sin 5cos(26) 解:⎰x x x d sec tan 43⎰⎰+==x x x x x x tan d )1(tan tan tan d sec tan 2323C x x x ++=56tan 41tan 61 (27) 解:令t x =6,则6t x =,t t x d 6d 5=,代入原式得C t t t t t t t t t x x x +-=+-+=+=+⎰⎰⎰arctan 66d 1116d 6)1(1d )1(1225233=C x x +-66arctan 66 (28) 解:设2tan ,sec x t dx tdt ==,则21td d sectx t t ==⎰sin t C C =+=+(29) 解:)1d(1)1(1)1d(1)1(1d 112222xxx xxx x x x⎰⎰⎰-=--±=-μ )1)1d((1)1(1222--=⎰xxμ1)1(22-=x μC x x +-=212(30)解:设3sec ,3sec tan x t dx t tdt ==,则2233tantdt tan (sec 1)22x tdt t dt =⨯==-⎰⎰333(tan 1)arccos )222t C x =-+=+(31)解:设2sin ,2cos x t dx tdt ==,则222=4sin dt x t =⎰12(1cos2)dt =22sin cos 2arcsin 22x t t t t C C =--+=-⎰(32)解: 22111d 2323313x dx x x x x =++++⎰⎰211111)()1833344()39x dx x C x +==+=+++⎰(33)解:1)4x x x =+14x C =+++ (34)解:1)2x x x ==-1)x C =-+习 题 4-3求下列不定积分 (1)解:⎰x x x d 2sin )2cos d(21⎰-=x x ⎰+-=x x x x d 2cos 212cos 2 C x x x ++-=2sin 412cos 2(2)解:⎰-x xe x d C e xe x e xe e x x x x x x +--=+-=-=-----⎰⎰d d(3)解:⎰x x x d ln 2⎰⎰⎰-=-==x x x x x x x x x x d 3ln 3)d(ln 3ln 3)3d(ln 23333C x x x +-=9ln 333 (4)略.(5)解:⎰x x x d cos 2⎰⎰⎰-=-==x x x x x x x x x x x d sin 2sin d sin sin sin d 2222x x x x x x x x x x d cos 2cos 2sin cos d 2sin 22⎰⎰-+=+=C x x x x x +-+=sin 2cos 2sin 2(6)解:因为⎰-x x exd 2sin ⎰--=xe x d 2sin )2d(sin 2sin ⎰--+-=x e x e x x)d(2cos 22sin ⎰----=x x e x x e )2d(cos 22cos 22sin ⎰---+--=x e x e x e x x x ⎰------=x x e x e x e x x x d 2sin 42cos 22sin于是⎰-x x e xd 2sin C xe x e x x +--=--52cos 22sin (7)解:⎰x x x d arctan 2⎰⎰-==x x x x x x arctan d 3arctan 33d arctan 333⎰+-=x x x x x d 131arctan 3233⎰+-+-=x x xx x x x d 131arctan 3233 C x x x x +++-=)1ln(31arctan 3223 (8)解:⎰x x x d cos 2⎰⎰+=+=x x x x x x x d )2cos (21d 22cos 1⎰+=x x x x d 2cos 2142 ⎰+=x x x 2sin d 4142⎰-+=x x x x x d 2sin 412sin 4142 C x x x x +-+=2cos 812sin 4142 (9)解:⎰x x xd arcsin 1⎰⎰-==x x x x x x arcsin d 2arcsin 2d arcsin 2⎰--=x xx x d 11arcsin 2C x x x +-+=12arcsin 2(10)解:⎰x e x xd 32x x xx x e x e x x xe e x e x 33233232d 923d 323d 31⎰⎰⎰-=-== C e xe e x x x x ++-=3332272923(11)解:因为⎰x x d ln cos ⎰⎰+=-=x x x x x x x x d ln sin ln cos ln cos d ln cos⎰-+=x x x x x x ln sin d ln sin ln cos ⎰-+=x x x x x x d ln cos ln sin ln cos于是⎰x x d ln cos C xx x x ++=2ln sin ln cos(12)解:⎰''x x f x d )(C x f x f x x x f x f x x f x +-'='-'='=⎰⎰)()(d )()()(d习 题 4-4求下列不定积分(1)解:⎰-x x x d 13⎰⎰⎰-+++=-+-=x x x x x x x x d 11d )1(d 11123 C x x x x +-+++=1ln 2323 (2)解:⎰--+x x x x x d 8345⎰⎰---+++=x xx x x x x x d 8d )1(322⎰⎰+---+++=x x x x x x x d )13148(d )1(2C x x x x x x ++---+++=1ln 31ln 4ln 82323 (3)解:⎰+-++x x x x x d )1)(2(1322222x x d 21⎰-=x x x x x x d )1(43d 12222⎰⎰+--++--+ x x x x x x x x x d )1(4)1()1d(23d 1121)1d(212ln 22222222⎰⎰⎰⎰+-++-+-++--= C x x xx x x x +-+-++-+--=arctan 212)1(23arctan 2)1ln(212ln 222(上式最后一个积分用积分表公式28)(4)解:⎰-+-x x x x x d )1(411622⎰---+=x x x x d ])1(1124[2 C x x x +-+-+=111ln 2ln 4C x x x +-+-=11)1(ln 22 (5)解:⎰-+-x x x xxd 123x x x x d )1)(1(2⎰+-=x x x x x d 11211d 212⎰⎰+---= C x x x +++--=arctan 21)1ln(411ln 212(6)解:⎰+x x 2sin 3d ⎰-=x x 2cos 7d 2x u tan =⎰+243d u u⎰+=2)32(1d 31u u C x +=3tan 2arctan 321(7)解:⎰++311d xx31x t +=⎰+t t t 1d 32t t t d )111(3⎰++-=C t t t +++-=1ln 232(8)解:x xx xd 11⎰-+x x t -+=11⎰+-t t t t d )1)(1(4222t t t t d )121111(2⎰+++--= C t t t +++-=arctan 211ln习 题 4-5利用积分表计算下列不定积分: (1)⎰+-245d xx x解:因为⎰+-245d xx x ⎰-+-=2)2(1)2d(x x在积分表中查得公式(73)C a x x a x x +++=+⎰)ln(d 2222现在1=a ,2-=x x ,于是⎰+-245d x x x C x x x +-+-+=)245ln(2(2)⎰x x d ln 3解:在积分表中查得公式(135)⎰⎰--=x x n x x x x n n n d ln )(ln d ln 1现在3=n ,重复利用此公式三次,得⎰x x d ln3C x x x x x x x +-+-=6ln 6ln 3ln 23.(3)x x d )1(122⎰+解:在积分表中查得公式(28)⎰⎰+++=+bax xb b ax b x x ax b 2222d 21)(2d )(1 于是现在1=a ,1=b ,于是=+⎰x x d )1(122 C x x xx x x x +++=+++⎰arctan )1(21d 21)1(2222 (4)⎰-1d 2x xx解:在积分表中查得公式(51)C xaa x ax x+=-⎰arccos 1d 12 于是现在1=a ,于是⎰-1d 2x xx C x+=1arccos(5)x x x xd 222-⎰解:令1-=x t ,因为x x x x d 222-⎰x x x d 1)1(22--=⎰t t t t d 1)12(22-++=⎰ 由积分表中公式(56)、(55)、(54)C a x x a a x a x x x a x x+-+---=-⎰2222222222ln 8)2(8dC a x x a x x +-=-⎰32222)(31d C a x x a a x x x a x +-+--=-⎰2222222ln 22d于是x x x x d 222-⎰2222)1())1(2[81a x a x x -----=C a x a x x a +--+--+--322222])1[(31)1(1ln 85.(6)⎰-12d 2x xx解:在积分表中查得公式(16)、(15)⎰⎰+-+-=+b ax x xb a bx b ax b ax xxd 2d 2C bbax b bax xx +-+-=+⎰arctan2d 于是现在2=a ,1-=b ,于是=-⎰12d 2x xx⎰-+-12d 12x x xx x C x xx +-+-=12arctan 212 (7) ⎰x x d cos 6解:在积分表中查得公式(135)⎰⎰----=x x nn x x n x x n n nd cos 1sin cos 1d cos 21 现在6=n ,重复利用此公式三次,得⎰x x d cos 6C xx x x •x x ++++=)22sin 41(2415sin cos 245sin cos 6135. (8)x x e x d 3sin 2⎰-解:在积分表中查得公式(128)C bx b bx a e ba x bx e ax ax+-+=⎰)cos sin (1d sin 22 现在2-=a ,3=b ,于是C x x e x x e axx +--=⎰-)3cos 33sin 2(131d 3sin 2 C x x e ax++-=)3cos 33sin 2(131.本章复习题 A一、填空.(1)已知)(x F 是xx sin 的一个原函数,则))(d(2x F = x x x d sin 22. (2)已知函数)(x f y =的导数为x y 2=',且1=x 时2=y ,则此函数为 12+=x y .(3)如果⎰+=C x x x x f ln d )(,则)(x f = 1ln +x . (4)已知⎰++=C x x x x f sin d )(,则⎰+x e f e x x d )1(=C e e x x ++++1)1sin(.(5)如果⎰+=C x x x x f 2sin d cos )(sin ,则)(x f =x 2.二、求下列不定积分.(1)解:x x x d 2cos 1cos 12⎰++x x x d 1cos 21cos 122⎰-++=x xx d cos cos 12122⎰+=x x d )sec 1(2⎰+= C x x ++=tan(2)解:⎰+xex 1d ⎰⎰----++-=+=x x x x e e e x e 1)1d(1d C e x++-=)1ln( (3)解:x xxxd 42532⎰⋅-⋅x x xx d )21(5d )43(2⎰⎰-=C x x++-=-2ln 254ln 3ln )43(2 (4)解:x x d )(arcsin 2⎰x xx x x x d 1arcsin 2arcsin 22⎰-⋅-=221d arcsin 2arcsin x x x x --=⎰x x x x x x arcsin d 12arcsin 12arcsin 222⎰-+--=C x x x x x ++--=2arcsin 12arcsin 22(5)解:令1+=x t ,则12-=t x ,于是⎰+1d x xx C t t t t t t t t t t t ++-=+--=-=-=⎰⎰⎰11ln d )1111(1d 2)1(d 222 (6)解:x x x d )1(223⎰+x x x x x x x x x x x d )1(d 1d ])1(1[222222⎰⎰⎰+-+=+-+= C x x ++++=)1(21)1ln(2122 (7)解:⎰-221)(arcsin d x x xC xx x +-==-⎰arcsin 1)d(arcsin )(arcsin 2(8)解:x xx d 4912⎰--=x xx x xd 49d 49122⎰⎰---)49d(49181)32d()32(12331222x x x x --+-=⎰⎰C x x +-+=2494132arcsin 21 (9)解:⎰x x x d sec tan 45==⎰x x x sec d sec tan 34⎰-x x x sec d sec )1(sec 322⎰+-=x x x x sec d )sec sec 2(sec 357C xx x ++-=4sec 3sec 8sec 468 (10)解:令t x sin =,)2π,2π(-∈t ,于是 ⎰-+211d x x ⎰⎰⎰⎰-=+-=+-+=+=2cos)2d(cos 1d d cos 11cos 1cos 1d cos 2tt t t t t t t t t t t C x x x C t t t t x C t t +---=+-=+-=211arcsin 2sin2cos 22sin2sin 2arcsin 2tan(11)解:⎰x e x x d 23C e e x x e e x e x x x x x x +-=-==⎰⎰222222121d 2121d 212222(12)解:x xxd ln ln ⎰C x x x +=⎰ln ln ln d ln ln三、设 1100,2,1,1)(>≤≤<⎪⎩⎪⎨⎧+=x x x x x x f ,求⎰x x f d )(.解:上连续在),()(+∞-∞x f Θ,)(x F 则必存在原函数,使得1100,,21,)(32221>≤≤<⎪⎪⎩⎪⎪⎨⎧++++=x x x C x C x x C x x F , 须处处连续,有又)(x F Θ)21(lim )(lim 22010C x x C x x x ++=++--→-→ ,即,21C C = .)21(lim )(lim 221321C x x C x x x ++=+-+→→ ,即 23231C C +=+ ,1C C =联立并令.1,2132C C C C +==+可得故⎰x x f d )(1100,21,21,22>≤≤<⎪⎪⎪⎩⎪⎪⎪⎨⎧+++++=x x x C x C x x C x .四、若,d tan I ⎰=x x n n ,,3,2Λ=n 证明:21tan 11----=n n n x n I I . 证明:因为⎰=x x n n d tan I ⎰⎰-==--x x x x x x n n d )1(sec tan d tan tan 2222 ⎰⎰---=x x x x x n n d tan d sec tan 222⎰⎰---=x x x x n n d tan tan d tan 2221tan 11----=n n x n I 故 21tan 11----=n n n x n I I .本章复习题B一、填空.(1) xe x 121--; (2) c x x +-331; (3) 21232534154c x c x x +++ (4) c e x x +---2)12(2 二、求下列不定积分.(1)x ee xxd arctan 2⎰解:=⎰x ee x x d arctan 2xx e e 2d arctan 21-⎰-=]d 1)(11arctan [21222x e e e e e x x x x x ⎰+--- =]d )11(arctan [2122x e e e e e xx x xx ⎰+----=C e e e e x x x x +++---)arctan arctan (212。

高等数学 第四章不定积分课后习题详解

高等数学 第四章不定积分课后习题详解

第4章不定积分内容概要课后习题全解习题411、求下列不定积分:知识点:直接积分法得练习——求不定积分得基本方法。

思路分析:利用不定积分得运算性质与基本积分公式,直接求出不定积分!★(1)思路: 被积函数 ,由积分表中得公式(2)可解。

解:★(2)思路:根据不定积分得线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C ---=-=-=-+⎰⎰⎰⎰★(3)思路:根据不定积分得线性性质,将被积函数分为两项,分别积分。

解:★(4)思路:根据不定积分得线性性质,将被积函数分为两项,分别积分。

解:★★(5)思路:观察到后,根据不定积分得线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x++=+=++++⎰⎰⎰ ★★(6)思路:注意到,根据不定积分得线性性质,将被积函数分项,分别积分。

解:注:容易瞧出(5)(6)两题得解题思路就是一致得。

一般地,如果被积函数为一个有理得假分式,通常先将其分解为一个整式加上或减去一个真分式得形式,再分项积分。

★(7)思路:分项积分。

解:3411342x dx xdx dx x dx x dx x xx x --=-+-⎰⎰⎰⎰⎰34134(-+-)2★(8)思路:分项积分。

解:2231(323arctan 2arcsin .11dx dx x x C x x -=-=-+++⎰⎰ ★★(9)思路:?瞧到,直接积分。

解:★★(10)思路:裂项分项积分。

解:222222111111()arctan .(1)11dx dx dx dx x C xx x x x x x =-=-=--++++⎰⎰⎰⎰ ★(11)解:★★(12)思路:初中数学中有同底数幂得乘法: 指数不变,底数相乘。

显然。

解:★★(13)思路:应用三角恒等式“”。

不定积分例题与答案

不定积分例题与答案

求下列不定积分:知识点:直接积分法的练习——求不定积分的荃本方法。

思路分析:利用不定积分的运算性质和荃本积分公式,査接求出不定积分!★(1),旅思路:被积函敌|:,由积分表中的公式(2)可解。

K 77T 八★⑶思路:根裾不定积分的线性性质,将被积函数分为两项,分别积分。

解:j<2x +.K 2Wt = j2,rfA + f.rdv = -L.+lx i +C ★⑷J 仮(.丫-3皿 思酪:根拐不定积分的线性性质,将被积函薮分为两项,分别积分。

J7xU-3)rfv = |x-dv-3jA"dv = ^.v* -2.V-+C★★⑸『竺上竺旦厶息」廉:观察到3xJ3.E=w+ 1后,根拐不定积分的线性性质,将被积函数分项,分别积分。

丿 ~-V+ 1 ~~.C+ 1~"*A x 2+11 ,根据不定积分的线性性质,将被积函数分项,分别积分。

解:JI ' 心=j rfv-j ]:心=A -arctan .v+C.注.容島看出(5)(6)两題的解SI 思绝是一致的• 一般地,如果被积函数为一个有理的假分丈.谨常先将其分解为一个荃或加上或 减去一个真分丈的形丈.再分项积分.★(7) |(三二+W 心思路:分项积分。

4-~-r^ = J 'z£v -|-^<tv + 3|x 'rfv-4j.t u rfv★(8)上3 2 思路:分项积分。

■ J< ] 3 - F k£v = 3j J , dx-2jdr = 3arctan .v-2arcsinx + C.★★⑺j 后眾小思路:皿着看到皿頁=严—“直接积分。

解:J 厶斥曲Y = =加+ U息话:根据不定积分的线性性质,将被积函数分为两项,分别积分。

X ,.思路:注意到r_ JI + x* x l+x 2 l+.r 1+x 2 解: ★⑵ =x + arctan .v + C解:严小+认=★★(10) I忌路:裂项分项积分。

不定积分的习题及答案

不定积分的习题及答案

不定积分的习题及答案不定积分的习题及答案数学作为一门精确的科学,无论在理论还是实践中都扮演着重要的角色。

而在数学中,不定积分是一个重要的概念,它与求导密切相关,被广泛应用于微积分、物理学等领域。

本文将围绕不定积分展开,介绍一些相关的习题及答案。

1. 求解以下不定积分:a. ∫(3x^2 + 2x - 1) dx解答:根据不定积分的性质,我们可以将该积分拆分成三个部分:∫(3x^2) dx + ∫(2x) dx - ∫(1) dx对于每个部分,我们可以利用不定积分的基本公式进行求解:∫(3x^2) dx = x^3 + C1∫(2x) dx = x^2 + C2∫(1) dx = x + C3因此,原积分的解为:x^3 + C1 + x^2 + C2 - x + C3,其中C1、C2、C3为常数。

b. ∫(e^x + 1/x) dx解答:对于第一部分∫(e^x) dx,我们可以利用指数函数的不定积分公式进行求解,即e^x + C1。

对于第二部分∫(1/x) dx,我们可以利用对数函数的不定积分公式进行求解,即ln|x| + C2。

因此,原积分的解为:e^x + ln|x| + C1 + C2,其中C1、C2为常数。

2. 求解以下不定积分:a. ∫(2sinx + 3cosx) dx解答:对于第一部分∫(2sinx) dx,我们可以利用正弦函数的不定积分公式进行求解,即-2cosx + C1。

对于第二部分∫(3cosx) dx,我们可以利用余弦函数的不定积分公式进行求解,即3sinx + C2。

因此,原积分的解为:-2cosx + 3sinx + C1 + C2,其中C1、C2为常数。

b. ∫(x^3 + 2x^2 + 3x + 4) dx解答:根据不定积分的性质,我们可以将该积分拆分成四个部分:∫(x^3) dx + ∫(2x^2) dx + ∫(3x) dx + ∫(4) dx对于每个部分,我们可以利用不定积分的基本公式进行求解:∫(x^3) dx = (1/4)x^4 + C1∫(2x^2) dx = (2/3)x^3 + C2∫(3x) dx = (3/2)x^2 + C3∫(4) dx = 4x + C4因此,原积分的解为:(1/4)x^4 + (2/3)x^3 + (3/2)x^2 + 4x + C1 + C2 + C3 + C4,其中C1、C2、C3、C4为常数。

不定积分例题(含过程及解析)

不定积分例题(含过程及解析)

例题1dx e x x ⎰+)12( ce e x dxe e x x d e e x de x x x xx x x x+-+=•-+=+-+=+=⎰⎰⎰2)12(2)12()12()12()12( 根据分部积分法⎰⎰-=vdu uv udv ,(2x+1)为u ,e x 为v 。

(确定u 和v 的口诀:对反幂三指;对——对数函数、反——反函数、幂——幂函数、三——三角函数、指——指数函数)2x+1为幂函数,e x 为指数函数。

例题2dx xe x ⎰-ce xe dxe e xe dx e xe xde x x x x x x x++-=•+-=--=-=-------⎰⎰⎰1)(x e -是一个复合函数,其导数应为1-•-x e例题3⎰xdx arctanc x x x xd xx x dx x x x x xxd x x ++-=++-=+-•=-•=⎰⎰⎰)1ln(21arctan 11121arctan 1arctan tan arctan 2222arctanx ’=1/1+x 2,在这里会用到反三角函数的导数公式。

其它的反三角导数是arcsinx ’=211x -、arccosx ’=211x --、arccotx ’=211x +-例题4dx x x ⎰2cos 2sin|cos |ln 2cos cos 12cos sin 2cos cos sin 22x x d xdx xx dx xx x -=-===⎰⎰⎰这里用到二倍角公式,如下:Sin2x=2sinxcosxCos2x=2cos 2x-1=1-sin 2x-1例题5dx x x ⎰++2cos 1sin 12c x x x xdx dx dx x dx xx +-=-=-=-=⎰⎰⎰⎰21tan 21sec 121cos 1cos 2cos 22222 这里除了用到二倍角公式,还会用到sin 、cos 、sec 、csc 间的相互转化,sinx 和cscx 互为倒数、cosx 和secx 互为倒数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x-=,由积分表中的公式(2)可解。

解:532223x dx x C --==-+⎰★(2)dx-⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰★(3)22xx dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。

解:3411342x dx xdx dx x dx x dx x x x x --=-+-⎰⎰⎰⎰⎰34134(-+-)2 223134ln ||.423x x x x C --=--++ ★(8)23(1dx x -+⎰思路:分项积分。

解:2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++⎰⎰★★(9)思路=?11172488x x++==,直接积分。

解:715888.15x dx x C ==+⎰⎰★★(10)221(1)dx x x +⎰思路:裂项分项积分。

解:222222111111()arctan .(1)11dx dx dx dx x C xx x x x x x =-=-=--++++⎰⎰⎰⎰ ★(11)211x xe dx e --⎰ 解:21(1)(1)(1).11x x x x xxx e e e dx dx e dx e x C e e --+==+=++--⎰⎰⎰ ★★(12)3x xe dx ⎰思路:初中数学中有同底数幂的乘法: 指数不变,底数相乘。

显然33xxxe e =()。

解:333.ln(3)xxxxe e dx e dx C e ==+⎰⎰()() ★★(13)2cot xdx ⎰思路:应用三角恒等式“22cot csc 1x x =-”。

解:22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰★★(14)23523x xx dx ⋅-⋅⎰思路:被积函数235222533x x xx⋅-⋅=-(),积分没困难。

解:2()2352232525.33ln 2ln 3xxxx x dx dx x C ⋅-⋅=-=-+-⎰⎰(()) ★★(15)2cos 2x dx ⎰思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分。

解:21cos 11cossin .2222x x d dx x x C +==++⎰⎰ ★★(16)11cos 2dx x +⎰思路:应用弦函数的升降幂公式,先升幂再积分。

解:221111sec tan .1cos 2222cos dx dx xdx x C x x ===++⎰⎰⎰★(17)cos 2cos sin xdx x x -⎰思路:不难,关键知道“22cos 2cos sin (cos sin )(cos sin )x x x x x x x =-=+-”。

解:cos 2(cos sin )sin cos .cos sin xdx x x dx x x C x x =+=-+-⎰⎰★(18)22cos 2cos sin xdx x x ⋅⎰思路:同上题方法,应用“22cos 2cos sin x x x =-”,分项积分。

解:22222222cos 2cos sin 11cos sin cos sin sin cos x x x dx dx dx x x x x x x x-==-⋅⋅⎰⎰⎰⎰ 22csc sec cot tan .xdx xdx x x C =-=--+⎰⎰★★(19)dx ⎰思路:注意到被积函数==,应用公式(5)即可。

解:22arcsin .dx x C ==+⎰★★(20)21cos 1cos 2xdx x ++⎰思路:注意到被积函数22221cos 1cos 11sec 1cos 2222cos x x x x x++==++,则积分易得。

解:221cos 11tan sec .1cos 2222x x x dx xdx dx C x ++=+=++⎰⎰⎰ ★2、设()arccos xf x dx x C =+⎰,求()f x 。

知识点:考查不定积分(原函数)与被积函数的关系。

思路分析:直接利用不定积分的性质1:[()]()df x dx f x dx=⎰即可。

解:等式两边对x 求导数得:()()xf x f x =∴=★3、设()f x 的导函数为sin x ,求()f x 的原函数全体。

知识点:仍为考查不定积分(原函数)与被积函数的关系。

思路分析:连续两次求不定积分即可。

解:由题意可知,1()sin cos f x xdx x C ==-+⎰所以()f x 的原函数全体为:112cos sin x C dx x C x C -+=-++⎰()。

★4、证明函数21,2x x e e shx 和xe chx 都是s x e chx hx -的原函数知识点:考查原函数(不定积分)与被积函数的关系。

思路分析:只需验证即可。

解:2x x e e chx shx =-Q,而22[][][]x x x x d d de e shx e chx e dx dx dx===1()2 ★5、一曲线通过点2(,3)e,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程。

知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。

思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可。

解:设曲线方程为()y f x =,由题意可知:1[()]d f x dx x=,()ln ||f x x C ∴=+; 又点2(,3)e在曲线上,适合方程,有23ln(),1e C C =+∴=,所以曲线的方程为()ln || 1.f x x =+★★6、一物体由静止开始运动,经t秒后的速度是23(/)t m s ,问:(1) 在3秒后物体离开出发点的距离是多少? (2) 物体走完360米需要多少时间?知识点:属于最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。

思路分析:求得物体的位移方程的一般式,然后将条件带入方程即可。

解:设物体的位移方程为:()y f t =,则由速度和位移的关系可得:23[()]3()f t t f t t C =⇒=+ddt, 又因为物体是由静止开始运动的,3(0)0,0,()f C f t t ∴=∴=∴=。

(1)3秒后物体离开出发点的距离为:3(3)327f ==米;(2)令3360t t =⇒=秒。

习题4-2★1、填空是下列等式成立。

知识点:练习简单的凑微分。

思路分析:根据微分运算凑齐系数即可。

解:234111(1)(73);(2)(1);(3)(32);7212dx d x xdx d x x dx d x =-=--=-2222111(4)();(5)(5ln ||);(6)(35ln ||);255112(tan 2);(9)(arctan 3).23cos 219x x dx dx e dx d e d x d x x x dx dx d d x d x x x ===--===+2、求下列不定积分。

知识点:(凑微分)第一换元积分法的练习。

思路分析:审题看看是否需要凑微分。

直白的讲,凑微分其实就是看看积分表达式中,有没有成块的形式作为一个整体变量,这种能够马上观察出来的功夫来自对微积分基本公式的熟练掌握。

此外第二类换元法中的倒代换法对特定的题目也非常有效,这在课外例题中专门介绍!★(1)3te dt ⎰思路:凑微分。

解:33311(3)33tt te dt e d t e C ==+⎰⎰ ★(2)3(35)x dx -⎰思路:凑微分。

解:33411(35)(35)(35)(35)520x dx x x x C -=---=--+⎰⎰d ★(3)132dx x -⎰思路:凑微分。

解:1111(32)ln |32|.322322dx d x x C x x =--=--+--⎰⎰ ★(4)思路:凑微分。

解:1233111(53)(53)(53)(53).332x x d x x C -=--=---=--+⎰⎰⎰ ★(5)(sin )xbax edx -⎰思路:凑微分。

解:11(sin )sin ()()cos xx xbb b x ax e dx axd ax b e d ax be C a b a-=-=--+⎰⎰⎰★★(6)思路:如果你能看到td =,凑出d 易解。

解:2C==+⎰★(7)102tan sec x xdx ⎰思路:凑微分。

解:10210111tansec tan (tan )tan .11x xdx xd x x C ==+⎰⎰ ★★(8)ln ln ln dxx x x ⎰思路:连续三次应用公式(3)凑微分即可。

解:(ln ||)(ln |ln |)ln |ln ln |ln ln ln ln ln ln ln ln dx d x d x x C x x x x x x ===+⎰⎰⎰★★(9)tan ⎰思路:是什么,是什么呢?就是解:tan ln |C ==-+⎰⎰★★(10)sin cos dxx x ⎰思路:凑微分。

相关文档
最新文档