2019年高考数学试卷(附答案)
2019年新课标全国卷3高考理科数学试题及答案

绝密★启用前2019年普通高等学校招生全国统一考试(新课标Ⅲ)理科数学注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A I B 中元素的个数为 A .3B .2C .1D .02.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B .22C .2D .23.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳4.(x +y )(2x -y )5的展开式中x 3y 3的系数为 A .-80B .-40C .40D .805.已知双曲线C :22221x y a b -= (a >0,b >0)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 6.设函数f (x )=cos(x +3π),则下列结论错误的是 A .f (x )的一个周期为−2πB .y =f (x )的图像关于直线x =83π对称 C .f (x +π)的一个零点为x =6πD .f (x )在(2π,π)单调递减 7.执行下面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为A .5B .4C .3D .28.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4C .π2D .π49.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为 A .-24B .-3C .3D .810.已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A.3B.3C.3D .1311.已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .112.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP u u u r=λAB u u u r +μAD u u u r,则λ+μ的最大值为A .3B .CD .2二、填空题:本题共4小题,每小题5分,共20分。
2019年广东省高考数学试卷(理科)(附详细答案)

2019年广东省高考数学试卷(理科)一、选择题:本小题共8小题,每小题5分,共40分.1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2} C.{﹣1,0,2}D.{﹣1,0,1}3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5 B.6 C.7 D.84.(5分)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20 B.100,20 C.200,10 D.100,107.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定8.(5分)设集合A={(x1,x2,x3,x4,x5)|x i∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60 B.90 C.120 D.130二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)不等式|x﹣1|+|x+2|≥5的解集为.10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为.11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则= .13.(5分)若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20= .(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,ρsin2θ=cosθ和ρsinθ=1建立平面直角坐标系,则曲线C1和C2交点的直角坐标为.【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则= .三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30]30.12(30,35]50.20(35,40]80.32(40,45]n1f1(45,50]n2f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.19.(14分)设数列{a n}的前n项和为S n,满足S n=2na n+1﹣3n2﹣4n,n∈N*,且S3=15.(1)求a1,a2,a3的值;(2)求数列{a n}的通项公式.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.21.(14分)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).2019年广东省高考数学试卷(理科)参考答案与试题解析一、选择题:本小题共8小题,每小题5分,共40分.1.(5分)已知复数z满足(3+4i)z=25,则z=()A.3﹣4i B.3+4i C.﹣3﹣4i D.﹣3+4i【分析】根据题意利用两个复数代数形式的乘除法,虚数单位i的幂运算性质,计算求得z的值.【解答】解:∵复数z满足(3+4i)z=25,则z====3﹣4i,故选:A.【点评】本题主要考查两个复数代数形式的乘除法,虚数单位i的幂运算性质,属于基础题.2.(5分)已知集合M{﹣1,0,1},N={0,1,2},则M∪N=()A.{0,1}B.{﹣1,0,1,2} C.{﹣1,0,2}D.{﹣1,0,1}【分析】根据集合的基本运算即可得到结论.【解答】解:∵集合M{﹣1,0,1},N={0,1,2},∴M∪N={﹣1,0,1,2},故选:B.【点评】本题主要考查集合的基本运算,比较基础.3.(5分)若变量x,y满足约束条件,且z=2x+y的最大值和最小值分别为m和n,则m﹣n=()A.5 B.6 C.7 D.8【分析】作出不等式组对应的平面区域,利用z的几何意义,进行平移即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A,直线y=﹣2x+z的截距最小,此时z最小,由,解得,即A(﹣1,﹣1),此时z=﹣2﹣1=﹣3,此时n=﹣3,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点B,直线y=﹣2x+z的截距最大,此时z最大,由,解得,即B(2,﹣1),此时z=2×2﹣1=3,即m=3,则m﹣n=3﹣(﹣3)=6,故选:B.【点评】本题主要考查线性规划的应用,利用z的几何意义,利用数形结合是解决本题的关键.4.(5分)若实数k满足0<k<9,则曲线﹣=1与曲线﹣=1的()A.焦距相等B.实半轴长相等C.虚半轴长相等D.离心率相等【分析】根据k的取值范围,判断曲线为对应的双曲线,以及a,b,c的大小关系即可得到结论.【解答】解:当0<k<9,则0<9﹣k<9,16<25﹣k<25,即曲线﹣=1表示焦点在x轴上的双曲线,其中a2=25,b2=9﹣k,c2=34﹣k,曲线﹣=1表示焦点在x轴上的双曲线,其中a2=25﹣k,b2=9,c2=34﹣k,即两个双曲线的焦距相等,故选:A.【点评】本题主要考查双曲线的方程和性质,根据不等式的范围判断a,b,c是解决本题的关键.5.(5分)已知向量=(1,0,﹣1),则下列向量中与成60°夹角的是()A.(﹣1,1,0)B.(1,﹣1,0)C.(0,﹣1,1)D.(﹣1,0,1)【分析】根据空间向量数量积的坐标公式,即可得到结论.【解答】解:不妨设向量为=(x,y,z),A.若=(﹣1,1,0),则cosθ==,不满足条件.B.若=(1,﹣1,0),则cosθ===,满足条件.C.若=(0,﹣1,1),则cosθ==,不满足条件.D.若=(﹣1,0,1),则cosθ==,不满足条件.故选:B.【点评】本题主要考查空间向量的数量积的计算,根据向量的坐标公式是解决本题的关键.6.(5分)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20 B.100,20 C.200,10 D.100,10【分析】根据图1可得总体个数,根据抽取比例可得样本容量,计算分层抽样的抽取比例,求得样本中的高中学生数,再利用图2求得样本中抽取的高中学生近视人数.【解答】解:由图1知:总体个数为3500+2000+4500=10000,∴样本容量=10000×2%=200,分层抽样抽取的比例为,∴高中生抽取的学生数为40,∴抽取的高中生近视人数为40×50%=20.故选:A.【点评】本题借助图表考查了分层抽样方法,熟练掌握分层抽样的特征是关键.7.(5分)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【分析】根据在空间中垂直于同一直线的二直线的位置关系是平行、相交或异面可得,∴l1与l4的位置关系不确定.【解答】解:∵l1⊥l2,l2⊥l3,∴l1与l3的位置关系不确定,又l4⊥l3,∴l1与l4的位置关系不确定.故A、B、C错误.故选:D.【点评】本题考查了空间直线的垂直关系的判定,考查了学生的空间想象能力,在空间中垂直于同一直线的二直线的位置关系是平行、相交或异面.8.(5分)设集合A={(x1,x2,x3,x4,x5)|x i∈{﹣1,0,1},i={1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60 B.90 C.120 D.130【分析】从条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”入手,讨论x i所有取值的可能性,分为5个数值中有2个是0,3个是0和4个是0三种情况进行讨论.【解答】解:由于|x i|只能取0或1,且“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”,因此5个数值中有2个是0,3个是0和4个是0三种情况:①x i中有2个取值为0,另外3个从﹣1,1中取,共有方法数:;②x i中有3个取值为0,另外2个从﹣1,1中取,共有方法数:;③x i中有4个取值为0,另外1个从﹣1,1中取,共有方法数:.∴总共方法数是++=130.即元素个数为130.故选:D.【点评】本题看似集合题,其实考察的是用排列组合思想去解决问题.其中,分类讨论的方法是在概率统计中经常用到的方法,也是高考中一定会考查到的思想方法.二、填空题:本大题共5小题,考生作答6小题,每小题5分,满分25分.(一)必做题(9~13题)9.(5分)不等式|x﹣1|+|x+2|≥5的解集为(﹣∞,﹣3]∪[2,+∞).【分析】把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.【解答】解:由不等式|x﹣1|+|x+2|≥5,可得①,或②,或③.解①求得x≤﹣3,解②求得x∈?,解③求得x≥2.综上,不等式的解集为(﹣∞,﹣3]∪[2,+∞),故答案为:(﹣∞,﹣3]∪[2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.10.(5分)曲线y=e﹣5x+2在点(0,3)处的切线方程为y=﹣5x+3..【分析】利用导数的几何意义求得切线的斜率,点斜式写出切线方程.﹣5e﹣5x,∴k=﹣5,【解答】解;y′=∴曲线y=e﹣5x+2在点(0,3)处的切线方程为y﹣3=﹣5x,即y=﹣5x+3.故答案为:y=﹣5x+3【点评】本题主要考查利用导数的几何意义求曲线的切线方程,属基础题.11.(5分)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为.【分析】根据条件确定当中位数为6时,对应的条件即可得到结论【解答】解:从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,有C107种方法,若七个数的中位数是6,则只需从0,1,2,3,4,5,选3个,从7,8,9中选3个不同的数即可,有C63种方法,则这七个数的中位数是6的概率P==,故答案为:.【点评】本题主要考查古典概率的计算,注意中位数必须是按照从小到大的顺序进行排列的.比较基础.12.(5分)在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则= 2 .【分析】已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式化简,再利用正弦定理变形即可得到结果.【解答】解:将bcosC+ccosB=2b,利用正弦定理化简得:sinBcosC+sinCcosB=2sinB,即sin(B+C)=2sinB,∵sin(B+C)=sinA,∴sinA=2sinB,利用正弦定理化简得:a=2b,则=2.故答案为:2【点评】此题考查了正弦定理,以及两角和与差的正弦函数公式,熟练掌握正弦定理是解本题的关键.13.(5分)若等比数列{a n}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+…+lna20= 50 .【分析】直接由等比数列的性质结合已知得到a10a11=e5,然后利用对数的运算性质化简后得答案.【解答】解:∵数列{a n}为等比数列,且a10a11+a9a12=2e5,∴a10a11+a9a12=2a10a11=2e5,∴a10a11=e5,∴lna1+lna2+…lna20=ln(a1a2…a20)=ln(a10a11)10=ln(e5)10=lne50=50.故答案为:50.【点评】本题考查了等比数列的运算性质,考查对数的运算性质,考查了计算能力,是基础题.(二)、选做题(14~15题,考生只能从中选作一题)【坐标系与参数方程选做题】14.(5分)(极坐标与参数方程)在极坐标系中,曲线C1和C2的方程分别为ρsin2θ=cosθ和ρsinθ=1.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,则曲线C1和C2交点的直角坐标为(1,1).【分析】首先运用x=ρcosθ,将极坐标方程化为普通方程,然后组成方,y=ρsinθ程组,解之求交点坐标.【解答】解:曲线C1:ρsin2θ=cosθ,,即为ρ2sin2θ=ρcosθ化为普通方程为:y2=x,,化为普通方程为:y=1,曲线ρsinθ=1联立,即交点的直角坐标为(1,1).故答案为:(1,1).【点评】本题考查极坐标方程和普通方程的互化,考查解方程的运算能力,属于基础题【几何证明选讲选做题】15.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则= 9 .【分析】利用ABCD是平行四边形,点E在AB上且EB=2AE,可得=,利用△CDF∽△AEF,可求.【解答】解:∵ABCD是平行四边形,点E在AB上且EB=2AE,∴=,∵ABCD是平行四边形,∴AB∥CD,∴△CDF∽△AEF,∴=()2=9.故答案为:9.【点评】本题考查相似三角形的判定,考查三角形的面积比,属于基础题.三、解答题:本大题共6小题,满分80分,解答须写出文字说明、证明过程或演算步骤.16.(12分)已知函数f(x)=Asin(x+),x∈R,且f()=.(1)求A的值;(2)若f(θ)+f(﹣θ)=,θ∈(0,),求f(﹣θ).【分析】(1)由函数f(x)的解析式以及f()=,求得A的值.(2)由(1)可得f(x)=sin(x+),根据f(θ)+f(﹣θ)=,求得cosθ 的值,从而求得f(﹣θ)的值.的值,再由θ∈(0,),求得sinθ 【解答】解:(1)∵函数f(x)=Asin(x+),x∈R,且f()=.∴Asin(+)=Asin=A?=,∴A=.(2)由(1)可得f(x)=sin(x+),∴f(θ)+f(﹣θ)=sin(θ+)+sin(﹣θ+)=2sin cosθ=cosθ=,∴cosθ=,再由θ∈(0,),可得sinθ=.∴f(﹣θ)=sin(﹣θ+)=sin(π﹣θ)=sinθ=.【点评】本题主要考查三角函数的恒等变换,同角三角函数的基本关系,属于中档题.17.(13分)随机观测生产某种零件的某工作厂25名工人的日加工零件个数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,30]30.12(30,35]50.20(35,40]80.32(40,45]n1f1(45,50]n2f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.【分析】(1)利用所给数据,可得样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,可得样本频率分布直方图;(3)利用对立事件可求概率.【解答】解:(1)(40,45]的频数n1=7,频率f1=0.28;(45,50]的频数n2=2,频率f2=0.08;(2)频率分布直方图:(3)设在该厂任取4人,没有一人的日加工零件数落在区间(30,35]为事件A,则至少有一人的日加工零件数落在区间(30,35]为事件,已知该厂每人日加工零件数落在区间(30,35]的概率为,∴P(A)==,∴P()=1﹣P(A)=,∴在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率为.【点评】本题考查了频数分布表,频数分布直方图和概率的计算,属于中档题.18.(13分)如图,四边形ABCD为正方形.PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF;(2)求二面角D﹣AF﹣E的余弦值.【分析】(1)结合已知又直线和平面垂直的判定定理可判PC⊥平面ADF,即得所求;(2)由已知数据求出必要的线段的长度,建立空间直角坐标系,由向量法计算即可.【解答】解:(1)∵PD⊥平面ABCD,∴PD⊥AD,又CD⊥AD,PD∩CD=D,∴AD⊥平面PCD,∴AD⊥PC,又AF⊥PC,∴PC⊥平面ADF,即CF⊥平面ADF;(2)设AB=1,在RT△PDC中,CD=1,∠DPC=30°,∴PC=2,PD=,由(1)知CF⊥DF,∴DF=,AF==,∴CF==,又FE∥CD,∴,∴DE=,同理可得EF=CD=,如图所示,以D为原点,建立空间直角坐标系,则A(0,0,1),E(,0,0),F(,,0),P(,0,0),C(0,1,0)设向量=(x,y,z)为平面AEF的法向量,则有,,∴,令x=4可得z=,∴=(4,0,),由(1)知平面ADF的一个法向量为=(,1,0),设二面角D﹣AF﹣E的平面角为θ,可知θ为锐角,cosθ=|cos<,>|===∴二面角D﹣AF﹣E的余弦值为:【点评】本题考查用空间向量法求二面角的余弦值,建立空间直角坐标系并准确求出相关点的坐标是解决问题的关键,属中档题.19.(14分)设数列{a n}的前n项和为S n,满足S n=2na n+1﹣3n2﹣4n,n∈N*,且S3=15.(1)求a1,a2,a3的值;(2)求数列{a n}的通项公式.【分析】(1)在数列递推式中取n=2得一关系式,再把S3变为S2+a3得另一关系式,联立可求a3,然后把递推式中n取1,再结合S3=15联立方程组求得a1,a2;(2)由(1)中求得的a1,a2,a3的值猜测出数列的一个通项公式,然后利用数学归纳法证明.【解答】解:(1)由S n=2na n+1﹣3n2﹣4n,n∈N*,得:S2=4a3﹣20 ①又S3=S2+a3=15 ②联立①②解得:a3=7.再在S n=2na n+1﹣3n2﹣4n中取n=1,得:a1=2a2﹣7 ③又S3=a1+a2+7=15 ④联立③④得:a2=5,a1=3.∴a1,a2,a3的值分别为3,5,7;(2)∵a1=3=2×1+1,a2=5=2×2+1,a3=7=2×3+1.由此猜测a n=2n+1.下面由数学归纳法证明:1、当n=1时,a1=3=2×1+1成立.2、假设n=k时结论成立,即a k=2k+1.那么,当n=k+1时,由S n=2na n+1﹣3n2﹣4n,得,,两式作差得:.∴==2(k+1)+1.综上,当n=k+1时结论成立.∴a n=2n+1.【点评】本题考查数列递推式,训练了利用数学归纳法证明与自然数有关的命题,考查了学生的灵活应变能力和计算能力,是中档题.20.(14分)已知椭圆C:+=1(a>b>0)的右焦点为(,0),离心率为.(1)求椭圆C的标准方程;(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.【分析】(1)根据焦点坐标和离心率求得a和b,则椭圆的方可得.(2)设出切线的方程,带入椭圆方程,整理后利用△=0,整理出关于k的一元二次方程,利用韦达定理表示出k1?k2,进而取得x0和y0的关系式,即P点的轨迹方程.【解答】解:(1)依题意知,求得a=3,b=2,∴椭圆的方程为+=1.(2)①当两条切线中有一条斜率不存在时,即A、B两点分别位于椭圆长轴与短轴的端点,P的坐标为(±3,±2),符合题意,②当两条切线斜率均存在时,设过点P(x0,y0)的切线为y=k(x﹣x0)+y0,+=+=1,整理得(9k2+4)x2+18k(y0﹣kx0)x+9[(y0﹣kx0)2﹣4]=0,∴△=[18k(y0﹣kx0)]2﹣4(9k2+4)×9[(y0﹣kx0)2﹣4]=0,整理得(x02﹣9)k2﹣2x0×y0×k+(y02﹣4)=0,∴﹣1=k1?k2==﹣1,∴x02+y02=13.把点(±3,±2)代入亦成立,∴点P的轨迹方程为:x2+y2=13.【点评】本题主要考查了椭圆的标准方程,轨迹方程的相关问题.对于求轨迹方程,最重要的是建立模型求得x和y关系.21.(14分)设函数f(x)=,其中k<﹣2.(1)求函数f(x)的定义域D(用区间表示);(2)讨论函数f(x)在D上的单调性;(3)若k<﹣6,求D上满足条件f(x)>f(1)的x的集合(用区间表示).【分析】(1)利用换元法,结合函数成立的条件,即可求出函数的定义域.(2)根据复合函数的定义域之间的关系即可得到结论.(3)根据函数的单调性,即可得到不等式的解集.【解答】解:(1)设t=x2+2x+k,则f(x)等价为y=g(t)=,要使函数有意义,则t2+2t﹣3>0,解得t>1或t<﹣3,即x2+2x+k>1或x2+2x+k<﹣3,则(x+1)2>2﹣k,①或(x+1)2<﹣2﹣k,②,∵k<﹣2,∴2﹣k>﹣2﹣k,由①解得x+1>或x+1,即x>﹣1或x,由②解得﹣<x+1<,即﹣1﹣<x<﹣1+,综上函数的定义域为(﹣1,+∞)∪(﹣∞,﹣1﹣)∪(﹣1﹣,﹣1+).(2)f′(x)===﹣,由f'(x)>0,即2(x2+2x+k+1)(x+1)<0,则(x+1+)(x+1﹣)(x+1)<0解得x<﹣1﹣或﹣1<x<﹣1+,结合定义域知,x<﹣1﹣或﹣1<x <﹣1+,即函数的单调递增区间为:(﹣∞,﹣1﹣),(﹣1,﹣1+),同理解得单调递减区间为:(﹣1﹣,﹣1),(﹣1+,+∞).(3)由f(x)=f(1)得(x2+2x+k)2+2(x2+2x+k)﹣3=(3+k)2+2(3+k)﹣3,则[(x2+2x+k)2﹣(3+k)2]+2[(x2+2x+k)﹣(3+k)]=0,∴(x2+2x+2k+5)(x2+2x﹣3)=0即(x+1+)(x+1﹣)(x+3)(x﹣1)=0,∴x=﹣1﹣或x=﹣1+或x=﹣3或x=1,∵k<﹣6,∴1∈(﹣1,﹣1+),﹣3∈(﹣1﹣,﹣1),∵f(﹣3)=f(1)=f(﹣1﹣)=f(﹣1+),且满足﹣1﹣∈(﹣∞,﹣1﹣),﹣1+∈(﹣1+,+∞),由(2)可知函数f(x)在上述四个区间内均单调递增或递减,结合图象,要使f(x)>f(1)的集合为:()∪(﹣1﹣,﹣3)∪(1,﹣1+)∪(﹣1+,﹣1+).【点评】本题主要考查函数定义域的求法,以及复合函数单调性之间的关系,利用换元法是解决本题的关键,综合性较强,难度较大.。
2019年高考理科数学全国卷3含答案

数学试卷第1页(共18页)数学试卷第2页(共18页)绝密★启用前2019年普通高等学校招生全国统一考试·全国Ⅲ卷理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B = ()A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则=z ()A .1i--B .1+i-C .1i-D .1+i3.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A .0.5B .0.6C .0.7D .0.84.()()42121++x x 的展开式中3x 的系数为()A .12B .16C .20D .245.已知各项均为正数的等比数列{}n a 的前4项和为15,且53134=+a a a ,则3=a ()A .16B .8C .4D .26.已知曲线e ln x y a x x =+在点1(,)ae 处的切线方程为2=+y x b ,则()A.–1==,a e bB.1==,a e b C.–11==,a e b D.–11==-a e b ,7.函数3222xxx y -=+在[]6,6-的图象大致为()A.B.C .D.8.如图,点N 为正方形ABCD 的中心,ECD △为正三角形,⊥平面平面ECD ABCD ,M 是线段ED 的中点,则()A.=BM EN ,且直线,BM EN 是相交直线B.≠BM EN ,且直线,BM EN 是相交直线C.=BM EN ,且直线,BM EN 是异面直线D.≠BM EN ,且直线,BM EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于()毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第3页(共18页)数学试卷第4页(共18页)A.4122-B.5122-C.6122-D.7122-10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若=PO PF ,则PFO△的面积为()A .324B .322C .22D .3211.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则()A .23323log 1224ff f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>B .23323124l 2og f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭>>C .23332124log 2f f f --⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>D .23323lo 122g 4f f f--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭>>12.设函数()si 5n f x x ωπ+⎛⎫= ⎪⎝⎭()0ω>,已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在(0,2π)有且仅有3个极大值点②()f x 在(0,2π)有且仅有2个极小值点③()f x 在(0,10π)单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是()A .①④B .②③C .①②③D .①③④二、填空题:本题共4小题,每小题5分,共20分.13.已知a ,b 为单位向量,且·0=a b,若2=-c a ,则cos ,=a c .14.记n S 为等差数列{}n a 的前n 项和,12103a a a =≠,,则105S S =.15.设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为.16.学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥-O EFGH 后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为30.9 g/cm ,不考虑打印损耗,制作该模型所需原料的质量为g.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤。
2019年全国统一高考数学试卷(文科)以及答案解析(全国2卷)

绝密★启用前2019年普通高等学校招生全国统一考试(全国2卷)文科数学本试卷共23题,共150分,共4页。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x>﹣1},B={x|x<2},则A∩B=()A.(﹣1,+∞)B.(﹣∞,2)C.(﹣1,2)D.∅2.(5分)设z=i(2+i),则=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i3.(5分)已知向量=(2,3),=(3,2),则|﹣|=()A.B.2C.5D.504.(5分)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A.B.C.D.5.(5分)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙6.(5分)设f(x)为奇函数,且当x≥0时,f(x)=e x﹣1,则当x<0时,f(x)=()A.e﹣x﹣1B.e﹣x+1C.﹣e﹣x﹣1D.﹣e﹣x+17.(5分)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面8.(5分)若x1=,x2=是函数f(x)=sinωx(ω>0)两个相邻的极值点,则ω=()A.2B.C.1D.9.(5分)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p=()A.2B.3C.4D.810.(5分)曲线y=2sin x+cos x在点(π,﹣1)处的切线方程为()A.x﹣y﹣π﹣1=0B.2x﹣y﹣2π﹣1=0C.2x+y﹣2π+1=0D.x+y﹣π+1=011.(5分)已知α∈(0,),2sin2α=cos2α+1,则sinα=()A.B.C.D.12.(5分)设F为双曲线C:﹣=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为()A.B.C.2D.二、填空题:本题共4小题,每小题5分,共20分。
2019年数学高考试题(及答案)

一、选择题
1.某学校开展研究性学习活动,某同学获得一组实验数据如下表:
x 1.99 3
4
5.1 6.12
y 1.5 4.04 7.5 12 18.01
对于表中数据,现给出以下拟合曲线,其中拟合程度最好的是 (
A. y 2x 2
B. y ( 1 )x 2
C. y log2 x
y
1 ax
过定点 (0,1)
且单调递
增,函数
y
loga
x
1 2
过定点
(
1 2
,
0)
且单调递减,D
选项符合;当
a
1时,函数
y
ax
过定点 (0,1)
且单调递增,则函数
y
1 ax
过定点 (0,1)
且单调递减,函数
y
loga
x
1 2
过定点
(
1 2
,
0)且单调递增,各选项均不符合.综上,选
D.
【点睛】
2
a
log 1
2
a
或
4.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如图所示,则
该几何体的俯视图为( )
A.
B.
C.
D.
5.
1
i 2
i3
i
(
)
A. 3 i
B. 3 i
C. 3 i
D. 3 i
6.设 0 p 1 ,随机变量 的分布列如图,则当 p 在 0,1 内增大时,( )
0
1
2
1 p
4.C
解析:C 【解析】 【分析】 从正视图和侧视图上分析,去掉的长方体的位置应该在的方位,然后判断俯视图的正确图 形. 【详解】 由正视图可知去掉的长方体在正视线的方向,从侧视图可以看出去掉的长方体在原长方体 的右侧, 由以上各视图的描述可知去掉的长方体在原长方体的右上方,其俯视图符合 C 选 项. 故选 C. 点评:本题考查几何体的三视图之间的关系,要注意记忆和理解“长对正、高平齐、宽相 等”的含义. 考点:三视图.
2019年上海市高考数学真题试卷(Word版,含解析)

2019年上海市高考数学真题试卷(Word版,含解析)2019年普通高等学校招生全国统一考试(上海卷)数学一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)已知集合,2,3,4,,,5,,则.2.(4分)计算.3.(4分)不等式的解集为.4.(4分)函数的反函数为.5.(4分)设为虚数单位,,则的值为6.(4分)已知,当方程有无穷多解时,的值为.7.(5分)在的展开式中,常数项等于.8.(5分)在中,,,且,则.9.(5分)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有种(结果用数值表示)10.(5分)如图,已知正方形,其中,函数交于点,函数交于点,当最小时,则的值为.11.(5分)在椭圆上任意一点,与关于轴对称,若有,则与的夹角范围为.12.(5分)已知集合,,,,存在正数,使得对任意,都有,则的值是.二、选择题(本大题共4题,每题5分,共20分)13.(5分)下列函数中,值域为,的是A.B.C.D.14.(5分)已知、,则“”是“”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件15.(5分)已知平面、、两两垂直,直线、、满足:,,,则直线、、不可能满足以下哪种关系A.两两垂直B.两两平行C.两两相交D.两两异面16.(5分)以,,,为圆心的两圆均过,与轴正半轴分别交于,,,,且满足,则点的轨迹是A.直线B.圆C.椭圆D.双曲线三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在正三棱锥中,.(1)若的中点为,的中点为,求与的夹角;(2)求的体积.18.(14分)已知数列,,前项和为.(1)若为等差数列,且,求;(2)若为等比数列,且,求公比的取值范围.19.(14分)改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生总费用包括个人现在支出、社会支出、政府支出,如表为2012年年我国卫生货用中个人现金支出、社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占比.年份卫生总费用(亿元)个人现金卫生支出社会卫生支出政府卫生支出绝对数(亿元)占卫生总费用比重绝对数(亿元)占卫生总费用比重绝对数(亿元)占卫生总费用比重201228119.009656.3234.3410030.7035.678431.9829.99201331668.9510729.3433.8811393.7935.989545.8130.14201435312.4011295.4131.9913437.7538.0510579.2329.96201540974.6411992.6529.2716506.7140.2912475.2830.45(数据来源于国家统计年鉴)(1)指出2012年到2015年之间我国卫生总费用中个人现金支出占比和社会支出占比的变化趋势:(2)设表示1978年,第年卫生总费用与年份之间拟合函数研究函数的单调性,并预测我国卫生总费用首次超过12万亿的年份.20.(16分)已知抛物线方程,为焦点,为抛物线准线上一点,为线段与抛物线的交点,定义:.(1)当时,求;(2)证明:存在常数,使得;(3),,为抛物线准线上三点,且,判断与的关系.21.(18分)已知等差数列的公差,,数列满足,集合.(1)若,求集合;(2)若,求使得集合恰好有两个元素;(3)若集合恰好有三个元素:,是不超过7的正整数,求的所有可能的值.2019年上海市春季高考数学试卷参考答案与试题解析一、填空题(本大题共12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.(4分)已知集合,2,3,4,,,5,,则,.【解答】解:集合,2,3,4,,,5,,,.故答案为:,.2.(4分)计算2.【解答】解:.故答案为:2.3.(4分)不等式的解集为.【解答】解:由得,即故答案为:,.4.(4分)函数的反函数为.【解答】解:由解得,故答案为5.(4分)设为虚数单位,,则的值为【解答】解:由,得,即,.故答案为:.6.(4分)已知,当方程有无穷多解时,的值为.【解答】解:由题意,可知:方程有无穷多解,可对①,得:.再与②式比较,可得:.故答案为:.7.(5分)在的展开式中,常数项等于15.【解答】解:展开式的通项为令得,故展开式的常数项为第3项:.故答案为:15.8.(5分)在中,,,且,则.【解答】解:,由正弦定理可得:,由,可得:,,由余弦定理可得:,解得:.故答案为:.9.(5分)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有24种(结果用数值表示)【解答】解:在五天里,连续的2天,一共有4种,剩下的3人排列,故有种,故答案为:24.10.(5分)如图,已知正方形,其中,函数交于点,函数交于点,当最小时,则的值为.【解答】解:由题意得:点坐标为,,点坐标为,,当且仅当时,取最小值,故答案为:.11.(5分)在椭圆上任意一点,与关于轴对称,若有,则与的夹角范围为,.【解答】解:设,则点,椭圆的焦点坐标为,,,,,,结合可得:,故与的夹角满足:,故,故答案为:,12.(5分)已知集合,,,,存在正数,使得对任意,都有,则的值是1或.【解答】解:当时,当,时,则,,当,时,则,,即当时,;当时,,即;当时,,当时,,即,,解得.当时,当,时,则,.当,,则,,即当时,,当时,,即,即当时,,当时,,即,,解得.当时,同理可得无解.综上,的值为1或.故答案为:1或.二、选择题(本大题共4题,每题5分,共20分)13.(5分)下列函数中,值域为,的是A.B.C.D.【解答】解:,的值域为,故错,的定义域为,,值域也是,,故正确.,的值域为,故错,的值域为,,故错.故选:.14.(5分)已知、,则“”是“”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【解答】解:等价,,得“”,“”是“”的充要条件,故选:.15.(5分)已知平面、、两两垂直,直线、、满足:,,,则直线、、不可能满足以下哪种关系A.两两垂直B.两两平行C.两两相交D.两两异面【解答】解:如图1,可得、、可能两两垂直;如图2,可得、、可能两两相交;如图3,可得、、可能两两异面;故选:.16.(5分)以,,,为圆心的两圆均过,与轴正半轴分别交于,,,,且满足,则点的轨迹是A.直线B.圆C.椭圆D.双曲线【解答】解:因为,则,同理可得,又因为,所以,则,即,则,设,则为直线,故选:.三、解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图,在正三棱锥中,.(1)若的中点为,的中点为,求与的夹角;(2)求的体积.【解答】解:(1),分别为,的中点,,则为与所成角,在中,由,,可得,与的夹角为;(2)过作底面垂线,垂直为,则为底面三角形的中心,连接并延长,交于,则,...18.(14分)已知数列,,前项和为.(1)若为等差数列,且,求;(2)若为等比数列,且,求公比的取值范围.【解答】解:(1),,;(2),存在,,存在,且,,,,或,公比的取值范围为,,.19.(14分)改革开放40年,我国卫生事业取得巨大成就,卫生总费用增长了数十倍.卫生总费用包括个人现在支出、社会支出、政府支出,如表为2012年年我国卫生货用中个人现金支出、社会支出和政府支出的费用(单位:亿元)和在卫生总费用中的占比.年份卫生总费用(亿元)个人现金卫生支出社会卫生支出政府卫生支出绝对数(亿元)占卫生总费用比重绝对数(亿元)占卫生总费用比重绝对数(亿元)占卫生总费用比重201228119.009656.3234.3410030.7035.678431.9829.99201331668.9510729.3433.8811393.7935.989545.8130.14201435312.4011295.4131.9913437.7538.0510579.2329.96201540974.6411992.6529.2716506.7140.2912475.2830.45(数据来源于国家统计年鉴)(1)指出2012年到2015年之间我国卫生总费用中个人现金支出占比和社会支出占比的变化趋势:(2)设表示1978年,第年卫生总费用与年份之间拟合函数研究函数的单调性,并预测我国卫生总费用首次超过12万亿的年份.【解答】解:(1)由表格数据可知个人现金支出占比逐渐减少,社会支出占比逐渐增多.(2)是减函数,且,在上单调递增,令,解得,当时,我国卫生总费用超过12万亿,预测我国到2028年我国卫生总费用首次超过12万亿.20.(16分)已知抛物线方程,为焦点,为抛物线准线上一点,为线段与抛物线的交点,定义:.(1)当时,求;(2)证明:存在常数,使得;(3),,为抛物线准线上三点,且,判断与的关系.【解答】解:(1)抛物线方程的焦点,,,的方程为,代入抛物线的方程,解得,抛物线的准线方程为,可得,,;(2)证明:当时,,设,,,则,联立和,可得,,,则存在常数,使得;(3)设,,,则,由,,则.21.(18分)已知等差数列的公差,,数列满足,集合.(1)若,求集合;(2)若,求使得集合恰好有两个元素;(3)若集合恰好有三个元素:,是不超过7的正整数,求的所有可能的值.【解答】解:(1)等差数列的公差,,数列满足,集合.当,集合,0,.(2),数列满足,集合恰好有两个元素,如图:根据三角函数线,①等差数列的终边落在轴的正负半轴上时,集合恰好有两个元素,此时,②终边落在上,要使得集合恰好有两个元素,可以使,的终边关于轴对称,如图,,此时,综上,或者.(3)①当时,,集合,,,符合题意.②当时,,,,或者,等差数列的公差,,故,,又,2当时满足条件,此时,1,.③当时,,,,或者,因为,,故,2.当时,,1,满足题意.④当时,,,所以或者,,,故,2,3.当时,,满足题意.⑤当时,,,所以,或者,,,故,2,3当时,因为对应着3个正弦值,故必有一个正弦值对应着3个点,必然有,,,,不符合条件.当时,因为对应着3个正弦值,故必有一个正弦值对应着3个点,必然有,,不是整数,不符合条件.当时,因为对应着3个正弦值,故必有一个正弦值对应着3个点,必然有或者,,或者,此时,均不是整数,不符合题意.综上,,4,5,6.。
2019年高考理科数学全国卷2(附参考答案和详解)

*%$
,%+
-%)
.%4
!一!选!!择!题!本!大!题!共!!!$!小 题!!每!小!题!"!分共 &# 分!在 每
小 题 给 出 的 四 个 选 项 中 只 有 一 项 是 符 合 题 目 要 求 的
!!设集合 +'!#"#$("#0&)#"#0'!#"#(!##"#则 +$0
'
$! ! %
*%$( A #!%
,%$($#!%
-%$(+#(!%
.%$+#0 A %
$!设%' (+0$/#则 在 复 平 面 内%!对 应 的 点 位 于
$! ! %
*%第 一 象 限
,%第 二 象 限
-%第 三 象 限
.%第 四 象 限
+!已 知++*0' $$#+%#++*.' $+#;%#"0+*."'!#则++*0.0+*.'
#3$##!)时#*$#%'#$#(!%!若 对 任 意 #3 $( A#D)#都
有
*$#%1
(
4 8
#则
D
的取
值
范
围
是
$! ! %
$ ) *% (A#8)
$ ) ,%
(
A
#7 +
$ ) -%
(
A
#" $
$ ) .%
(
A
#4 +
"! $A0B%$
2019年高考真题理科数学试卷(全国Ⅱ卷)含答案

2019年高考理数真题试卷(全国Ⅱ卷)及答案(时间:120分钟 总分:150分)姓名:__________ 班级:__________考号:__________一、选择题:本题共12小题,每小题5分,共60分.1.设集合A={x|x 2-5x+6>0},B={ x|x-1<0},则A∩B=( )A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)2.设z=-3+2i ,则在复平面内z −对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知 AB ⃗⃗⃗⃗⃗⃗ =(2,3), AC ⃗⃗⃗⃗⃗ =(3,t),| BC ⃗⃗⃗⃗⃗ |=1,则 AB ⃗⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =( )A .-3B .-2C .2D .34.2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日 L 2 点的轨道运行. L 2 点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R , L 2 点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程:M 1(R+r)2+M 2r 2=(R +r)M 1R 3 .设 α=rR ,由于 α 的值很小,因此在近似计算中 3α3+3α4+α5(1+α)2≈3α3 ,则r 的近似值为( )A .√M2M 1RB .√M 22M 1RC .√3M 2M 13RD .√M 23M 13R5.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A .中位数B .平均数C .方差D .极差6.若a>b ,则( )A .ln(a−b)>0B .3a <3bC .a 3−b 3>0D .│a│>│b│7.设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面8.若抛物线y2=2px(p>0)的焦点是椭圆x 23p+y2p=1的一个焦点,则p=()A.2B.3C.4D.89.下列函数中,以π2为周期且在区间(π4,π2)单调递增的是()A.f(x)=│cos2x│B.f(x)=│sin 2x│C.f(x)=cos│x│D.f(x)= sin│x│10.已知α∥(0, π2),2sin2α=cos2α+1,则sinα=()A.15B.√55C.√33D.2√5511.设F为双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为()A.√2B.√3C.2D.√512.设函数f(x)的定义域为R,满足f(x+1)=2f(x),且当x∈(0,1]时,f(x)=x(x−1).若对任意x∈(−∞,m],都有f(x)≥−89,则m的取值范围是()A.(−∞,94]B.(−∞,73]C.(−∞,52]D.(−∞,8 3]二、填空题:本题共4小题,每小题5分,共20分.13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为.14.已知f(x)是奇函数,且当x<0时,f(x)=−e ax.若f(ln2)=8,则a=.15.△ABC的内角A,B,C的对边分别为a,b,c.若b=6,a=2c,B=π3,则△ABC的面积为.16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为.三、解答题:共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高考数学试卷(附答案)一、选择题1.如图,点是抛物线的焦点,点,分别在抛物线和圆的实线部分上运动,且总是平行于轴,则周长的取值范围是( )A .B .C .D .2.函数ln ||()xx f x e =的大致图象是( ) A . B .C .D .3.在空间直角坐标系中,点P(3,4,5)与Q(3,-4,-5)两点的位置关系是( ) A .关于x 轴对称 B .关于xOy 平面对称 C .关于坐标原点对称 D .以上都不对4.设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M ⋂N 中元素的个数为( ) A .2B .3C .5D .75.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法种数是( ) A .40 B .60 C .80 D .1006.已知,m n 是两条不同的直线,α,β是两个不同的平面,给出下列命题: ①若m α,m n ⊥,则n α⊥; ②若m α⊥,n α,则m n ⊥;③若,m n 是异面直线,m α⊂,m β,n β⊂,n α,则αβ∥;④若,m n 不平行,则m 与n 不可能垂直于同一平面. 其中为真命题的是( ) A .②③④B .①②③C .①③④D .①②④7.在ABC 中,若 13,3,120AB BC C ==∠=,则AC =( ) A .1B .2C .3D .48.设A (3,3,1),B (1,0,5),C (0,1,0),AB 的中点M ,则CM = A .534B .532C .532D .1329.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V Sh =柱体,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .32410.已知tan 212πα⎛⎫+=- ⎪⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭( )A .13-B .13C .-3D .311.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能12.已知P 为双曲线2222:1(0,0)x y C a b a b-=>>上一点,12F F ,为双曲线C 的左、右焦点,若112PF F F =,且直线2PF 与以C 的实轴为直径的圆相切,则C 的渐近线方程为( )A .43y x =±B .34yx C .35y x =±D .53y x =±二、填空题13.双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点.若正方形OABC 的边长为2,则a=_______________. 14.设a R ∈,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为____.15.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是________.16.已知点()0,1A ,抛物线()2:0C y ax a =>的焦点为F ,连接FA ,与抛物线C 相交于点M ,延长FA ,与抛物线C 的准线相交于点N ,若:1:3FM MN =,则实数a 的值为__________.17.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)18.已知双曲线1C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,第一象限内的点00(,)M x y 在双曲线1C 的渐近线上,且12MF MF ⊥,若以2F 为焦点的抛物线2C :22(0)y px p =>经过点M ,则双曲线1C 的离心率为_______.19.ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.20.从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人,组成4人服务队,要求服务队中至少有1名女生,共有__________种不同的选法.(用数字作答)三、解答题21.已知数列{}n a 满足1112,22n n n a a a ++==+. (1)设2nn na b =,求数列{}n b 的通项公式; (2)求数列{}n a 的前n 项和n S ; (3)记()()211422nnn n n nn c a a +-++=,求数列{}n c 的前n 项和n T .22.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.23.已知平面直角坐标系xoy .以O 为极点,x 轴的非负半轴为极轴建立极坐标系,P 点的极坐标为23,6π⎛⎫⎪⎝⎭,曲线C 的极坐标方程为223sin 1ρρθ+= (1)写出点P 的直角坐标及曲线C 的普通方程; (2)若Q 为C 上的动点,求PQ 中点M 到直线32:2x tl y t =+⎧⎨=-+⎩(t 为参数)距离的最小值.24.随着移动互联网的发展,与餐饮美食相关的手机APP 软件层出不穷,现从某市使用A 和B 两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下:(1)已知抽取的100个使用A 未订餐软件的商家中,甲商家的“平均送达时间”为18分钟,现从使用A 未订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;(2)试估计该市使用A 款订餐软件的商家的“平均送达时间”的众数及平均数;(3)如果以“平均送达时间”的平均数作为决策依据,从A 和B 两款订餐软件中选择一款订餐,你会选择哪款?25.已知函数2()sin()sin 32f x x x x π=-.(1)求()f x 的最小正周期和最大值; (2)求()f x 在2[,]63ππ上的单调区间26.如图,四棱锥P ABCD -中,//AB DC ,2ADC π∠=,122AB AD CD ===,6PD PB ==,PD BC ⊥.(1)求证:平面PBD ⊥平面PBC ;(2)在线段PC 上是否存在点M ,使得平面ABM 与平面PBD 所成锐二面角为3π?若存在,求CMCP的值;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】圆(y ﹣1)2+x 2=4的圆心为(0,1),半径r =2,与抛物线的焦点重合,可得|FB |=2,|AF |=y A +1,|AB |=y B ﹣y A ,即可得出三角形ABF 的周长=2+y A +1+y B ﹣y A =y B +3,利用1<y B <3,即可得出. 【详解】抛物线x 2=4y 的焦点为(0,1),准线方程为y =﹣1, 圆(y ﹣1)2+x 2=4的圆心为(0,1), 与抛物线的焦点重合,且半径r =2, ∴|FB |=2,|AF |=y A +1,|AB |=y B ﹣y A , ∴三角形ABF 的周长=2+y A +1+y B ﹣y A =y B +3, ∵1<y B <3,∴三角形ABF 的周长的取值范围是(4,6).故选:B . 【点睛】本题考查了抛物线的定义与圆的标准方程及其性质、三角形的周长,考查了推理能力与计算能力,属于中档题.2.A解析:A 【解析】 【分析】由函数解析式代值进行排除即可. 【详解】 解:由()xln x f x =e,得()f 1=0,()f 1=0-又()1f e =0e e >,()1f e =0ee --> 结合选项中图像,可直接排除B ,C ,D 故选A 【点睛】本题考查了函数图像的识别,常采用代值排除法.3.A解析:A【解析】点P(3,4,5)与Q(3,-4,-5)两点的x 坐标相同,而y 、z 坐标互为相反数,所以两点关于x 轴对称. 考点:空间两点间的距离.4.B解析:B 【解析】试题分析:{1,2,6)M N ⋂=.故选B. 考点:集合的运算.5.A解析:A【解析】解:三个小球放入盒子是不对号入座的方法有2 种,由排列组合的知识可得,不同的放法总数是: 36240C = 种.本题选择A 选项.6.A解析:A 【解析】 【分析】根据空间中点、线、面位置关系,逐项判断即可. 【详解】①若m α,m n ⊥,则n 与α位置关系不确定;②若n α,则α存在直线l 与n 平行,因为m α⊥,所以m l ⊥,则m n ⊥; ③当m α⊂,m β,n β⊂,n α时,平面α,β平行; ④逆否命题为:若m 与n 垂直于同一平面,则,m n 平行,为真命题. 综上,为真命题的是②③④. 故选A 【点睛】本题主要考查空间中点线面位置关系,熟记线面关系、面面关系,即可求解,属于常考题型.7.A解析:A 【解析】余弦定理2222?cos AB BC AC BC AC C =+-将各值代入 得2340AC AC +-=解得1AC =或4AC =-(舍去)选A.8.C解析:C 【解析】试题分析:先求得M (2,32,3)点坐标,利用两点间距离公式计算得CM =2,故选C .考点:本题主要考查空间直角坐标系的概念及空间两点间距离公式的应用. 点评:简单题,应用公式计算.9.B解析:B 【解析】 【分析】先由三视图还原出原几何体,再进行计算 【详解】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯= ⎪⎝⎭. 故选B. . 【点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心计算解析:A 【解析】 【分析】由题意可知3124tan tan πππαα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,由题意结合两角和的正切公式可得3tan πα⎛⎫+ ⎪⎝⎭的值.【详解】3124tan tan πππαα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭ 112431124tan tantan tan ππαππα⎛⎫++ ⎪⎝⎭==-⎛⎫-+ ⎪⎝⎭,故选A .【点睛】本题主要考查两角和的正切公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.11.C解析:C 【解析】 【分析】ABAB 和ACAC 分别表示向量AB 和向量AC 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭表示A ∠平分线所在的直线与BC 垂直,可知ABC 为等腰三角形,再由12AB AC ABAC⋅=可求出A ∠,即得三角形形状。