物理学史上的著名“理想实验”

合集下载

物理学史上的著名理想实验

物理学史上的著名理想实验

单摆, 拉至 A B 时放 开 , 在 忽 略空 气 阻力 的情 况 下 ,
摆球会 沿着 弧线升 至对 面 的 ( 处. 如果 在 摆线 经 过 的 E或 F 处钉 上小钉 子 , 可 以使 摆球 沿不 同的弧 线 上升 至同一 水平 高度 G 和 H , 由此得 到单 摆 的 等高
性结论 .

要: “ 理 想 实 验 ”对 物 理 学 的 形 成 和 发 展 , 对 物 理 理 论 的 补 充 和 完善 起 着 重 要 的作 用 . 在物 理 教 育 中 运用 相
关的理想实验 , 对启迪学生的智慧 , 培 养 学 生 丰 富 的想 象 力 、 创新思维能力 、 科学抽象能力都具有重要的作用. 关键词 : 理 想 实 验 逻 辑 推 理 创 新 思 维 想 象 科 学 抽 象
速 度增 大 到 如 此 之 大 , 在 落 地 前 描 出一 条 1 , 2 , 5 ,
1 0 , 1 0 0 , 1 0 0 0 英 里 长 的 弧线 , 直 到 最 后 超 出 了地 球
的限制 , 进入 宇宙 空 间永不 触及 地球 . ”
论: “ 任 何速 度一 旦施 加 给 一 个运 动 着 的物 体 , 只要
能力 、 科学 抽象 能力都 具有 重要 的作用 . 下 面 我们 一 起欣 赏 物理 学 史 上 的著 名 理 想 实
验, 感 怀物 理学 家 的睿智. ‘ 1 伽 利略 的“ 理 想斜面 ”实验
。 \


力与物 体 的运动 的关 系是力 学 的一个最 基本 的 问题 . 亚里 士多 德认 为 : 物体 的运 动是 由于外 力 的作 用, 当外力 的作 用停 止 时 , 运 动 的 物体 就会 静 止 , 所

伽利略理想实验结论

伽利略理想实验结论

伽利略理想实验结论伽利略(GalileoGalilei)是一位著名的意大利物理学家,他对物理学和天文学的研究产生了深远的影响,而其中最重要的一篇著作便是《伽利略理想实验结论》,其中记录了伽利略实验结论的探索过程与见解,也奠定了物理学发展的基础;伽利略实验结论是物理学的一个重要的基本概念,它帮助科学家们提出了一个新的观念,即宇宙以问题的形式存在着可以被探索的基本事实。

伽利略的理论指出,宇宙的存在是客观的,而不受个人偏见的影响,它从一个更广阔的范围来看世界。

在实验结论中,伽利略解释了宇宙的发展演化和运动的模式,这为许多科学家提供了解读宇宙发展历史的视角和数据,也推动了天文学及物理学的发展。

伽利略实验结论中最重要的一个理论便是“万有引力”(Law of Universal Gravitation),它指出,宇宙中的所有物体都存在着相互吸引的力,并形成了一个完整的力量体系。

伽利略的理论说明,不同物体之间的相互影响是一个稳定的一体,其结果是宇宙发展的运动趋势及行星的运行轨迹均可以被精确地预测出来,他甚至研究到了太阳系外的星系,这也是伽利略实验结论极负盛名的原因之一。

伽利略实验结论不仅为物理学和天文学的发展注入了新的概念,也为人文社会学科的发展带来了新的思考方式,它指出,所有的现象和现象都是客观存在的,超越了任何人的认知,只有人们用一定的方法去探索宇宙的真相才能更加深入地理解它,也为人类社会带来了一个新的格局。

伽利略实验结论的发表为今后的天文学及科学研究奠定了基础,而今,科学家们正运用伽利略实验结论来探索宇宙秘密,期待着科学的更大发展。

综上,《伽利略理想实验结论》记载了伽利略实验结论的见解、方法及影响,其中又以“万有引力”理论最为著名,它推动了物理学及天文学的发展,也改变了人们对宇宙的认知。

而现在,科学家们还在不断地运用伽利略实验结论,以期发现更多宇宙的秘密。

物理学史上的著名“理想实验”

物理学史上的著名“理想实验”

物理学史上的著名“理想实验”物理学史上的著名理想实验在物理学发展的历史中,理想实验以其独特方式在物理学发展的许多关键时刻发挥了重要作用,直接或间接地导致了许多物理规律的发现和物理理论的建立。

下面我们一起欣赏物理学史上的著名理想实验,感怀物理学家的睿智。

1伽利略的“理想斜面”实验力与物体的运动的关系是力学的一个最基本的问题。

亚里士多德认为:物体的运动是由于外力的作用,当外力的作用停止时,运动的物体就会静止,所以力是维持物体运动的原因。

亚里士多德这一观点与人们的一些生活经验相一致,正是由于这样的原因,亚里士多德的观点易于被人们接受,以至于长期以来被人们奉为真理。

彻底推翻亚里士多德错误观点的是伽利略。

伽利略凭借的有力武器不是数学推导,不是真实的实验,而是理想实验。

伽利略设想:如图1在A点悬一单摆,拉至AB时放开,在忽略空气阻力的情况下,摆球会沿着弧线升至对面的C 处。

如果在摆线经过的E或F处钉上小钉子,可以使摆球沿不同的弧线上升至同一水平高度G、H,由此得到单摆的等高性结论。

以单摆的等高性为基础,伽利略进一步设想,如图2中从A点释放一个光滑坚硬的小球,让它沿坚硬光滑的斜面AB下落。

到达B点后,小球将以获得的速度沿对面的BC、BD或BE中的某一斜面上升至通过A点的水平面,比较斜面BC、BD和BE,倾角越来越小,斜面越来越长,即小球在斜面上走过的距离越来越远,运动的时间越来越长。

当斜面的倾角为零而成为水平面BF时,物体由于不可能达到A点的高度而永远地运动下去。

至此,伽利略得出结论:“任何速度一旦施加给一个运动着的物体,只要除去加速或减速的外因,此速度就可以保持不变……”伽利略的结论从根本上否定了亚里士多德的“力是维持物体运动的原因”的错误论断,指出力与运动的正确关系是:力是改变物体运动状态的原因。

伽利略从单摆等高性的理想实验到理想斜面实验,忽略了空气阻力和摩擦力,而这些忽略在现实中都是无法真正实现的。

在真实的实验中,人们可以用各种方法减小空气阻力和摩擦力,但永远也无法彻底消除它们,因而人们无法用真实的实验去验证这些理想化的设想,但是,伽利略的理想实验,不仅让人们觉得合情合理,而且使人们透过了事物的表面现象,看到了事物的本质。

物理教学中的理想实验

物理教学中的理想实验

物理教学中的理想实验物理教学中的实验是教学过程中不可或缺的一部分,通过实验可以帮助学生更好地理解物理理论知识,培养学生科学实验的能力和科学思维。

而理想的物理实验则是指在教学过程中能够很好地观察到物理现象,让学生能够直观地感受和理解物理原理的实验。

下面将介绍一些物理教学中的理想实验。

一、杨氏双缝干涉实验杨氏双缝干涉实验是物理教学中非常经典的实验之一,通过这个实验可以很好地观察到光的干涉现象。

实验装置是一个光源、两个狭缝和一个屏幕,光源发出光线照射到狭缝上,形成波的形状。

光线通过两个狭缝后,会在屏幕上形成明暗条纹,这就是光的干涉现象。

通过这个实验,学生可以直观地感受到波的干涉现象,理解波动理论。

这个实验不仅可以帮助学生理解光的波动性质,而且可以锻炼学生的实验操作能力和观察能力。

学生可以在实验中自己调整狭缝的宽度、间距等参数,观察条纹的变化,进一步加深对光的波动性质的理解。

二、牛顿环实验牛顿环实验是观察光的干涉和衍射现象的经典实验。

实验装置是一个凸透镜和一块玻璃片,当透镜和玻璃片紧密接触时,在其接触面附近会出现一系列由明暗相间的环,这些环被称为“牛顿环”。

这个实验可以直观地观察到光的干涉和衍射现象,很好地说明光线在两种介质交界处的反射和折射的规律。

通过这个实验,学生可以直观地感受到光的干涉和衍射现象,理解光的波动性质。

而且通过这个实验还可以锻炼学生的实验操作能力和观察能力,培养学生的科学思维。

三、磁感线实验磁感线实验是观察磁场的经典实验之一,通过这个实验可以很好地观察到磁感线的分布情况。

实验装置是一个磁铁和一些小磁针,将小磁针放在磁铁的周围,小磁针会受到磁力的作用而排列成一定的形状,这个形状就是磁感线的分布情况。

四、阿贝成像实验阿贝成像实验是光的成像原理的经典实验,在这个实验中可以很好地观察到物体成像的规律。

实验装置是一个凸透镜和一些物体,通过调整物体和凸透镜的位置和参数,可以观察到不同的成像情况。

五、卡伦尼克尔电磁感应实验卡伦尼克尔电磁感应实验是观察电磁感应现象的经典实验之一,通过这个实验可以很好地观察到电磁感应现象。

《伽利略的理想实验》 知识清单

《伽利略的理想实验》 知识清单

《伽利略的理想实验》知识清单一、伽利略的生平与贡献伽利略(Galileo Galilei),意大利伟大的物理学家、天文学家和数学家,被誉为“近代科学之父”。

他出生于 1564 年的意大利比萨城。

在其一生中,伽利略通过大量的实验和观察,对力学、天文学等领域做出了卓越的贡献。

在力学方面,他通过对落体运动的研究,推翻了亚里士多德长期以来的错误观点。

他还发现了摆的等时性原理,为后来的时钟制造奠定了基础。

在天文学领域,伽利略用自制的望远镜观测天体,发现了月球表面的凹凸不平、木星的四颗卫星、土星的环以及太阳黑子等,有力地支持了哥白尼的日心说。

二、理想实验的背景在伽利略所处的时代,亚里士多德的物理学观点占据着统治地位。

亚里士多德认为,物体的运动需要力来维持,如果力消失,物体就会停止运动。

然而,伽利略通过观察和思考,对这一观点产生了质疑,并通过理想实验来探索物体运动的本质。

三、理想实验的内容伽利略的理想实验是这样的:让一个小球沿一个光滑的斜面从静止状态开始滚下,然后小球滚上另一个对接的斜面。

如果忽略摩擦力的影响,小球将会滚到与原来高度相同的位置。

如果将第二个斜面的倾角逐渐减小,小球仍会达到相同的高度,但在第二个斜面上滚动的距离会越来越长。

当第二个斜面最终变为水平时,小球将永远不停地运动下去。

四、理想实验的推理过程在这个理想实验中,伽利略通过逻辑推理得出了重要的结论。

首先,在没有摩擦力的情况下,小球从斜面滚下到达底部时所获得的速度,使其能够滚上相同高度的另一个斜面。

当第二个斜面的倾角减小时,为了达到相同的高度,小球需要在斜面上滚动更长的距离。

而当第二个斜面变为水平时,由于没有了向上的倾斜,小球在水平方向上就不再有阻碍它运动的因素,所以它将以恒定的速度永远运动下去。

五、理想实验的意义1、推翻了错误观念伽利略的理想实验有力地推翻了亚里士多德“力是维持物体运动的原因”这一错误观念,为牛顿第一定律的建立奠定了基础。

2、开创了科学方法理想实验这种科学方法,以逻辑推理和想象为手段,在科学研究中具有重要的开创性意义。

物理教学中的理想实验

物理教学中的理想实验

物理教学中的理想实验理想实验是指在理论上完美的实验,可以得出完全准确的结果,但在实际操作中难以实现的实验。

在物理学中,理想实验是重要的教学方式,在帮助学生理解物理概念的同时,激发学生的思维和创造力。

1.万有引力实验:万有引力是物理学中最基本的力之一,理解万有引力的概念对于学习整个物理学科都是至关重要的。

然而,由于地球上体积太大,所以在实验中进行万有引力的测量非常困难。

理论上,如果有一个可以略微移动的重物体和一枚非常敏感的测量仪器,那么就可以完成万有引力实验。

2.理想气体实验:理想气体是物理学中的一个重要概念,它是指在没有相互作用的条件下,气体分子的行为。

虽然在理论上可以通过模拟来模拟理想气体的行为,但实际上,由于气体分子数量太多,所以要在实验中完美模拟理想气体的行为几乎是不可能的。

3.光的波粒二象性实验:在光学中,存在着波粒二象性的现象。

在某些实验条件下,光可以表现出粒子的特性,而在其他实验条件下,光则表现出波动的性质。

虽然可以通过光电效应等实验来研究光的波粒二象性,但是理论上完美展现光的波粒二象性是不可能的。

4.薄透镜实验:薄透镜是物理学中重要的光学器件。

在理想实验条件下,可以通过调整透镜的位置和焦距等参数,来获得完全准确的成像结果。

然而,在实际操作中,由于透镜的制造、光线的衍射等因素,总会存在一些误差。

5.理想摆实验:理想摆是指摆长无限长、摆角小于20度的单摆。

在理论上,理想摆可完美地运用简单的物理公式,如Τ=2π√ l/g,解析地分析其频率和周期。

然而,在实际操作中,摆的摆长和摆角都会因各种因素而产生一些误差。

高二物理学史(最全)

高二物理学史(最全)

高二物理学史20201、1638年,意大利物理学家伽利略论证重物体不会比轻物体下落得快;2、英国科学家牛顿1683年,提出了三条运动定律。

1687年,发表万有引力定律;3、17世纪,伽利略理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;4、20爱因斯坦提出的狭义相对论经典力学不适用于微观粒子和高速运动物体。

5、17世纪德国天文学家开普勒提出开普勒三定律;6、1798年英国物理学家卡文迪许利用扭秤装置比较准确地测出了引力常量;7、奥地利物理学家多普勒(1803-1853)发现由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象——多普勒效应。

8、1827年英国植物学家布朗悬浮在水中的花粉微粒不停地做无规则运动的现象——布朗运动。

9、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律。

10、1752年,富兰克林过风筝实验验证闪电是电的一种形式,把天电与地电统一起来,并发明避雷针。

11、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。

12、1911年荷兰科学家昂尼斯大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。

13、1841~1842年焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,称为焦耳——楞次定律。

14、1820年,丹麦物理学家奥斯特电流可以使周围的磁针偏转的效应,称为电流的磁效应。

15、荷兰物理学家洛仑兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛仑兹力)的观点。

16、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应现象;17、1834年,楞次确定感应电流方向的定律。

18、1832年,亨利发现自感现象。

19、1864年英国物理学家麦克斯韦预言了电磁波的存在,指出光是一种电磁波,为光的电磁理论奠定了基础。

20、1887年德国物理学家赫兹用实验证实了电磁波的存在并测定了电磁波的传播速度等于光速。

历史上的十大经典物理实验科学实验是物理学发展的基础,又是检验

历史上的十大经典物理实验科学实验是物理学发展的基础,又是检验

历史上的十大经典物理实验科学实验是物理学发展的基础,又是检验物理学理论的惟一手段,特别是现代物理学的发展,更和实验有着密切的联系。

现代实验技术的发展,不断地揭示和发现各种新的物理现象,日益加深人们对客观世界规律的正确认识,从而推动物理学的向前发展。

2002年,美国两位学者在全美物理学家中做了一次调查,请他们提名有史以来最出色的十大物理实验,其中多数都是我们耳熟能详的经典之作。

令人惊奇的是十大经典物理实验的核心是他们都抓住了物理学家眼中最美丽的科学之魂:由简单的仪器和设备,发现了最根本、最单纯的科学概念。

十大经典物理实验犹如十座历史丰碑,扫开人们长久的困惑和含糊,开辟了对自然界的崭新认识。

从十大经典物理实验评选本身,我们也能清楚地看出2000年来科学家们最重大的发现轨迹,就像我们“鸟瞰”历史一样。

排名第一:托马斯·杨的双缝演示应用于电子干涉实验在20世纪初的一段时间中,人们逐渐发现了微观客体(光子、电子、质子、中子等)既有波动性,又有粒子性,即所谓的“波粒二象性”。

“波动”和“粒子”都是经典物理学中从宏观世界里获得的概念,与我们的直观经验较为相符。

然而,微观客体的行为与人们的日常经验毕竟相差很远。

如何按照现代量子物理学的观点去准确认识、理解微观世界本身的规律,电子双缝干涉实验为一典型实例。

杨氏的双缝干涉实验是经典的波动光学实验,玻尔和爱因斯坦试图以电子束代替光束来做双缝干涉实验,以此来讨论量子物理学中的基本原理。

可是,由于技术的原因,当时它只是一个思想实验。

直到1961年,约恩·孙制作出长为50mm、宽为0.3mm、缝间距为1mm的双缝,并把一束电子加速到50keV,然后让它们通过双缝。

当电子撞击荧光屏时显示了可见的图样,并可用照相机记录图样结果。

电子双缝干涉实验的图样与光的双缝干涉实验结果的类似性给人们留下了深刻的印象,这是电子具有波动性的一个实证。

更有甚者,实验中即使电子是一个个地发射,仍有相同的干涉图样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理学史上的著名理想实验在物理学发展的历史中,理想实验以其独特方式在物理学发展的许多关键时刻发挥了重要作用,直接或间接地导致了许多物理规律的发现和物理理论的建立。

下面我们一起欣赏物理学史上的著名理想实验,感怀物理学家的睿智。

1伽利略的“理想斜面”实验力与物体的运动的关系是力学的一个最基本的问题。

亚里士多德认为:物体的运动是由于外力的作用,当外力的作用停止时,运动的物体就会静止,所以力是维持物体运动的原因。

亚里士多德这一观点与人们的一些生活经验相一致,正是由于这样的原因,亚里士多德的观点易于被人们接受,以至于长期以来被人们奉为真理。

彻底推翻亚里士多德错误观点的是伽利略。

伽利略凭借的有力武器不是数学推导,不是真实的实验,而是理想实验。

伽利略设想:如图1在A点悬一单摆,拉至AB时放开,在忽略空气阻力的情况下,摆球会沿着弧线升至对面的C处。

如果在摆线经过的E或F处钉上小钉子,可以使摆球沿不同的弧线上升至同一水平高度G、H,由此得到单摆的等高性结论。

以单摆的等高性为基础,伽利略进一步设想,如图2中从A点释放一个光滑坚硬的小球,让它沿坚硬光滑的斜面AB下落。

到达B点后,小球将以获得的速度沿对面的BC、BD或BE中的某一斜面上升至通过A点的水平面,比较斜面BC、BD和BE,倾角越来越小,斜面越来越长,即小球在斜面上走过的距离越来越远,运动的时间越来越长。

当斜面的倾角为零而成为水平面BF时,物体由于不可能达到A点的高度而永远地运动下去。

至此,伽利略得出结论:“任何速度一旦施加给一个运动着的物体,只要除去加速或减速的外因,此速度就可以保持不变……”伽利略的结论从根本上否定了亚里士多德的“力是维持物体运动的原因”的错误论断,指出力与运动的正确关系是:力是改变物体运动状态的原因。

伽利略从单摆等高性的理想实验到理想斜面实验,忽略了空气阻力和摩擦力,而这些忽略在现实中都是无法真正实现的。

在真实的实验中,人们可以用各种方法减小空气阻力和摩擦力,但永远也无法彻底消除它们,因而人们无法用真实的实验去验证这些理想化的设想,但是,伽利略的理想实验,不仅让人们觉得合情合理,而且使人们透过了事物的表面现象,看到了事物的本质。

2牛顿的“理想抛体”实验1685年,牛顿写成了《论物体的运动》的论文,论文中提出了著名的抛体运动的理想实验,说明了行星在向心力的作用下为什么会保持轨道运行,进而阐述万有引力的思想。

牛顿在论文中所描绘的说明图如图3,他写道:“由于向心力行星会保持于某一轨道,如果我们考虑抛体运动,这一点就很容易理解:一块石头投出,由于自身的重量的压力,被迫离开直线路径,如果单有初始投掷,理应按直线运动,而这时却在空气中描出曲线,最终落在地面;投掷的速度越大,它在落地前走的越远。

于是我们可以假设当速度增大到如此之大,在落地前描出一条1,2,5,10,100,1000英里长的弧线,直到最后超出了地球的限制,进入空间永不触及地球。

”牛顿的抛体理想实验,把地面上的力学和空间的力学统一了起来,是他发现万有引力定律、最终形成以三大定律为基础的力学体系的重要思维历程。

3马赫的“理想水桶”实验在牛顿的力学体系中,对于时间、空间和运动这些必不可少的基本要素,牛顿都作了明确的叙述,从而构成了他的绝对时空观。

为了证明绝对空间和绝对运动的存在,牛顿提出了著名的水桶实验:“如果用长绳吊一水桶,让它旋转至绳扭紧,然后将水注入,水与桶都暂时处于静止之中。

再以另一个力突然使桶沿反方向旋转,当绳子完全放松时,桶的运动还会维持一段时间;水的表面起初是平的,和桶开始旋转时一样。

但是后来,当桶逐渐把运动传递给水,使水也开始旋转。

于是。

可以看到水渐渐地脱离其中心而沿桶壁上升形成凹状。

运动越快水升的越高。

直到最后,水与桶的转速一致,水面即呈相对静止。

水的升高显示它脱离转轴的倾向,也显示了水的真正的、绝对的圆周运动。

这个运动是可知的并可从这一倾向测出,跟相对运动正好相反。

在开始时,桶中水的相对运动最大,但并无离开转轴的倾向;水既不偏向边缘,也不升高,而是保持平面,所以它的圆周运动尚未真正开始。

但是后来,相对运动减小时,水却趋于边缘,证明它有一种倾向要离开转轴。

这一倾向表明水的真正的圆周运动在不断增大,直到它达到最大值,这时水就在桶中相对静止。

所以,这一倾向并不依赖于水相对周围物体的任何移动,这类移动也无法定义真正的圆周运动。

”从牛顿的描述和分析可以看出,牛顿的水桶实验是很容易实现的,实验现象也是很容易观察到的,因此这是一个实际实验及现象分析。

但是,由此而论证的绝对运动却引起后人的许多怀疑与争议。

一般认为,对牛顿的绝对时空、绝对运动观作出最深刻、最有力批判的是奥地利物理学家马赫。

19世纪末,马赫完成了他的名著《力学史评》。

在书中,马赫指出,世界上一切物体都是相互联系、相互依赖的,与任何变化无关的绝对时间,既然不可能由任何运动来量度,因而也就没有任何实际价值和科学价值。

同样的道理,任何人也不能说有什么关于绝对空间和绝对运动的东西。

马赫仍借用牛顿的水桶实验,但把实际的水桶实验抽象为理想实验。

他设想,如果桶壁越来越厚,越来越重,最后达到几千米厚,实验能得出什么样的结果呢?马赫指出:水相对于桶壁的旋转,当然不能引起它表面的凹曲现象,因为桶的质量太小了。

但是,如果桶壁变得非常厚,相对转动对于水面的平凹就肯定会起作用。

设想一个静止于水面上的观察者,将看到无数天体绕着他旋转,这一拥有巨大质量的天体体系绕着水旋转,必然引起水面凹曲的现象。

所以,马赫据此得出结论:这种效应仍然是相对运动引起的,并不是什么绝对运动的证据。

马赫应用理想实验,以明确、直观的形式指出了牛顿的绝对时空、绝对运动观的谬误。

在物理学发展的重要关头,他以逻辑思维的方法对旧理论作出令人信服的批判,使人们看到绝对时空观作为牛顿力学的基石是不够牢固的,呼唤物理学在更牢固的基础上建立新的力学体系。

4麦克斯韦的“麦克斯韦妖”理想实验1865年,克劳修斯引进态函数“熵”,提出了著名的“熵增加原理”,从而得到了热力学第二定律的最普遍的描述。

但随后克劳修斯把这一原理当作普适的、绝对的真理外推到无限的宇宙中去,导致了“热寂”说的产生,克劳修斯指出:“宇宙的熵趋向于极大。

宇宙越是接近于这个熵极大的极限状态,进一步变化的能力就越小;如果最后完全达到了这个状态,那就任何进一步的变化都不会发生了,这时宇宙就会进入一个死寂的永恒状态。

”“热寂”说的提出,在物理学界和社会上都引起了强烈反响。

许多物理学家寻找各种理由来论证“热寂”说是错误的,对“热寂”说进行批判。

麦克斯韦当时就隐约地意识到,自然界可能存在着某种与熵增加相反的过程,但由于并不明白这种相反过程的机理,于是麦克斯韦在他1871年出版的《热学理论》一书中设计了一个有趣而令人迷惑的理想实验:“热力学中最确凿不移的事实之一是,如果一个封闭的既不允许体积变化,又不允许热量流通的屏障内的系统,而且其中温度和压强处处相等的话,那么在不消耗功的情况下产生出任何温度和压强的不均匀等是不可能的。

这就是热力学第二定律。

当我们能够处理的只是大块物体而无法看到或处理借以构成物体的分离的分子时,这无疑是正确的;但是,如果我们设想有某个存在物,它的才能如此突出,以致可以在每个分子的行程中追踪每个分子,它的属性仍然如我们自身的属性一样基本上是有限的,但这样一个存在物能做到对现在对我们说来是不可能做的事。

我们知道,在一个温度均匀的充满空气的容器里的分子,其运动速度绝不均匀,然而,任意选取的任何大量分子的平均速度几乎是完全均匀的。

现在让我们假定把这样一个容器分为A和B两部分,在分界上有一个小孔,再设想一个能见到单分子的存在物,打开或关闭那个小孔,使得只有快分子从A跑向B,而慢分子从B跑向A,这样,它就在不消耗功的情况下,B的温度提高,A的温度降低,而与热力学第二定律发生矛盾。

”麦克斯韦的理想实验,提出了一个违反热力学第二定律的过程,用几乎神奇的方法对第二定律提出了责难。

虽然麦克斯韦所设想的过程正是反对和批判“热寂”说的物理学家们所期盼的,因为在他们看来,如果这种过程确实存在,那么“热寂”说就是不可能的,这样就达到了挽救宇宙、挽救我们生存的地球的目的,然而,如果麦克斯韦理想实验中的过程真是可以实现的,则就说明热力学第二定律是可以违反的。

第二类永动机是可以造成的。

这种结果显然又不是物理学家所愿意看到的,所以麦克斯韦的这个理想实验使物理学家们陷入困惑之中,以至于人们把麦克斯韦在理想实验中提到的“某个存在物”称为“麦克斯韦妖”。

然而,“麦克斯韦妖”理想实验的意义是十分深远的,它促使物理学家们进一步深入探讨热力学第二定律的本质,在更广阔的范围内研究与热有关的物理现象。

100多年来,许多杰出的物理学家都对它的研究倾注了很大的热情。

几代物理学家研究的结果表明,“麦克斯韦妖”理想实验客观上是存在的,但它并不违反热力学第二定律。

事实上到某前为止,没有发现任何自然过程肯定地违反热力学第二定律,而热力学第二定律也绝非必然导致“热寂”。

5爱因斯坦与理想实验无论是1905年建立狭义相对论,还是1915年建立广义相对论,爱因斯坦在其物理学研究的过程中,都因运用理想实验而显得深刻、严密和精彩。

5.1“爱因斯坦列车”理想实验19世纪末,物理学获得了一批新的实验事实和理论研究成果。

例如迈克尔逊—莫雷实验的零结果、洛仑兹对实验的理论解释、彭加勒卓有成效的理论研究,都昭示着一个全新的力学体系将要诞生。

并且,他们所得到的一些结论,实际上已经超出了旧理论的框架。

然而,他们都未彻底摆脱牛顿力学绝对时空观的束缚,无法从根本上取得理论突破。

1905年,年轻的爱因斯坦终于找到了新理论的突破口,即发现相对性原理。

爱因斯坦是用一个理想实验来阐述他的发现的。

这个理想实验,就是被后人称道的“爱因斯坦列车”:当两道闪电同时下击一条东西方向的铁轨时,对于坐在两道闪电正中间的铁轨旁的第一个观察者来说,两道闪电是同时发生的;但是对于坐在由西向东行驶的列车上正好经过第一个观察者的第二个观察者来说,两道闪电并不是同时下击的,因为第二个观察者正在以一个速度接近东方的闪电而远离西方的闪电,东方的闪电到达他的眼里要比西方的闪电早一点。

所以,在第一个静止的观察者看来是同时发生的闪电,运动中的第二观察者却看到东方的闪电先亮而西方的闪电后亮。

如果进一步设想火车是以光速前进的,则西方的闪电永远不能追上火车,所以火车上的第二个观察者就只能看到东方的那一道闪电了。

由此,我们不能得到这样的结论:在铁轨旁的第一个观察者看来是同时发生的两件事,而在火车上的第二个观察者看来却并不是同时发生的。

显然,同时性只能是相对的。

事实上,每一个坐标都有它本身的特殊时,脱离参照系而孤立地陈述某一事件的时间是没有意义的。

相关文档
最新文档